BWAPI
|
00001 // Copyright (c) 2000,2001 Utrecht University (The Netherlands), 00002 // ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany), 00003 // INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg 00004 // (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria), 00005 // and Tel-Aviv University (Israel). All rights reserved. 00006 // 00007 // This file is part of CGAL (www.cgal.org); you can redistribute it and/or 00008 // modify it under the terms of the GNU Lesser General Public License as 00009 // published by the Free Software Foundation; version 2.1 of the License. 00010 // See the file LICENSE.LGPL distributed with CGAL. 00011 // 00012 // Licensees holding a valid commercial license may use this file in 00013 // accordance with the commercial license agreement provided with the software. 00014 // 00015 // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE 00016 // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 00017 // 00018 // $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Kernel_d/include/CGAL/Kernel_d/Line_d.h $ 00019 // $Id: Line_d.h 42932 2008-04-17 10:13:31Z spion $ 00020 // 00021 // 00022 // Author(s) : Michael Seel 00023 00024 #ifndef CGAL_LINE_D_H 00025 #define CGAL_LINE_D_H 00026 00027 #include <CGAL/Kernel_d/Pair_d.h> 00028 #include <CGAL/Kernel_d/Segment_d.h> 00029 #include <CGAL/Kernel_d/Ray_d.h> 00030 #include <CGAL/Dimension.h> 00031 00032 CGAL_BEGIN_NAMESPACE 00033 00034 template <class R> 00035 std::istream& operator>>(std::istream&, Line_d<R>&); 00036 template <class R> 00037 std::ostream& operator<<(std::ostream&, const Line_d<R>&); 00038 00039 /*{\Manpage {Line_d}{R}{Lines in d-space}{l}}*/ 00040 00041 template <class p_R> 00042 class Line_d : public Handle_for< Pair_d<p_R> > { 00043 typedef Pair_d<p_R> Pair; 00044 typedef Handle_for<Pair> Base; 00045 typedef Line_d<p_R> Self; 00046 00047 using Base::ptr; 00048 00049 /*{\Mdefinition 00050 An instance of data type |Line_d| is an oriented line in 00051 $d$-dimensional Euclidian space.}*/ 00052 00053 public: 00054 00055 typedef CGAL::Dynamic_dimension_tag Ambient_dimension; 00056 typedef CGAL::Dimension_tag<1> Feature_dimension; 00057 00058 /*{\Mtypes 5}*/ 00059 typedef p_R R; 00060 /*{\Mtypemember the representation type.}*/ 00061 typedef typename p_R::RT RT; 00062 /*{\Mtypemember the ring type.}*/ 00063 typedef typename p_R::FT FT; 00064 /*{\Mtypemember the field type.}*/ 00065 typedef typename p_R::LA LA; 00066 /*{\Mtypemember the linear algebra layer.}*/ 00067 00068 typedef typename Vector_d<R>::Base_vector Base_vector; 00069 00070 friend class Ray_d<R>; 00071 friend class Segment_d<R>; 00072 00073 private: 00074 Line_d(const Base& b) : Base(b) {} 00075 public: 00076 /*{\Mcreation 3}*/ 00077 00078 Line_d() : Base( Pair() ) {} 00079 /*{\Mcreate introduces a variable |\Mvar| of type |\Mname| and 00080 initializes it to some line in $d$ - dimensional space }*/ 00081 00082 Line_d(const Point_d<R>& p, const Point_d<R>& q) 00083 /*{\Mcreate introduces a line through |p| and |q| and oriented 00084 from |p| to |q|. \precond $p$ and $q$ are distinct and have the same 00085 dimension.}*/ 00086 : Base( Pair(p,q) ) 00087 { CGAL_assertion_msg(!ptr()->is_degenerate(), 00088 "Line_d::constructor: the two points must be different." ); 00089 CGAL_assertion_msg((p.dimension()==q.dimension()), 00090 "Line_d::constructor: the two points must have the same dimension." ); 00091 } 00092 00093 Line_d(const Point_d<R>& p, const Direction_d<R>& dir) 00094 /*{\Mcreate introduces a line through |p| with direction |dir|. 00095 \precond |p| and |dir| have the same dimension, |dir| is not trivial. }*/ 00096 : Base( Pair(p,p+dir.vector()) ) 00097 { CGAL_assertion_msg((p.dimension()==dir.dimension()), 00098 "Line_d::constructor: the p and dir must have the same dimension." ); 00099 CGAL_assertion_msg(!dir.is_degenerate(), 00100 "Line_d::constructor: dir must be non-degenerate." ); 00101 } 00102 00103 Line_d(const Segment_d<R>& s) 00104 /*{\Mcreate introduces a variable |\Mvar| of type |\Mname| and 00105 initializes it to the line through |s.source()| and |s.target()| 00106 with direction from |s.source()| to |s.target()|. 00107 \precond $s$ is not degenerate. }*/ 00108 : Base( s ) 00109 { CGAL_assertion_msg((!s.is_degenerate()), 00110 "Line_d::constructor: segment is trivial."); 00111 } 00112 00113 Line_d(const Ray_d<R>& r) : Base(r) {} 00114 /*{\Mcreate introduces a variable |\Mvar| of type |\Mname| and 00115 initializes it to the line through |r.point(1)| and |r.point(2)|. }*/ 00116 00117 Line_d(const Line_d<R>& l) : Base(l) {} 00118 00119 /*{\Moperations 3 3}*/ 00120 00121 int dimension() const { return (ptr()->_p[0].dimension()); } 00122 /*{\Mop returns the dimension of the underlying space.}*/ 00123 00124 Point_d<R> point(int i) const 00125 /*{\Mop returns an arbitrary point on |l|. It holds that |point(i) == 00126 point(j)|, iff |i==j|. Furthermore, |l| is directed from |point(i)| to 00127 |point(j)|, for all |i < j|.}*/ 00128 { return (ptr()->_p[i%2]); } 00129 00130 Line_d<R> opposite() const 00131 /*{\Mop returns the line |(point(2),point(1))|. }*/ 00132 { return Line_d<R>(point(1),point(0)); } 00133 00134 Direction_d<R> direction() const 00135 /*{\Mop returns the direction of |\Mvar|. }*/ 00136 { return ptr()->direction(); } 00137 00138 Line_d<R> transform(const Aff_transformation_d<R> & t) const 00139 /*{\Mop returns $t(l)$. }*/ 00140 { return Line_d<R>(point(0).transform(t),point(1).transform(t)); } 00141 00142 Line_d<R> operator+(const Vector_d<R>& v) const 00143 /*{\Mbinop returns |\Mvar+v|, i.e., |\Mvar| translated by vector $v$.}*/ 00144 { return Line_d<R>(point(0)+v,point(1)+v); } 00145 00146 Point_d<R> projection(const Point_d<R>& p) const 00147 /*{\Mop returns the point of intersection of |\Mvar| with the hyperplane 00148 that is orthogonal to |\Mvar| through |p|. }*/ 00149 { Vector_d<R> v = direction().vector(); 00150 Point_d<R> q = point(0); 00151 FT lambda = ((p-q) * v) / (v*v); 00152 Point_d<R> res = q + lambda * v; 00153 return res; 00154 } 00155 00156 bool has_on(const Point_d<R>& p) const 00157 /*{\Mopl returns true if $p$ lies on |\Mvar| and false otherwise. }*/ 00158 { typename R::Position_on_line_d pos; FT dummy; 00159 return pos(p,point(0),point(1),dummy); } 00160 00161 bool operator==(const Line_d<R>& l1) const 00162 { if ( this->identical(l1) ) return true; 00163 if ( dimension() != l1.dimension() ) return false; 00164 return has_on(l1.point(0)) && 00165 direction() == l1.direction(); 00166 } 00167 00168 bool operator!=(const Line_d<R>& l1) const 00169 { return !operator==(l1); } 00170 00171 friend std::istream& operator>> <> 00172 (std::istream&, Line_d<R>&); 00173 friend std::ostream& operator<< <> 00174 (std::ostream&, const Line_d<R>&); 00175 00176 }; // end of class 00177 00178 /*{\Mtext \headerline{Non-Member Functions} }*/ 00179 00180 template <class R> 00181 bool weak_equality(const Line_d<R>& l1, const Line_d<R>& l2) 00182 /*{\Mfunc Test for equality as unoriented lines.}*/ 00183 { if (l1.identical(l2)) return true; 00184 if (l1.dimension()!=l2.dimension()) return false; 00185 return (l1.has_on(l2.point(0)) && 00186 l1.has_on(l2.point(1))); 00187 } 00188 00189 template <class R> 00190 bool parallel(const Line_d<R>& l1, const Line_d<R>& l2) 00191 /*{\Mfunc returns true if |l1| and |l2| are parallel as unoriented lines 00192 and false otherwise. }*/ 00193 { return (l1.direction() == l2.direction() || 00194 l1.direction() == -l2.direction()); } 00195 00196 template <class R> 00197 std::istream& operator>>(std::istream& I, Line_d<R>& l) 00198 { l.copy_on_write(); l.ptr()->read(I); 00199 CGAL_assertion_msg(l.point(0)!=l.point(1), 00200 "Line_d::operator>>: trivial line."); 00201 CGAL_assertion_msg(l.point(0).dimension()==l.point(1).dimension(), 00202 "Line_d::operator>>: dimensions disagree."); 00203 return I; 00204 } 00205 00206 template <class R> 00207 std::ostream& operator<<(std::ostream& O, const Line_d<R>& l) 00208 { l.ptr()->print(O,"Line_d"); return O; } 00209 00210 /*{\Mimplementation 00211 Lines are implemented by a pair of points as an item type. All 00212 operations like creation, initialization, tests, direction 00213 calculation, input and output on a line $l$ take time 00214 $O(|l.dimension()|)$. |dimension()|, coordinate and point access, and 00215 identity test take constant time. The operations for intersection 00216 calculation also take time $O(|l.dimension()|)$. The space requirement 00217 is $O(|l.dimension()|)$.}*/ 00218 00219 00220 CGAL_END_NAMESPACE 00221 #endif // CGAL_LINE_D_H 00222 //----------------------- end of file ---------------------------------- 00223