BWAPI
|
00001 // Copyright (c) 2000,2001 Utrecht University (The Netherlands), 00002 // ETH Zurich (Switzerland), Freie Universitaet Berlin (Germany), 00003 // INRIA Sophia-Antipolis (France), Martin-Luther-University Halle-Wittenberg 00004 // (Germany), Max-Planck-Institute Saarbruecken (Germany), RISC Linz (Austria), 00005 // and Tel-Aviv University (Israel). All rights reserved. 00006 // 00007 // This file is part of CGAL (www.cgal.org); you can redistribute it and/or 00008 // modify it under the terms of the GNU Lesser General Public License as 00009 // published by the Free Software Foundation; version 2.1 of the License. 00010 // See the file LICENSE.LGPL distributed with CGAL. 00011 // 00012 // Licensees holding a valid commercial license may use this file in 00013 // accordance with the commercial license agreement provided with the software. 00014 // 00015 // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE 00016 // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. 00017 // 00018 // $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Kernel_d/include/CGAL/Kernel_d/Segment_d.h $ 00019 // $Id: Segment_d.h 42932 2008-04-17 10:13:31Z spion $ 00020 // 00021 // 00022 // Author(s) : Michael Seel 00023 00024 #ifndef CGAL_SEGMENT_D_H 00025 #define CGAL_SEGMENT_D_H 00026 00027 #include <CGAL/Kernel_d/Pair_d.h> 00028 #include <CGAL/Kernel_d/Line_d.h> 00029 #include <CGAL/Kernel_d/Ray_d.h> 00030 #include <CGAL/Dimension.h> 00031 00032 CGAL_BEGIN_NAMESPACE 00033 00034 template <class R> std::istream& operator>> 00035 (std::istream&, Segment_d<R>&); 00036 template <class R> std::ostream& operator<< 00037 (std::ostream&, const Segment_d<R>&); 00038 00039 00040 /*{\Manpage {Segment_d}{R}{Segments in d-space}{s}}*/ 00041 00042 template <class p_R> 00043 class Segment_d : public Handle_for< Pair_d<p_R> > { 00044 00045 typedef Pair_d<p_R> Pair; 00046 typedef Handle_for<Pair> Base; 00047 typedef Segment_d<p_R> Self; 00048 00049 using Base::ptr; 00050 00051 /*{\Mdefinition 00052 An instance $s$ of the data type |Segment_d| is a directed straight 00053 line segment in $d$-dimensional Euclidian space connecting two points 00054 $p$ and $q$. $p$ is called the source point and $q$ is called 00055 the target point of $s$, both points are called endpoints of $s$. A 00056 segment whose endpoints are equal is called \emph{degenerate}.}*/ 00057 public: 00058 00059 typedef CGAL::Dynamic_dimension_tag Ambient_dimension; 00060 typedef CGAL::Dimension_tag<1> Feature_dimension; 00061 00062 /*{\Mtypes 5}*/ 00063 typedef p_R R; 00064 /*{\Mtypemember the representation type.}*/ 00065 typedef typename p_R::RT RT; 00066 /*{\Mtypemember the ring type.}*/ 00067 typedef typename p_R::FT FT; 00068 /*{\Mtypemember the field type.}*/ 00069 typedef typename p_R::LA LA; 00070 /*{\Mtypemember the linear algebra layer.}*/ 00071 00072 friend class Line_d<R>; 00073 friend class Ray_d<R>; 00074 00075 private: 00076 Segment_d(const Base& b) : Base(b) {} 00077 public: 00078 /*{\Mcreation 3}*/ 00079 00080 Segment_d() : Base( Pair() ) {} 00081 /*{\Mcreate introduces a variable |\Mvar| of type |\Mname|.}*/ 00082 00083 Segment_d(const Point_d<R>& p, const Point_d<R>& q) 00084 /*{\Mcreate introduces a variable |\Mvar| of type |\Mname| which 00085 is initialized to the segment $(p,q)$. }*/ 00086 : Base( Pair(p,q) ) {} 00087 00088 Segment_d(const Point_d<R>& p, const Vector_d<R>& v) 00089 /*{\Mcreate introduces a variable |\Mvar| of type |\Mname| which 00090 is initialized to the segment |(p,p+v)|. }*/ 00091 : Base( Pair(p,p+v) ) {} 00092 00093 Segment_d(const Segment_d<R>& s) : Base(s) {} 00094 00095 /*{\Moperations 3 3}*/ 00096 00097 int dimension() const { return (ptr()->_p[0].dimension()); } 00098 /*{\Mop returns the dimension of the underlying space. }*/ 00099 00100 Point_d<R> source() const { return ptr()->_p[0]; } 00101 /*{\Mop returns the source point of segment |\Mvar|. }*/ 00102 00103 Point_d<R> target() const { return ptr()->_p[1]; } 00104 /*{\Mop returns the target point of segment |\Mvar|. }*/ 00105 00106 // defined for historical reasons 00107 Point_d<R> vertex(int i) const 00108 /*{\Mop returns source or target of |\Mvar|: |vertex(0)| returns the 00109 source, |vertex(1)| returns the target. The parameter $i$ is taken 00110 modulo $2$, which gives easy access to the other vertex. 00111 \precond $i \geq 0$.}*/ 00112 { CGAL_assertion(i>=0); return ptr()->_p[i%2]; } 00113 00114 Point_d<R> point(int i) const { return vertex(i); } 00115 /*{\Mop returns |vertex(i)|.}*/ 00116 00117 Point_d<R> operator[](int i) const { return vertex(i); } 00118 /*{\Marrop returns |vertex(i)|.}*/ 00119 00120 Point_d<R> min BOOST_PREVENT_MACRO_SUBSTITUTION () const 00121 /*{\Mop returns the lexicographically smaller vertex.}*/ 00122 { typename R::Compare_lexicographically_d cmp; 00123 if (cmp(source(),target()) == CGAL::SMALLER) return source(); 00124 else return target(); 00125 } 00126 00127 Point_d<R> max BOOST_PREVENT_MACRO_SUBSTITUTION () const 00128 /*{\Mop returns the lexicographically larger vertex.}*/ 00129 { typename R::Compare_lexicographically_d cmp; 00130 if (cmp(source(),target()) == SMALLER) return target(); 00131 else return source(); 00132 } 00133 00134 Segment_d<R> opposite() const 00135 /*{\Mop returns the segment |(target(),source())|.}*/ 00136 { return Segment_d<R>(target(),source()); } 00137 00138 00139 Direction_d<R> direction() const 00140 /*{\Mop returns the direction from source to target.\\ 00141 \precond |\Mvar| is non-degenerate. }*/ 00142 { CGAL_assertion_msg((!is_degenerate()), 00143 "Segment_d::direction(): degenerate segment cannot be converted."); 00144 return ptr()->direction(); 00145 } 00146 00147 Vector_d<R> vector() const 00148 /*{\Mop returns the vector from source to target.}*/ 00149 { return ptr()->vector(); } 00150 00151 FT squared_length() const 00152 /*{\Mop returns the square of the length of |\Mvar|.}*/ 00153 { return (target()-source()).squared_length(); } 00154 00155 bool has_on(const Point_d<R>& p) const 00156 /*{\Mop returns true if $p$ lies on |\Mvar| and false otherwise. }*/ 00157 { if (is_degenerate()) return (source() == p); 00158 typename R::Position_on_line_d pos; FT l; 00159 if ( pos(p,source(),target(),l) ) return (FT(0)<=l && l<=FT(1)); 00160 return false; 00161 } 00162 00163 inline Line_d<R> supporting_line() const; 00164 /*{\Mop returns the supporting line of |\Mvar|. 00165 \precond |\Mvar| is non-degenerate. }*/ 00166 00167 Segment_d<R> 00168 transform(const Aff_transformation_d<R>& t) const 00169 /*{\Mop returns $t(s)$.}*/ 00170 { return Segment_d<R>(source().transform(t), 00171 target().transform(t)); } 00172 00173 Segment_d<R> operator+(const Vector_d<R>& v) const 00174 /*{\Mbinop returns $s+v$, i.e., |\Mvar| translated by vector $v$.}*/ 00175 { return Segment_d<R>(source()+v,target()+v); } 00176 00177 bool is_degenerate() const 00178 /*{\Mop returns true if |\Mvar| is degenerate i.e. 00179 |\Mvar.source()=\Mvar.target()|. }*/ 00180 { return ptr()->is_degenerate(); } 00181 00182 bool operator==(const Segment_d<R>& t) const 00183 { if (this->identical(t)) return true; 00184 return ((source() == t.source() && 00185 target() == t.target())); } 00186 00187 bool operator!=(const Segment_d<R>& t) const 00188 { return !operator==(t); } 00189 00190 friend std::istream& operator>> <> 00191 (std::istream&, Segment_d<R>&); 00192 friend std::ostream& operator<< <> 00193 (std::ostream&, const Segment_d<R>&); 00194 00195 }; // end of class 00196 00197 /*{\Mtext \headerline{Non-Member Functions} }*/ 00198 00199 template <class R> 00200 bool weak_equality(const Segment_d<R>& s, const Segment_d<R>& t) 00201 /*{\Mfunc Test for equality as unoriented segments.}*/ 00202 { return (s==t || s==t.opposite()); } 00203 00204 template <class R> 00205 bool parallel(const Segment_d<R>& s1, const Segment_d<R>& s2) 00206 /*{\Mfunc return true if one of the segments is trivial or 00207 if the unoriented supporting lines are parallel. }*/ 00208 { return s1.is_degenerate() || s2.is_degenerate() || 00209 s1.direction() == s2.direction() || 00210 s1.direction() == -s2.direction(); } 00211 00212 template <class R> 00213 bool common_endpoint(const Segment_d<R>& s1, const Segment_d<R>& s2, 00214 Point_d<R>& common) 00215 /*{\Mfunc if |s1| and |s2| touch in a common end point, this point 00216 is assigned to |common| and the result is |true|, otherwise the 00217 result is |false|. }*/ 00218 { if (s1.source() == s2.source()) { common = s1.source(); return true; } 00219 if (s1.source() == s2.target()) { common = s1.source(); return true; } 00220 if (s1.target() == s2.source()) { common = s1.target(); return true; } 00221 if (s1.target() == s2.target()) { common = s1.target(); return true; } 00222 return false; 00223 } 00224 00225 template <class R> 00226 std::istream& operator>>(std::istream& I, Segment_d<R>& s) 00227 { s.copy_on_write(); s.ptr()->read(I); 00228 CGAL_assertion_msg(s.source().dimension()==s.target().dimension(), 00229 "Segment_d::operator>>: dimensions disagree."); 00230 return I; 00231 } 00232 00233 template <class R> 00234 std::ostream& operator<<(std::ostream& O, const Segment_d<R>& s) 00235 { s.ptr()->print(O,"Segment_d"); return O; } 00236 00237 /*{\Mimplementation 00238 Segments are implemented by a pair of points as an item type. All 00239 operations like creation, initialization, tests, the calculation of 00240 the direction and source - target vector, input and output on a 00241 segment $s$ take time $O(|s.dimension()|)$. |dimension()|, coordinate 00242 and end point access, and identity test take constant time. The 00243 operations for intersection calculation also take time 00244 $O(|s.dimension()|)$. The space requirement is $O(|s.dimension()|)$. 00245 }*/ 00246 00247 00248 CGAL_END_NAMESPACE 00249 #endif // CGAL_SEGMENT_D_H 00250 //----------------------- end of file ---------------------------------- 00251