BWAPI
SPAR/AIModule/BWTA/vendors/CGAL/CGAL/Polynomial/modular_gcd_utils.h
Go to the documentation of this file.
00001 // Copyright (c) 2002-2008 Max-Planck-Institute Saarbruecken (Germany)
00002 //
00003 // This file is part of CGAL (www.cgal.org); you can redistribute it and/or
00004 // modify it under the terms of the GNU Lesser General Public License as
00005 // published by the Free Software Foundation; version 2.1 of the License.
00006 // See the file LICENSE.LGPL distributed with CGAL.
00007 //
00008 // Licensees holding a valid commercial license may use this file in
00009 // accordance with the commercial license agreement provided with the software.
00010 //
00011 // This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE
00012 // WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
00013 //
00014 // $URL: svn+ssh://scm.gforge.inria.fr/svn/cgal/branches/CGAL-3.5-branch/Polynomial/include/CGAL/Polynomial/modular_gcd_utils.h $
00015 // $Id: modular_gcd_utils.h 47300 2008-12-09 10:48:07Z hemmer $
00016 //
00017 //
00018 // Author(s)     : Michael Hemmer <hemmer@mpi-inf.mpg.de>
00019 //                 Dominik Huelse  <dominik.huelse@gmx.de>
00020 //                 
00021 // ============================================================================
00022 
00027 #ifndef CGAL_POLYNOMIAL_MODULAR_GCD_UTILS_H
00028 #define CGAL_POLYNOMIAL_MODULAR_GCD_UTILS_H
00029 
00030 #include <CGAL/basic.h>
00031 #include <vector>
00032 #include <CGAL/Polynomial.h>
00033 
00034 #include <CGAL/Timer.h>
00035 
00036 namespace CGAL{
00037 
00038 namespace CGALi { 
00039 
00040 template <class NT>
00041 void euclidean_division_obstinate(const NT& F1, const NT& F2, 
00042         NT& Q, NT& R){
00043 
00044     CGAL_precondition(F2 != 0);
00045     
00046     CGAL::div_mod(F1, F2, Q, R);
00047     CGAL_postcondition(F1 == F2*Q + R);
00048 }
00049 
00050 
00051 template <class NT>
00052 void euclidean_division_obstinate(const Polynomial<NT>& F1, 
00053         const Polynomial<NT>& F2, 
00054         Polynomial<NT>& Q, Polynomial<NT>& R){
00055 
00056 //    std::cout<<" my_modular_gcd_utils "<<std::endl;
00057     CGAL_precondition(!F2.is_zero());
00058     int d1 = F1.degree();
00059     int d2 = F2.degree();
00060     if ( d1 < d2 ) {
00061         Q = Polynomial<NT>(NT(0)); R = F1;
00062         CGAL_postcondition( !(boost::is_same< typename Algebraic_structure_traits<NT>::Is_exact, 
00063                         CGAL::Tag_true >::value) ||  F1 == Q*F2 + R); return;
00064     }
00065     
00066     typedef std::vector<NT> Vector;
00067     Vector V_R, V_Q;    
00068     V_Q.reserve(d1);
00069     if(d2==0){
00070         for(int i=d1;i>=0;--i){      
00071             V_Q.push_back(F1[i]/F2[0]);
00072         }
00073         V_R.push_back(NT(0));
00074     }
00075     else{        
00076         V_R.reserve(d1);
00077         V_R=Vector(F1.begin(),F1.end());
00078         Vector tmp1;
00079         tmp1.reserve(d2);
00080         for(int k=0; k<=d1-d2; ++k){
00081             V_Q.push_back(V_R[d1-k]/F2[d2]);  
00082             for(int j=0;j<d2;++j){   
00083                 tmp1.push_back(F2[j]*V_Q[k]);
00084             }   
00085             V_R[d1-k]=0;            
00086             for(int i=d1-d2-k;i<=d1-k-1;++i){
00087                 V_R[i]=V_R[i]-tmp1[i-(d1-d2-k)];
00088             }   
00089             tmp1.clear();
00090         }
00091         
00092 
00093     }
00094     Q = Polynomial<NT>(V_Q.rbegin(),V_Q.rend());
00095     R = Polynomial<NT>(V_R.begin(),V_R.end());
00096     CGAL_postcondition(F1 == F2*Q + R);
00097 }
00098 
00099 } // namespace CGALi
00100 } // namespace CGAL
00101 
00102 #endif //#ifnedef CGAL_POLYNOMIAL_MODULAR_GCD_UTILS_H 1
00103 
00104 // EOF
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines