BWAPI
Undermind/proxy/cpp/include/google/protobuf/message.h
Go to the documentation of this file.
00001 // Protocol Buffers - Google's data interchange format
00002 // Copyright 2008 Google Inc.  All rights reserved.
00003 // http://code.google.com/p/protobuf/
00004 //
00005 // Redistribution and use in source and binary forms, with or without
00006 // modification, are permitted provided that the following conditions are
00007 // met:
00008 //
00009 //     * Redistributions of source code must retain the above copyright
00010 // notice, this list of conditions and the following disclaimer.
00011 //     * Redistributions in binary form must reproduce the above
00012 // copyright notice, this list of conditions and the following disclaimer
00013 // in the documentation and/or other materials provided with the
00014 // distribution.
00015 //     * Neither the name of Google Inc. nor the names of its
00016 // contributors may be used to endorse or promote products derived from
00017 // this software without specific prior written permission.
00018 //
00019 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
00020 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
00021 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
00022 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
00023 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
00024 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
00025 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
00026 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
00027 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
00028 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
00029 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
00030 
00031 // Author: kenton@google.com (Kenton Varda)
00032 //  Based on original Protocol Buffers design by
00033 //  Sanjay Ghemawat, Jeff Dean, and others.
00034 //
00035 // Defines Message, the abstract interface implemented by non-lite
00036 // protocol message objects.  Although it's possible to implement this
00037 // interface manually, most users will use the protocol compiler to
00038 // generate implementations.
00039 //
00040 // Example usage:
00041 //
00042 // Say you have a message defined as:
00043 //
00044 //   message Foo {
00045 //     optional string text = 1;
00046 //     repeated int32 numbers = 2;
00047 //   }
00048 //
00049 // Then, if you used the protocol compiler to generate a class from the above
00050 // definition, you could use it like so:
00051 //
00052 //   string data;  // Will store a serialized version of the message.
00053 //
00054 //   {
00055 //     // Create a message and serialize it.
00056 //     Foo foo;
00057 //     foo.set_text("Hello World!");
00058 //     foo.add_numbers(1);
00059 //     foo.add_numbers(5);
00060 //     foo.add_numbers(42);
00061 //
00062 //     foo.SerializeToString(&data);
00063 //   }
00064 //
00065 //   {
00066 //     // Parse the serialized message and check that it contains the
00067 //     // correct data.
00068 //     Foo foo;
00069 //     foo.ParseFromString(data);
00070 //
00071 //     assert(foo.text() == "Hello World!");
00072 //     assert(foo.numbers_size() == 3);
00073 //     assert(foo.numbers(0) == 1);
00074 //     assert(foo.numbers(1) == 5);
00075 //     assert(foo.numbers(2) == 42);
00076 //   }
00077 //
00078 //   {
00079 //     // Same as the last block, but do it dynamically via the Message
00080 //     // reflection interface.
00081 //     Message* foo = new Foo;
00082 //     Descriptor* descriptor = foo->GetDescriptor();
00083 //
00084 //     // Get the descriptors for the fields we're interested in and verify
00085 //     // their types.
00086 //     FieldDescriptor* text_field = descriptor->FindFieldByName("text");
00087 //     assert(text_field != NULL);
00088 //     assert(text_field->type() == FieldDescriptor::TYPE_STRING);
00089 //     assert(text_field->label() == FieldDescriptor::TYPE_OPTIONAL);
00090 //     FieldDescriptor* numbers_field = descriptor->FindFieldByName("numbers");
00091 //     assert(numbers_field != NULL);
00092 //     assert(numbers_field->type() == FieldDescriptor::TYPE_INT32);
00093 //     assert(numbers_field->label() == FieldDescriptor::TYPE_REPEATED);
00094 //
00095 //     // Parse the message.
00096 //     foo->ParseFromString(data);
00097 //
00098 //     // Use the reflection interface to examine the contents.
00099 //     const Reflection* reflection = foo->GetReflection();
00100 //     assert(reflection->GetString(foo, text_field) == "Hello World!");
00101 //     assert(reflection->FieldSize(foo, numbers_field) == 3);
00102 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 0) == 1);
00103 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 1) == 5);
00104 //     assert(reflection->GetRepeatedInt32(foo, numbers_field, 2) == 42);
00105 //
00106 //     delete foo;
00107 //   }
00108 
00109 #ifndef GOOGLE_PROTOBUF_MESSAGE_H__
00110 #define GOOGLE_PROTOBUF_MESSAGE_H__
00111 
00112 #include <vector>
00113 #include <string>
00114 
00115 #ifdef __DECCXX
00116 // HP C++'s iosfwd doesn't work.
00117 #include <iostream>
00118 #else
00119 #include <iosfwd>
00120 #endif
00121 
00122 #include <google/protobuf/message_lite.h>
00123 
00124 #include <google/protobuf/stubs/common.h>
00125 
00126 #if defined(_WIN32) && defined(GetMessage)
00127 // windows.h defines GetMessage() as a macro.  Let's re-define it as an inline
00128 // function.  This is necessary because Reflection has a method called
00129 // GetMessage() which we don't want overridden.  The inline function should be
00130 // equivalent for C++ users.
00131 inline BOOL GetMessage_Win32(
00132     LPMSG lpMsg, HWND hWnd,
00133     UINT wMsgFilterMin, UINT wMsgFilterMax) {
00134   return GetMessage(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax);
00135 }
00136 #undef GetMessage
00137 inline BOOL GetMessage(
00138     LPMSG lpMsg, HWND hWnd,
00139     UINT wMsgFilterMin, UINT wMsgFilterMax) {
00140   return GetMessage_Win32(lpMsg, hWnd, wMsgFilterMin, wMsgFilterMax);
00141 }
00142 #endif
00143 
00144 
00145 namespace google {
00146 namespace protobuf {
00147 
00148 // Defined in this file.
00149 class Message;
00150 class Reflection;
00151 class MessageFactory;
00152 
00153 // Defined in other files.
00154 class Descriptor;            // descriptor.h
00155 class FieldDescriptor;       // descriptor.h
00156 class EnumDescriptor;        // descriptor.h
00157 class EnumValueDescriptor;   // descriptor.h
00158 namespace io {
00159   class ZeroCopyInputStream;   // zero_copy_stream.h
00160   class ZeroCopyOutputStream;  // zero_copy_stream.h
00161   class CodedInputStream;      // coded_stream.h
00162   class CodedOutputStream;     // coded_stream.h
00163 }
00164 class UnknownFieldSet;       // unknown_field_set.h
00165 
00166 // A container to hold message metadata.
00167 struct Metadata {
00168   const Descriptor* descriptor;
00169   const Reflection* reflection;
00170 };
00171 
00172 // Returns the EnumDescriptor for enum type E, which must be a
00173 // proto-declared enum type.  Code generated by the protocol compiler
00174 // will include specializations of this template for each enum type declared.
00175 template <typename E>
00176 const EnumDescriptor* GetEnumDescriptor();
00177 
00178 // Abstract interface for protocol messages.
00179 //
00180 // See also MessageLite, which contains most every-day operations.  Message
00181 // adds descriptors and reflection on top of that.
00182 //
00183 // The methods of this class that are virtual but not pure-virtual have
00184 // default implementations based on reflection.  Message classes which are
00185 // optimized for speed will want to override these with faster implementations,
00186 // but classes optimized for code size may be happy with keeping them.  See
00187 // the optimize_for option in descriptor.proto.
00188 class LIBPROTOBUF_EXPORT Message : public MessageLite {
00189  public:
00190   inline Message() {}
00191   virtual ~Message();
00192 
00193   // Basic Operations ------------------------------------------------
00194 
00195   // Construct a new instance of the same type.  Ownership is passed to the
00196   // caller.  (This is also defined in MessageLite, but is defined again here
00197   // for return-type covariance.)
00198   virtual Message* New() const = 0;
00199 
00200   // Make this message into a copy of the given message.  The given message
00201   // must have the same descriptor, but need not necessarily be the same class.
00202   // By default this is just implemented as "Clear(); MergeFrom(from);".
00203   virtual void CopyFrom(const Message& from);
00204 
00205   // Merge the fields from the given message into this message.  Singular
00206   // fields will be overwritten, except for embedded messages which will
00207   // be merged.  Repeated fields will be concatenated.  The given message
00208   // must be of the same type as this message (i.e. the exact same class).
00209   virtual void MergeFrom(const Message& from);
00210 
00211   // Verifies that IsInitialized() returns true.  GOOGLE_CHECK-fails otherwise, with
00212   // a nice error message.
00213   void CheckInitialized() const;
00214 
00215   // Slowly build a list of all required fields that are not set.
00216   // This is much, much slower than IsInitialized() as it is implemented
00217   // purely via reflection.  Generally, you should not call this unless you
00218   // have already determined that an error exists by calling IsInitialized().
00219   void FindInitializationErrors(vector<string>* errors) const;
00220 
00221   // Like FindInitializationErrors, but joins all the strings, delimited by
00222   // commas, and returns them.
00223   string InitializationErrorString() const;
00224 
00225   // Clears all unknown fields from this message and all embedded messages.
00226   // Normally, if unknown tag numbers are encountered when parsing a message,
00227   // the tag and value are stored in the message's UnknownFieldSet and
00228   // then written back out when the message is serialized.  This allows servers
00229   // which simply route messages to other servers to pass through messages
00230   // that have new field definitions which they don't yet know about.  However,
00231   // this behavior can have security implications.  To avoid it, call this
00232   // method after parsing.
00233   //
00234   // See Reflection::GetUnknownFields() for more on unknown fields.
00235   virtual void DiscardUnknownFields();
00236 
00237   // Computes (an estimate of) the total number of bytes currently used for
00238   // storing the message in memory.  The default implementation calls the
00239   // Reflection object's SpaceUsed() method.
00240   virtual int SpaceUsed() const;
00241 
00242   // Debugging & Testing----------------------------------------------
00243 
00244   // Generates a human readable form of this message, useful for debugging
00245   // and other purposes.
00246   string DebugString() const;
00247   // Like DebugString(), but with less whitespace.
00248   string ShortDebugString() const;
00249   // Like DebugString(), but do not escape UTF-8 byte sequences.
00250   string Utf8DebugString() const;
00251   // Convenience function useful in GDB.  Prints DebugString() to stdout.
00252   void PrintDebugString() const;
00253 
00254   // Heavy I/O -------------------------------------------------------
00255   // Additional parsing and serialization methods not implemented by
00256   // MessageLite because they are not supported by the lite library.
00257 
00258   // Parse a protocol buffer from a file descriptor.  If successful, the entire
00259   // input will be consumed.
00260   bool ParseFromFileDescriptor(int file_descriptor);
00261   // Like ParseFromFileDescriptor(), but accepts messages that are missing
00262   // required fields.
00263   bool ParsePartialFromFileDescriptor(int file_descriptor);
00264   // Parse a protocol buffer from a C++ istream.  If successful, the entire
00265   // input will be consumed.
00266   bool ParseFromIstream(istream* input);
00267   // Like ParseFromIstream(), but accepts messages that are missing
00268   // required fields.
00269   bool ParsePartialFromIstream(istream* input);
00270 
00271   // Serialize the message and write it to the given file descriptor.  All
00272   // required fields must be set.
00273   bool SerializeToFileDescriptor(int file_descriptor) const;
00274   // Like SerializeToFileDescriptor(), but allows missing required fields.
00275   bool SerializePartialToFileDescriptor(int file_descriptor) const;
00276   // Serialize the message and write it to the given C++ ostream.  All
00277   // required fields must be set.
00278   bool SerializeToOstream(ostream* output) const;
00279   // Like SerializeToOstream(), but allows missing required fields.
00280   bool SerializePartialToOstream(ostream* output) const;
00281 
00282 
00283   // Reflection-based methods ----------------------------------------
00284   // These methods are pure-virtual in MessageLite, but Message provides
00285   // reflection-based default implementations.
00286 
00287   virtual string GetTypeName() const;
00288   virtual void Clear();
00289   virtual bool IsInitialized() const;
00290   virtual void CheckTypeAndMergeFrom(const MessageLite& other);
00291   virtual bool MergePartialFromCodedStream(io::CodedInputStream* input);
00292   virtual int ByteSize() const;
00293   virtual void SerializeWithCachedSizes(io::CodedOutputStream* output) const;
00294 
00295  private:
00296   // This is called only by the default implementation of ByteSize(), to
00297   // update the cached size.  If you override ByteSize(), you do not need
00298   // to override this.  If you do not override ByteSize(), you MUST override
00299   // this; the default implementation will crash.
00300   //
00301   // The method is private because subclasses should never call it; only
00302   // override it.  Yes, C++ lets you do that.  Crazy, huh?
00303   virtual void SetCachedSize(int size) const;
00304 
00305  public:
00306 
00307   // Introspection ---------------------------------------------------
00308 
00309   // Typedef for backwards-compatibility.
00310   typedef google::protobuf::Reflection Reflection;
00311 
00312   // Get a Descriptor for this message's type.  This describes what
00313   // fields the message contains, the types of those fields, etc.
00314   const Descriptor* GetDescriptor() const { return GetMetadata().descriptor; }
00315 
00316   // Get the Reflection interface for this Message, which can be used to
00317   // read and modify the fields of the Message dynamically (in other words,
00318   // without knowing the message type at compile time).  This object remains
00319   // property of the Message.
00320   //
00321   // This method remains virtual in case a subclass does not implement
00322   // reflection and wants to override the default behavior.
00323   virtual const Reflection* GetReflection() const {
00324     return GetMetadata().reflection;
00325   }
00326 
00327  protected:
00328   // Get a struct containing the metadata for the Message. Most subclasses only
00329   // need to implement this method, rather than the GetDescriptor() and
00330   // GetReflection() wrappers.
00331   virtual Metadata GetMetadata() const  = 0;
00332 
00333 
00334  private:
00335   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Message);
00336 };
00337 
00338 // This interface contains methods that can be used to dynamically access
00339 // and modify the fields of a protocol message.  Their semantics are
00340 // similar to the accessors the protocol compiler generates.
00341 //
00342 // To get the Reflection for a given Message, call Message::GetReflection().
00343 //
00344 // This interface is separate from Message only for efficiency reasons;
00345 // the vast majority of implementations of Message will share the same
00346 // implementation of Reflection (GeneratedMessageReflection,
00347 // defined in generated_message.h), and all Messages of a particular class
00348 // should share the same Reflection object (though you should not rely on
00349 // the latter fact).
00350 //
00351 // There are several ways that these methods can be used incorrectly.  For
00352 // example, any of the following conditions will lead to undefined
00353 // results (probably assertion failures):
00354 // - The FieldDescriptor is not a field of this message type.
00355 // - The method called is not appropriate for the field's type.  For
00356 //   each field type in FieldDescriptor::TYPE_*, there is only one
00357 //   Get*() method, one Set*() method, and one Add*() method that is
00358 //   valid for that type.  It should be obvious which (except maybe
00359 //   for TYPE_BYTES, which are represented using strings in C++).
00360 // - A Get*() or Set*() method for singular fields is called on a repeated
00361 //   field.
00362 // - GetRepeated*(), SetRepeated*(), or Add*() is called on a non-repeated
00363 //   field.
00364 // - The Message object passed to any method is not of the right type for
00365 //   this Reflection object (i.e. message.GetReflection() != reflection).
00366 //
00367 // You might wonder why there is not any abstract representation for a field
00368 // of arbitrary type.  E.g., why isn't there just a "GetField()" method that
00369 // returns "const Field&", where "Field" is some class with accessors like
00370 // "GetInt32Value()".  The problem is that someone would have to deal with
00371 // allocating these Field objects.  For generated message classes, having to
00372 // allocate space for an additional object to wrap every field would at least
00373 // double the message's memory footprint, probably worse.  Allocating the
00374 // objects on-demand, on the other hand, would be expensive and prone to
00375 // memory leaks.  So, instead we ended up with this flat interface.
00376 //
00377 // TODO(kenton):  Create a utility class which callers can use to read and
00378 //   write fields from a Reflection without paying attention to the type.
00379 class LIBPROTOBUF_EXPORT Reflection {
00380  public:
00381   // TODO(kenton):  Remove parameter.
00382   inline Reflection() {}
00383   virtual ~Reflection();
00384 
00385   // Get the UnknownFieldSet for the message.  This contains fields which
00386   // were seen when the Message was parsed but were not recognized according
00387   // to the Message's definition.
00388   virtual const UnknownFieldSet& GetUnknownFields(
00389       const Message& message) const = 0;
00390   // Get a mutable pointer to the UnknownFieldSet for the message.  This
00391   // contains fields which were seen when the Message was parsed but were not
00392   // recognized according to the Message's definition.
00393   virtual UnknownFieldSet* MutableUnknownFields(Message* message) const = 0;
00394 
00395   // Estimate the amount of memory used by the message object.
00396   virtual int SpaceUsed(const Message& message) const = 0;
00397 
00398   // Check if the given non-repeated field is set.
00399   virtual bool HasField(const Message& message,
00400                         const FieldDescriptor* field) const = 0;
00401 
00402   // Get the number of elements of a repeated field.
00403   virtual int FieldSize(const Message& message,
00404                         const FieldDescriptor* field) const = 0;
00405 
00406   // Clear the value of a field, so that HasField() returns false or
00407   // FieldSize() returns zero.
00408   virtual void ClearField(Message* message,
00409                           const FieldDescriptor* field) const = 0;
00410 
00411   // Remove the last element of a repeated field.
00412   // We don't provide a way to remove any element other than the last
00413   // because it invites inefficient use, such as O(n^2) filtering loops
00414   // that should have been O(n).  If you want to remove an element other
00415   // than the last, the best way to do it is to re-arrange the elements
00416   // (using Swap()) so that the one you want removed is at the end, then
00417   // call RemoveLast().
00418   virtual void RemoveLast(Message* message,
00419                           const FieldDescriptor* field) const = 0;
00420 
00421   // Swap the complete contents of two messages.
00422   virtual void Swap(Message* message1, Message* message2) const = 0;
00423 
00424   // Swap two elements of a repeated field.
00425   virtual void SwapElements(Message* message,
00426                     const FieldDescriptor* field,
00427                     int index1,
00428                     int index2) const = 0;
00429 
00430   // List all fields of the message which are currently set.  This includes
00431   // extensions.  Singular fields will only be listed if HasField(field) would
00432   // return true and repeated fields will only be listed if FieldSize(field)
00433   // would return non-zero.  Fields (both normal fields and extension fields)
00434   // will be listed ordered by field number.
00435   virtual void ListFields(const Message& message,
00436                           vector<const FieldDescriptor*>* output) const = 0;
00437 
00438   // Singular field getters ------------------------------------------
00439   // These get the value of a non-repeated field.  They return the default
00440   // value for fields that aren't set.
00441 
00442   virtual int32  GetInt32 (const Message& message,
00443                            const FieldDescriptor* field) const = 0;
00444   virtual int64  GetInt64 (const Message& message,
00445                            const FieldDescriptor* field) const = 0;
00446   virtual uint32 GetUInt32(const Message& message,
00447                            const FieldDescriptor* field) const = 0;
00448   virtual uint64 GetUInt64(const Message& message,
00449                            const FieldDescriptor* field) const = 0;
00450   virtual float  GetFloat (const Message& message,
00451                            const FieldDescriptor* field) const = 0;
00452   virtual double GetDouble(const Message& message,
00453                            const FieldDescriptor* field) const = 0;
00454   virtual bool   GetBool  (const Message& message,
00455                            const FieldDescriptor* field) const = 0;
00456   virtual string GetString(const Message& message,
00457                            const FieldDescriptor* field) const = 0;
00458   virtual const EnumValueDescriptor* GetEnum(
00459       const Message& message, const FieldDescriptor* field) const = 0;
00460   // See MutableMessage() for the meaning of the "factory" parameter.
00461   virtual const Message& GetMessage(const Message& message,
00462                                     const FieldDescriptor* field,
00463                                     MessageFactory* factory = NULL) const = 0;
00464 
00465   // Get a string value without copying, if possible.
00466   //
00467   // GetString() necessarily returns a copy of the string.  This can be
00468   // inefficient when the string is already stored in a string object in the
00469   // underlying message.  GetStringReference() will return a reference to the
00470   // underlying string in this case.  Otherwise, it will copy the string into
00471   // *scratch and return that.
00472   //
00473   // Note:  It is perfectly reasonable and useful to write code like:
00474   //     str = reflection->GetStringReference(field, &str);
00475   //   This line would ensure that only one copy of the string is made
00476   //   regardless of the field's underlying representation.  When initializing
00477   //   a newly-constructed string, though, it's just as fast and more readable
00478   //   to use code like:
00479   //     string str = reflection->GetString(field);
00480   virtual const string& GetStringReference(const Message& message,
00481                                            const FieldDescriptor* field,
00482                                            string* scratch) const = 0;
00483 
00484 
00485   // Singular field mutators -----------------------------------------
00486   // These mutate the value of a non-repeated field.
00487 
00488   virtual void SetInt32 (Message* message,
00489                          const FieldDescriptor* field, int32  value) const = 0;
00490   virtual void SetInt64 (Message* message,
00491                          const FieldDescriptor* field, int64  value) const = 0;
00492   virtual void SetUInt32(Message* message,
00493                          const FieldDescriptor* field, uint32 value) const = 0;
00494   virtual void SetUInt64(Message* message,
00495                          const FieldDescriptor* field, uint64 value) const = 0;
00496   virtual void SetFloat (Message* message,
00497                          const FieldDescriptor* field, float  value) const = 0;
00498   virtual void SetDouble(Message* message,
00499                          const FieldDescriptor* field, double value) const = 0;
00500   virtual void SetBool  (Message* message,
00501                          const FieldDescriptor* field, bool   value) const = 0;
00502   virtual void SetString(Message* message,
00503                          const FieldDescriptor* field,
00504                          const string& value) const = 0;
00505   virtual void SetEnum  (Message* message,
00506                          const FieldDescriptor* field,
00507                          const EnumValueDescriptor* value) const = 0;
00508   // Get a mutable pointer to a field with a message type.  If a MessageFactory
00509   // is provided, it will be used to construct instances of the sub-message;
00510   // otherwise, the default factory is used.  If the field is an extension that
00511   // does not live in the same pool as the containing message's descriptor (e.g.
00512   // it lives in an overlay pool), then a MessageFactory must be provided.
00513   // If you have no idea what that meant, then you probably don't need to worry
00514   // about it (don't provide a MessageFactory).  WARNING:  If the
00515   // FieldDescriptor is for a compiled-in extension, then
00516   // factory->GetPrototype(field->message_type() MUST return an instance of the
00517   // compiled-in class for this type, NOT DynamicMessage.
00518   virtual Message* MutableMessage(Message* message,
00519                                   const FieldDescriptor* field,
00520                                   MessageFactory* factory = NULL) const = 0;
00521 
00522 
00523   // Repeated field getters ------------------------------------------
00524   // These get the value of one element of a repeated field.
00525 
00526   virtual int32  GetRepeatedInt32 (const Message& message,
00527                                    const FieldDescriptor* field,
00528                                    int index) const = 0;
00529   virtual int64  GetRepeatedInt64 (const Message& message,
00530                                    const FieldDescriptor* field,
00531                                    int index) const = 0;
00532   virtual uint32 GetRepeatedUInt32(const Message& message,
00533                                    const FieldDescriptor* field,
00534                                    int index) const = 0;
00535   virtual uint64 GetRepeatedUInt64(const Message& message,
00536                                    const FieldDescriptor* field,
00537                                    int index) const = 0;
00538   virtual float  GetRepeatedFloat (const Message& message,
00539                                    const FieldDescriptor* field,
00540                                    int index) const = 0;
00541   virtual double GetRepeatedDouble(const Message& message,
00542                                    const FieldDescriptor* field,
00543                                    int index) const = 0;
00544   virtual bool   GetRepeatedBool  (const Message& message,
00545                                    const FieldDescriptor* field,
00546                                    int index) const = 0;
00547   virtual string GetRepeatedString(const Message& message,
00548                                    const FieldDescriptor* field,
00549                                    int index) const = 0;
00550   virtual const EnumValueDescriptor* GetRepeatedEnum(
00551       const Message& message,
00552       const FieldDescriptor* field, int index) const = 0;
00553   virtual const Message& GetRepeatedMessage(
00554       const Message& message,
00555       const FieldDescriptor* field, int index) const = 0;
00556 
00557   // See GetStringReference(), above.
00558   virtual const string& GetRepeatedStringReference(
00559       const Message& message, const FieldDescriptor* field,
00560       int index, string* scratch) const = 0;
00561 
00562 
00563   // Repeated field mutators -----------------------------------------
00564   // These mutate the value of one element of a repeated field.
00565 
00566   virtual void SetRepeatedInt32 (Message* message,
00567                                  const FieldDescriptor* field,
00568                                  int index, int32  value) const = 0;
00569   virtual void SetRepeatedInt64 (Message* message,
00570                                  const FieldDescriptor* field,
00571                                  int index, int64  value) const = 0;
00572   virtual void SetRepeatedUInt32(Message* message,
00573                                  const FieldDescriptor* field,
00574                                  int index, uint32 value) const = 0;
00575   virtual void SetRepeatedUInt64(Message* message,
00576                                  const FieldDescriptor* field,
00577                                  int index, uint64 value) const = 0;
00578   virtual void SetRepeatedFloat (Message* message,
00579                                  const FieldDescriptor* field,
00580                                  int index, float  value) const = 0;
00581   virtual void SetRepeatedDouble(Message* message,
00582                                  const FieldDescriptor* field,
00583                                  int index, double value) const = 0;
00584   virtual void SetRepeatedBool  (Message* message,
00585                                  const FieldDescriptor* field,
00586                                  int index, bool   value) const = 0;
00587   virtual void SetRepeatedString(Message* message,
00588                                  const FieldDescriptor* field,
00589                                  int index, const string& value) const = 0;
00590   virtual void SetRepeatedEnum(Message* message,
00591                                const FieldDescriptor* field, int index,
00592                                const EnumValueDescriptor* value) const = 0;
00593   // Get a mutable pointer to an element of a repeated field with a message
00594   // type.
00595   virtual Message* MutableRepeatedMessage(
00596       Message* message, const FieldDescriptor* field, int index) const = 0;
00597 
00598 
00599   // Repeated field adders -------------------------------------------
00600   // These add an element to a repeated field.
00601 
00602   virtual void AddInt32 (Message* message,
00603                          const FieldDescriptor* field, int32  value) const = 0;
00604   virtual void AddInt64 (Message* message,
00605                          const FieldDescriptor* field, int64  value) const = 0;
00606   virtual void AddUInt32(Message* message,
00607                          const FieldDescriptor* field, uint32 value) const = 0;
00608   virtual void AddUInt64(Message* message,
00609                          const FieldDescriptor* field, uint64 value) const = 0;
00610   virtual void AddFloat (Message* message,
00611                          const FieldDescriptor* field, float  value) const = 0;
00612   virtual void AddDouble(Message* message,
00613                          const FieldDescriptor* field, double value) const = 0;
00614   virtual void AddBool  (Message* message,
00615                          const FieldDescriptor* field, bool   value) const = 0;
00616   virtual void AddString(Message* message,
00617                          const FieldDescriptor* field,
00618                          const string& value) const = 0;
00619   virtual void AddEnum  (Message* message,
00620                          const FieldDescriptor* field,
00621                          const EnumValueDescriptor* value) const = 0;
00622   // See MutableMessage() for comments on the "factory" parameter.
00623   virtual Message* AddMessage(Message* message,
00624                               const FieldDescriptor* field,
00625                               MessageFactory* factory = NULL) const = 0;
00626 
00627 
00628   // Extensions ------------------------------------------------------
00629 
00630   // Try to find an extension of this message type by fully-qualified field
00631   // name.  Returns NULL if no extension is known for this name or number.
00632   virtual const FieldDescriptor* FindKnownExtensionByName(
00633       const string& name) const = 0;
00634 
00635   // Try to find an extension of this message type by field number.
00636   // Returns NULL if no extension is known for this name or number.
00637   virtual const FieldDescriptor* FindKnownExtensionByNumber(
00638       int number) const = 0;
00639 
00640  private:
00641   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(Reflection);
00642 };
00643 
00644 // Abstract interface for a factory for message objects.
00645 class LIBPROTOBUF_EXPORT MessageFactory {
00646  public:
00647   inline MessageFactory() {}
00648   virtual ~MessageFactory();
00649 
00650   // Given a Descriptor, gets or constructs the default (prototype) Message
00651   // of that type.  You can then call that message's New() method to construct
00652   // a mutable message of that type.
00653   //
00654   // Calling this method twice with the same Descriptor returns the same
00655   // object.  The returned object remains property of the factory.  Also, any
00656   // objects created by calling the prototype's New() method share some data
00657   // with the prototype, so these must be destoyed before the MessageFactory
00658   // is destroyed.
00659   //
00660   // The given descriptor must outlive the returned message, and hence must
00661   // outlive the MessageFactory.
00662   //
00663   // Some implementations do not support all types.  GetPrototype() will
00664   // return NULL if the descriptor passed in is not supported.
00665   //
00666   // This method may or may not be thread-safe depending on the implementation.
00667   // Each implementation should document its own degree thread-safety.
00668   virtual const Message* GetPrototype(const Descriptor* type) = 0;
00669 
00670   // Gets a MessageFactory which supports all generated, compiled-in messages.
00671   // In other words, for any compiled-in type FooMessage, the following is true:
00672   //   MessageFactory::generated_factory()->GetPrototype(
00673   //     FooMessage::descriptor()) == FooMessage::default_instance()
00674   // This factory supports all types which are found in
00675   // DescriptorPool::generated_pool().  If given a descriptor from any other
00676   // pool, GetPrototype() will return NULL.  (You can also check if a
00677   // descriptor is for a generated message by checking if
00678   // descriptor->file()->pool() == DescriptorPool::generated_pool().)
00679   //
00680   // This factory is 100% thread-safe; calling GetPrototype() does not modify
00681   // any shared data.
00682   //
00683   // This factory is a singleton.  The caller must not delete the object.
00684   static MessageFactory* generated_factory();
00685 
00686   // For internal use only:  Registers a .proto file at static initialization
00687   // time, to be placed in generated_factory.  The first time GetPrototype()
00688   // is called with a descriptor from this file, |register_messages| will be
00689   // called, with the file name as the parameter.  It must call
00690   // InternalRegisterGeneratedMessage() (below) to register each message type
00691   // in the file.  This strange mechanism is necessary because descriptors are
00692   // built lazily, so we can't register types by their descriptor until we
00693   // know that the descriptor exists.  |filename| must be a permanent string.
00694   static void InternalRegisterGeneratedFile(
00695       const char* filename, void (*register_messages)(const string&));
00696 
00697   // For internal use only:  Registers a message type.  Called only by the
00698   // functions which are registered with InternalRegisterGeneratedFile(),
00699   // above.
00700   static void InternalRegisterGeneratedMessage(const Descriptor* descriptor,
00701                                                const Message* prototype);
00702 
00703  private:
00704   GOOGLE_DISALLOW_EVIL_CONSTRUCTORS(MessageFactory);
00705 };
00706 
00707 }  // namespace protobuf
00708 
00709 }  // namespace google
00710 #endif  // GOOGLE_PROTOBUF_MESSAGE_H__
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Friends Defines