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Abstract

This position paper argues that the operating system and
applications currently running on a real machine should
relocate into a virtual machine. This structure enables ser-
vices to be added below the operating system and to do so
without trusting or modifying the operating system or
applications. To demonstrate the usefulness of this struc-
ture, we describe three services that take advantage of it:
secure logging, intrusion prevention and detection, and
environment migration.

1. Introduction

First proposed and used in the 1960s, virtual machines
are experiencing a revival in the commercial and research
communities. Recent commercial products such as
VMware and VirtualPC faithfully emulate complete x86-
based computers. These products are widely used (e.g.
VMware has more than 500,000 registered users) for pur-
poses such as running Windows applications on Linux and
testing software compatibility on different operating sys-
tems. At least two recent research projects also use virtual
machines: Disco uses virtual machines to run multiple
commodity operating systems on large-scale multiproces-
sors [4]; Hypervisor uses virtual machines to replicate the
execution of one computer onto a backup [3].

Our position is that the operating system and applica-
tions that currently run directly on real machines should
relocate into a virtual machine running on a real machine
(Figure 1). The only programs that run directly on the real
machine would be the host operating system, the virtual
machine monitor, programs that provide local administra-
tion, and additional services enabled by this virtual-
machine-centric structure. Most network services would
run in the virtual machine; the real machine would merely
forward network packets for the virtual machine.

This virtual-machine-centric model allows us to pro-
vide services below most code running on the computer,
similar to providing services in the hardware of a real
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machine. Because these services are implemented in a
layer of software (the virtual machine monitor or the host
operating system), they can be provided more easily and
flexibly than they could if they were implemented by mod-
ifying the hardware. In particular, we can provide services
below the guest operating system without trusting or mod-
ifying it. We believe providing services at this layer is
especially useful for enhancing security and mobility.

This position paper describes the general benefits and
challenges that arise from running most applications in a
virtual machine, then describes some example services
and alternative ways to provide those services.

2. Benefits

Providing services by modifying a virtual machine has
similar benefits to providing services by modifying a real
machine. These services run separately from all processes
in the virtual machine, including the guest operating sys-
tem. This separation benefits security and portability.
Security is enhanced because the services do not have to
trust the guest operating system; they have only to trust the
virtual machine monitor, which is considerably smaller
and simpler. Trusting the virtual machine monitor is akin
to trusting a real processor; both expose a narrow interface
(the instruction set architecture). In contrast, services in an
operating system are more vulnerable to malicious and
random faults, because operating systems are larger and
more prone to security and reliability holes. Separating the
services from the guest operating system also enhances
portability. We can implement the services without need-
ing to change the operating system, so they can work
across multiple operating system vendors and versions.

While providing services in a virtual machine gains
similar benefits to providing services in a real machine,
virtual machines have some advantages over the physical
machines they emulate. First, a virtual machine can be
modified more easily than a physical machine, because the
virtual machine monitor that creates the virtual machine
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Figure 1: Virtual-machine structure. In this model, most applications that currently run on real machines re-
locate into a virtual machine running on the host machine. The virtual machine monitor and local administrative
programs run directly on the host machine. In VMware, the virtual machine monitor issues /O through the host
operating system, so services that manipulate I/C events can be implemented in the host operating system [2].

abstraction is a layer of software. Second, it is much easier
to manipulate the state of a virtual machine than the state
of a physical machine. The state of the virtual machine can
be saved, cloned, encrypted, moved, or restored, none of
which is easy to do with physical machines, Third, a vir-
tual machine has a very fast connection to another comput-
ing system, that is, the host machine on which the virtual
machine monitor is running. In contrast, physical
machines are separated by physical networks, which are
slower than the memory bus that connects a virtual
machine with its host.

3. Challenges

Providing services at the virtual-machine level holds
two challenges. The first is performance. Running ali
applications above the virtual machine hurts performance
due to virtualization overhead. For example, system calls
in a virtual machine must be trapped by the virtual
machine monitor and re-directed to the guest operating
system. Hardware operations issued by the guest must be
trapped by the virtual machine monitor, translated, and re-
issued. Some overhead is unavoidable in a virtual
machine; the services enabled by that machine must out-
weigh this performance cost. Virtualizing an x86-based
machine incurs additional overheads because x86 proces-
sors don’t trap on some instructions that must be virtual-
ized (e.g. reads of certain system registers). One way to
implement a virtual machine in the presence of these
“non-virtualizable” instructions is to re-write the binaries
at run time to force these instructions to trap [13], but this
incurs significant overhead.

The second challenge of virtual-machine services is the
semantic gap between the virtual machine and the service.
Services in the virtual machine operate below the abstrac-
tions provided by the guest operating system and applica-
tions. This can make it difficult to provide services. For
example, it is difficult to provide a service that checks file
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system integrity without knowledge of on-disk structures.
Some services do not need any operating system absirac-
tions; secure logging (Section 4.1) is an example of such a
service. For services that require higher-level information,
one must re-create this information in some form. Full
semantic information requires re-implementing guest OS
abstractions in or below the virtual machine. However,
there are several abstractions—virtual address spaces,
threads of control, network protocols, and file system for-
mats—that are shared across many operating systems. By
observing manipulations of virtualized hardware, one can
reconstruct these generic abstractions, enabling services
that require semantic information.

4. Example services

In this section, we describe three services that can be
provided at the virtual-machine level. Others have used
virtual machines for many other purposes, such as prevent-
ing one server from monopolizing machine resources,
education, easing the development of privileged software,
and software development for different operating systems
[10].

4.1. Secure logging

Most operating systems log interesting events as part of
their security strategy. For example, a system might keep a
record of login attempts and received/sent mail. System
administrators use the logged information for a variety of
purposes. For example, the log may help administrators
understand how a network intruder gained access to the
system, or it may help administrators know what damage
the intruder inflicted after he gained access. Unfortunately,
the logging used in current systems has two important
shortcomings: integrity and completeness. First, an
attacker can easily turn off logging after he takes over the
system; thus the contents of the log cannot be trusted after



the point of compromise. Second, it is difficult to antici-
pate what information may be needed during the post-
attack analysis; thus the log may lack information needed
to discern how the intruder gained access or what actions
he took after gaining access.

Virtual machines provide an opportunity to correct both
shortcomings of current logging. To improve the integrity
of logging, we can move the logging software out of the
operating system and into the virtual machine monitor.
The virtual machine monitor is much smaller and simpler
than the guest operating system and hence is less vulnera-
ble to attack. By moving the logging software into the vir-
tual machine monitor, we move it out of the domain that
an intruder can control. Even if the intruder gains root
access or completely replaces the guest operating system,
he cannot affect the logging seftware or the logged data.
Logged data can be written quickly to the host file system,
taking advantage of the fast connection between the virtual
machine monitor and the host computer. s

To improve the completeness of logging, we propose
logging enough data to replay the complete execution of
the virtual machine [3}. The information needed to accom-
plish a faithful replay is limited to a checkpoint with
which to initialize the replaying virtual machine, plus the
non-deterministic events that affected the original execu-
tion of the virtual machine since the time of the saved
checkpoint. These non-deterministic events fall intc two
categories: external input and time. External input refers to
data sent by a non-logged entity, such as a human user or
an external computer (e.g. a web server). Time refers to
the exact point in the execution stream at which an event
takes place. For example, to replay the interleaving pattern
between threads, we must log which instruction is pre-
empted by a timer interrupt [17] (we assume the virtual
machine monitor i1s not running on a multi-processor).
Note that most instructions executed by the virtual
machine do not need to be logged; only the relatively
infrequent non-deterministic events need to be logged.

Using the virtual machine monitor to perform secure
logging -raises a number of research questions. The first
question regards the volume of log data needed to support
replay. We believe that the volume of data that needs to be
logged will not be prohibitive. Local non-deterministic
events, such as thread scheduling events and user inputs,
are all small. Data from disk reads can be large, but these
are deterministic (though the time of the disk interrupts are
non-deterministic). The largest producer of log data is
likely to be incoming network packets. We can reduce the
volume of logged network data greatly by using message-
logging techniques developed in the fault-tolerance com-
munity. For example, there is no need to log message data
received from computers that are themselves being logged,
because these computers can be replayed to reproduce the
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sent message data [11]. If all computers on the same local
network cooperate during logging and replay, then only
messages received from external sites need to be logged.
For an important class of servers (e.g. web servers), the
volume of data received in messages is relatively small
(HTTP GET and POST requests). Last, as disk prices con-
tinue to plummet, more computers (especially servers
worthy of being logged) will be able to devote many
gigabytes to store log data [20].

A second research direction is designing tools to ana-
lyze the behaviot of a virtual machine during replay. Writ-
ing useful analysis tools in this domain is challenging
because of the semantic gap between virtual machine
events and the corresponding operating system actions.
The analysis tool may have to duplicate some operating
system functionality to distill the log into useful informa-
tion. For example, the analysis tool may need to under-
stand the on-disk file system format to translate the disk
transfers seen by the virtual machine monitor into file-sys-
tem transfers issued by the operating system. Translating
virtual machine events into operating system evenls
becomes especially challenging (and perhaps impossible)
if the intruder modifies the operating system. One family
of analysis tools we hope to develop trace the flow of
information in the system, so that administrators can ask
questions like “What network connections caused the
password file to change?”.

4.2, Intrusion prevention and detection

Another important component to a security strategy is
detecting and thwarting intruders. Ideally, these systems
prevent intrusions by identifying intruders as they attack
the system [9]. These systems also try to detect intrusions
after the fact by monitoring the events and state of the
computer for signs that a computer has been compromised
[8, 12]. Virtual machines offer the potential for improving
both intrusion prevention and intrusion detection.

Intrusion preventers work by monitoring events that
enter or occur on the system, such as incoming network
packets. Signature-based preventers match these input
events against a database of known attacks; anomaly-
based preventers look for input events that differ from the
norm. Both these types of intrusion preventers have flaws,
however. Signature-based systems can only thwart attacks
that have occurred in the past, been analyzed, and been
integrated into the attack database. Anomaly-based sys-
tems can raise too many false alarms and may be suscepti-
ble to re-training attacks.

A more trustworthy method of recognizing an attack is
to simply run the input event on the real system and seeing
how the system responds. Of course, running suspicious
events on the real system risks compromising the system.



However, we can safely conduct this type of test on a clone
of the real system. Virtual machines make it easy to clone
a running system, and an intrusion preventer can use this
clone to test how a suspicious input event would affect the
real system. The clone can be run as a hot standby by
keeping it synchronized with the real system (using pri-
mary-backup techniques), or it can be created on the fly in
response to suspicious events. In either case, clones admit
more powerful intrusion preventers by looking at the
response of the system to the input event rather than look-
ing only at the input event. Because clones are isolated
from the real system, they also allow an intrusion preven-
ter to run potentially destructive tests to verify the sys-
tem’s health. For example, an intrusion preventer could
forward a suspicious packet to a clone and see if it crashes
any running processes. Or it could process suspicious
input on the clone, then see if the clone still responds to
shutdown commands.

A potential obstacle to using clone-based intrusion pre-
vention is the effect of clone creation or maintenance on
the processing of innocent events. To avoid blocking the
processing of innocent events, an intrusion preventer
would ideally run the clone in the background. Allowing
innocent events to go forward while evaluating suspicious
events implies that these events have loose ordering con-
straints. For example, a clone-based preventer could be
used to test e-mail messages for viruses, because ordering
constraints between e-mail messages are very loose.

Intrusion detectors try to detect the actions of intruders
after they have compromised a system. Signs of an
intruder might include bursts of outgoing network packets
(perhaps indicating a compromised computer launching a
denial-of-service attack), modified system files [12], or
abnormal system-call patterns from utility programs [8].
As with system logging, these intrusion detectors fall short
in integrity or completeness. Host-based intrusion detec-
tors (such as those that monitor system calls) may be
turned off by intruders after they compromise the system,
so they are primarily useful only for detecting the act of an
intruder breaking into a system. If an intruder evades
detection at the time of entry, he can often disarm a host-
based intrusion detector to avoid detection in the future.
Network-based intrusion detectors can provide better
integrity by being separate from the host operating system
(e.g. in a standalone network router), but they suffer from
a lack of completeness. Network intrusion detectors can
see only network packets; they cannot see the myriad other
events occurring in a computer system, such as disk traffic,
keyboard events, memory usage, and CPU usage.

Implementing post-intrusion detection at the level of a
virtual machine offers the potential for providing both
integrity and completeness. Like a network-based intru-
sion detector, virtual-machine-based intrusion detectors
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are separate from the guest operating system and applica-
tions. Unlike network intrusion detectors, however, vir-
tual-machine intrusion detectors can see all events
occurring in the virtual machine they monitor. Virtual-
machine intrusion detectors can use this additional infor-
mation to implement new detection policies. For example,
it could detect if the virtual machine reads certain disk
blocks (e.g. containing passwords), then issues a burst of
CPU activity (e.g. cracking the passwords). Or it could
detect if the virtual machine has intense CPU activity with
no corresponding keyboard activity.

As with secure logging, a key challenge in post-intru-
sion detection in a virtual machine is how to bridge the
semantic gap between virtual machine events and operat-
ing system events. This challenge is similar to that encoun-
tered by network-based intrusion detectors, which must
parse the contents of IP packets.

4.3. Environment migration

Process migration has been a topic of interest from the
early days of distributed computing. Migration allows one
to package a running computation—either a process or
collection of processes—and move it to a different physi-
cal machine. Using migration, a user’s computations can
move as he does, taking advantage of hardware that is
more convenient to the user’s current location.

The earliest systems, including Butler [15], Condor
[14], and Sprite [6], focused on load sharing across
machines rather than supporting mobile users. These load-
sharing systems typically left residual dependencies on the

~ source machine for transparency, and considered an indi-

vidual process as the unit of migration. This view differs
from that of mobile users, who consider the unit of migra-
tion to be the collection of all applications running on their
current machine.

Recently, migration systems have begun to address the
needs of mobile users. Examples of systems supporting
mobility include the Teleporting system [16] and SLIM
[18]. These systems migrate the user interface of a
machine, leaving the entire set of applications to run on
their host machine. In the limit, the display device can be a
stateless, thin client. This approach provides a better
match to the expectations of a migrating user, and need not
deal with residual dependencies. However, these systems
are intolerant of even moderate latency between the inter-
face device and the cycle server, and thus support only a
limited form of user mobility.

Migration based on virtual machines solves these prob-
lems. Since the entire (virtual) machine moves, there are
no residual dependencies. A user’s environment is moved
en masse, which matches a user’s expectations. By taking
advantage of the narrow interface provided by the virtual



machine, very simple migration code can relocate a guest
operating system and its applications.

There are several challenges that must be overcome to
provide migration at the virtual-machine level. The first is
that a machine has substantial state that must move with it.
It would be infeasible to move this state synchronously on
migration. Fortunately, most of this state is not needed
immediately, and much may never be needed at all. We
can predict which state is needed soon by taking advantage
of temporal locality in disk and memory accesses. This
prediction is complicated by the guest operating system’s
virtual memory abstraction, because the physical
addresses seen by a virtual machine monitor are related
only indirectly to accesses issued by applications. We can
reconstruct information about virtual to physical mappings
by observing manipulation of virtualized hardware ele-
ments such as the TLB.

After identifying the state likely to be needed soon, we
need a mechanism to support migration of that state to the
new virtual machine. If migration times are exposed, one
can take advantage of efficient, wide-area consistency con-
trol schemes, such as that provided by Fluid Replication
[5]. Fluid Replication provides safety, visibility, and per-
formance across the wide area identical to that offered by
local-area file systems such as NFS. It depends on typical
file system access patterns, in particular a low incidence of
concurrent data sharing. Machine migration, with coarse-
grained, sequential sharing, fits this pattern well, allowing
for migration without undue performance penalty.

To provide the most benefit, we must also support
migration between physical machines that are not entirely
identical. This is difficult because most virtual machine
monitors improve performance by accessing some hard-
ware components directly (e.g. the video frame buffer).
This direct access complicates matters for the guest oper-
ating system when migrating between machines with dif-
ferent components. There are two approaches to solving
this kind of problem. The first is to further virtualize the
component, at a performance cost. The second is to mod-
ify the guest operating system to adapt to the new compo-
nent on the fly. The right alternative depends on the
resource in question, the performance penalty of virtual-
ization, and the complexity of dynamic adaptation.

Migration is only one of several services that leverage
the easy packaging, storage, and shipment of virtual
machines. Clone-based intrusion detection is one example.
One can also extend services that apply to individual
resources across an entire virtual machine. For example,
cryptographic file systems protect only file data; once an
application reads sensitive data, it cannot be made secure.
However, suspending a virtual machine to disk when its
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user is away provides process-level protection using only
the virtual machine services plus file system mechanisms.

5. Alternative structures

Each of the above services can be implemented in other
ways. One alternative is to include these services in the
operating system. This structure makes it easier for the
service to access information in terms of operating system
abstractions. For example, an intrusion detector at the
operating system level may be able to detect when one
user modifies files owned by another user. A virtual
machine service, in contrast, operates below the notions of
users and files and would have to reconstruct these
abstractions. In addition, including these services in the
operating system reduces the number of layers and re-
directions, which will likely improve performance relative
to a virtual machine.

However, including services in the operating system
has some disadvantages. First, such services are limited to
a single operating system (and perhaps a single operating
system version), whereas virtual-machine services can
support multiple operating systems. For example, a secure
logging service in a virtual machine can replay any operat-
ing system. Second, for security services such as secure
logging and intrusion detection, including the service in
the operating system depends critically on the integrity of
the operating system. Because operating systems are typi-
cally large, complex, and monolithic, they usually contain
security and reliability vulnerabilities. For example, the
Linux 2.2.16 kernel contained at least 7 security holes [1].
In particular, secure logging is challenging to provide in
the operating system, because an intruder may try to crash
the system to prevent the log tail from being written to sta-
ble storage.

Some of the disadvantages of including services in the
operating system can be mitigated by re-structuring the
operating system into multiple protection domains [19]
and placing security-related services in the most-privi-
leged ring. This approach is similar to kernels that include
only the minimum set of services [7]. However, this
approach requires re-writing the entire operating system,
and frequent crossings between multiple protection
domains degrade performance.

A different approach is to add services to a language-
specific virtual machine such as Java. Language-specific
virtual machines potentially have more information than
the operating system, which may be helpful for some ser-
vices. However, these services would be available only for
applications written in the target language. For the system-
wide services described above, the entire system would
have be written in the target language.



6. Conclusions

Running an operating system -and most applications
inside a virtual machine enables a system designer to add
services below the guest operating system. This structure
enables services to be provided without trusting or modi-
fying the guest operating system or the applications. We
have described three services that take advantage of this
structure: secure logging, intrusion prevention and detec-
tion, and environment migration.

Adding services via a virtual machine is analogous to
adding network services via a firewall. Both virtual
machines and firewalls intercept actions at a universal,
low-level interface, and both must overcome performance
and semantic-gap problems. Just as network firewalls have
proven useful for adding network services, we believe vir-
tual machines will prove useful for adding services for the
entire computer.
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