
1

CS 640 15

Lecture 3 (Jan 27, 2004)

Outline
Sockets programming
IP data forwarding

CS 640 16

UNIX Sockets

CS 640 17

Berkeley Sockets

• Networking protocols are implemented as part of
the OS
– The networking API exported by most OS’s is the

socket interface

– Originally provided by BSD 4.1c ~1982.

• The principal abstraction is a socket
– Point at which an application attaches to the network

– Defines operations for creating connections, attaching
to network, sending/receiving data, closing.

CS 640 18

Connection-oriented example (TCP)
Server

Socket()

Bind()

Client

Socket()
Listen()

Accept()

Recv()

Send()

Connect()

Send()

Recv()

Block until
connect

Process
request

Connection Establishmt.

Data (request)

Data (reply)

CS 640 19

Connectionless example (UDP)
Server

Socket()

Bind()
Client

Socket()

Recvfrom()

Sendto()

Bind()

Sendto()

Recvfrom()

Block until
Data from
client

Process
request

Data (request)

Data (reply)

CS 640 20

Socket call

• Means by which an application attached to the network

• int socket(int family, int type, int protocol)

• Family: address family (protocol family)
– AF_UNIX, AF_INET, AF_NS, AF_IMPLINK

• Type: semantics of communication
– SOCK_STREAM, SOCK_DGRAM, SOCK_RAW

– Not all combinations of family and type are valid

• Protocol: Usually set to 0 but can be set to specific value.
– Family and type usually imply the protocol

• Return value is a handle for new socket

2

CS 640 21

Bind call

• Binds a newly created socket to the specified address
• int bind(int socket, struct sockaddr *address, int addr_len)

• Socket: newly created socket handle

• Address: data structure of address of local system
– IP address and port number (demux keys)

– Same operation for both connection-oriented and
connectionless servers

• Can use well known port or unique port

CS 640 22

Listen call

• Used by connection-oriented servers to indicate an
application is willing to receive connections

• int listen(int socket, int backlog)

• Socket: handle of newly creates socket

• Backlog: number of connection requests that can
be queued by the system while waiting for server
to execute accept call.

CS 640 23

Accept call

• After executing listen, the accept call carries out a
passive open (server prepared to accept connects).

• int accept(int socket, struct sockaddr *address, int addr_len)

• It blocks until a remote client carries out a
connection request.

• When it does return, it returns with a new socket that
corresponds with new connection and the address
contains the clients address

CS 640 24

Connect call

• Client executes an active open of a connection
• int connect(int socket, struct sockaddr *address, int addr_len)

• Call does not return until the three-way handshake
(TCP) is complete

• Address field contains remote system’s address

• Client OS usually selects random, unused port

CS 640 25

Send(to), Recv(from)

• After connection has been made, application uses
send/recv to data

• Int send(int socket, char *message, int msg_len, int flags)
– Send specified message using specified socket

• Int recv(int scoket, char *buffer, int buf_len, int flags)
– Receive message from specified socket into specified buffer

CS 640 26

Socket Implimentation

• Protocol implementation
– Process per protocol

• Use a separate process to implement each protocol
• Messages are passes between processes

– Process per message
• Use one process to handle each message/communication
• Generally more efficient

• Buffer use
– Applications use buffers as do protocols

• Copies are VERY expensive
• Message abstraction enables pointers to be used and minimal

copies

3

CS 640 27

Practical issues – using sockets

• You have to be very careful when using these calls
– Specific data structures and formats
– Ports cannot be less than 1024

• You can use other tools to see if things are working
– tcpdump
– /proc
– netstat

• Client and server can be on same system
• Think about error handling methods
• Refer to TCP/IP Sockets in C
• Baby steps!!

CS 640 28

Data forwarding

CS 640 29

IP Internet

• Concatenation of Networks

• Protocol Stack

R2

R1

H4

H5

H3H2H1

Network 2 (Ethernet)

Network 1 (Ethernet)

H6

Network 3 (FDDI)

Network 4
(point-to-point)

H7 R3 H8

R1

ETH FDDI

IPIP

ETH

TCP R2

FDDI PPP

IP

R3

PPP ETH

IP

H1

IP

ETH

TCP

H8

interface1

interface0

CS 640 30

Forwarding and Routing

• Routing: involves computation of routes
– Which path to take

• Forwarding: select an output interface at each hop
– Assumes routes have been computed

– Depends only on destination IP address

• They are independent of each other

CS 640 31

Forwarding

R2

R1

H4

H5

H3H2H1

Network 2: 128.20/16

Network 1: 12/8

H6

Network 3 128.30/16

Network 4
200.12.8/24

H7 R3 H8

Interface1 (200.12.8.1)

interface0

128.20.0.8

128.20.0.1

128.30.0.2

200.12.8.2

CS 640 32

Forwarding Tables

• Suppose there are n possible destinations, how
many bits are needed to represent addresses in a
routing table?
– log2n

• So, we need to store and search n * log2n bits in
routing tables?
– We’ re smarter than that!

4

CS 640 33

Datagram Forwarding
• Strategy

– every datagram contains destination’s address
– if directly connected to destination network, then forward

to host
– if not directly connected to destination network, then

forward to some router
– forwarding table maps network number into next hop
– each host has a default router
– each router maintains a forwarding table

• Example Network Next Hop
for router R2 1 R3
in previous figure 2 R1

3 interface 1
4 interface 0

default R3
CS 640 34

Subnetting and Supernetting

• Fixed network sizes are wasteful
– What happens if a site asks for 256 IP addresses?
– Subnetting

• Too many entries at a router can be combined
– Keep routing tables small
– Supernetting

• Classless Inter-Domain Routing (CIDR)

CS 640 35

Subnetting
• Add another level to address/routing hierarchy: subnet
• Subnet masks define variable partition of host part
• Subnets visible only within site

Network number Host number

Class B address

Subnet mask (255.255.255.0)

Subnetted address

111111111111111111111111 00000000

Network number Host IDSubnet ID

CS 640 36

Subnet Example

Forwarding table at router R1
Subnet Number Subnet Mask Next Hop

128.96.34.0 255.255.255.128 interface 0

128.96.34.128 255.255.255.128 interface 1

128.96.33.0 255.255.255.0 R2

Subnet mask: 255.255.255.128
Subnet number: 128.96.34.0

128.96.34.15 128.96.34.1
H1

R1

128.96.34.130
Subnet mask: 255.255.255.128
Subnet number: 128.96.34.128

128.96.34.129
128.96.34.139

R2
H2

128.96.33.1
128.96.33.14

Subnet mask: 255.255.255.0
Subnet number: 128.96.33.0

H3

CS 640 37

Forwarding Algorithm

D = destination IP address
for each entry (SubnetNum, SubnetMask, NextHop)

D1 = SubnetMask & D
if D1 = SubnetNum

if NextHop is an interface
deliver datagram directly to D

else
deliver datagram to NextHop

• Use a default router if nothing matches
• Not necessary for all 1s in subnet mask to be contiguous
• Can put multiple subnets on one physical network
• Subnets not visible from the rest of the Internet

CS 640 38

Supernetting

• Assign block of contiguous network numbers to
nearby networks

• Called CIDR: Classless Inter-Domain Routing

• Represent blocks with a single pair
(first_network_address, count)

• Restrict block sizes to powers of 2

• Use a bit mask (CIDR mask) to identify block size

• All routers must understand CIDR addressing

5

CS 640 39

Forwarding Table Lookup

• Longest prefix match
– Each entry in the forwarding table is:

< Network Number / Num. Bits> | interface-id

Suppose we have:

192.20./16 | i0

192.20.12/24 | i1

And destination address is: 192.20.12.7, choose i1

