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Lecture 3 (Jan 27, 2004)

Outline
Sockets programming
IP data forwarding
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UNIX Sockets
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Berkeley Sockets

• Networking protocols are implemented as part of 
the OS
– The networking API exported by most OS’s is the 

socket interface

– Originally provided by BSD 4.1c ~1982.

• The principal abstraction is a socket
– Point at which an application attaches to the network

– Defines operations for creating connections, attaching 
to network, sending/receiving data, closing.
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Connection-oriented example (TCP)
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Connectionless example (UDP)
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Socket call

• Means by which an application attached to the network

• int socket(int family, int type, int protocol)

• Family: address family (protocol family)
– AF_UNIX, AF_INET, AF_NS, AF_IMPLINK

• Type:  semantics of communication
– SOCK_STREAM, SOCK_DGRAM, SOCK_RAW

– Not all combinations of family and type are valid

• Protocol:  Usually set to 0 but can be set to specific value.
– Family and type usually imply the protocol 

• Return value is a handle for new socket
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Bind call

• Binds a newly created socket to the specified address
• int bind(int socket, struct sockaddr *address, int addr_len)

• Socket:  newly created socket handle

• Address:  data structure of address of local system
– IP address and port number (demux keys)

– Same operation for both connection-oriented and 
connectionless servers

• Can use well known port or unique port
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Listen call

• Used by connection-oriented servers to indicate an 
application is willing to receive connections

• int listen(int socket, int backlog)

• Socket:  handle of newly creates socket

• Backlog:  number of connection requests that can 
be queued by the system while waiting for server 
to execute accept call.
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Accept call

• After executing listen, the accept call carries out a 
passive open (server prepared to accept connects).

• int accept(int socket, struct sockaddr *address, int addr_len)

• It blocks until a remote client carries out a 
connection request.

• When it does return, it returns with a new socket that 
corresponds with new connection and the address 
contains the clients address
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Connect call

• Client executes an active open of a connection
• int connect(int socket, struct sockaddr *address, int addr_len)

• Call does not return until the three-way handshake 
(TCP) is complete

• Address field contains remote system’s address

• Client OS usually selects random, unused port
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Send(to), Recv(from)

• After connection has been made, application uses 
send/recv to data

• Int send(int socket, char *message, int msg_len, int flags)
– Send specified message using specified socket

• Int recv(int scoket, char *buffer, int buf_len, int flags)
– Receive message from specified socket into specified buffer
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Socket Implimentation

• Protocol implementation
– Process per protocol

• Use a separate process to implement each protocol
• Messages are passes between processes

– Process per message
• Use one process to handle each message/communication
• Generally more efficient

• Buffer use
– Applications use buffers as do protocols

• Copies are VERY expensive
• Message abstraction enables pointers to be used and minimal 

copies
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Practical issues – using sockets

• You have to be very careful when using these calls
– Specific data structures and formats
– Ports cannot be less than 1024

• You can use other tools to see if things are working
– tcpdump
– /proc
– netstat

• Client and server can be on same system
• Think about error handling methods
• Refer to TCP/IP Sockets in C
• Baby steps!!
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Data forwarding
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IP Internet 

• Concatenation of Networks

• Protocol Stack
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Forwarding and Routing

• Routing: involves computation of routes
– Which path to take

• Forwarding: select an output interface at each hop
– Assumes routes have been computed

– Depends only on destination IP address

• They are independent of each other
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Forwarding
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Forwarding Tables

• Suppose there are n possible destinations, how 
many bits are needed to represent addresses in a 
routing table?
– log2n

• So, we need to store and search n *  log2n bits in 
routing tables?
– We’ re smarter than that!
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Datagram Forwarding 
• Strategy

– every datagram contains destination’s address
– if directly connected to destination network, then forward 

to host
– if not directly connected to destination network, then 

forward to some router
– forwarding table maps network number into next hop
– each host has a default router
– each router maintains a forwarding table

• Example Network Next Hop
for router R2 1 R3
in previous figure 2 R1

3 interface 1
4 interface 0    

default             R3                  
CS 640 34

Subnetting and Supernetting

• Fixed network sizes are wasteful
– What happens if a site asks for 256 IP addresses?
– Subnetting

• Too many entries at a router can be combined
– Keep routing tables small
– Supernetting

• Classless Inter-Domain Routing (CIDR)
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Subnetting
• Add another level to address/routing hierarchy: subnet
• Subnet masks define variable partition of host part
• Subnets visible only within site

Network number Host number

Class B address

Subnet mask (255.255.255.0)

Subnetted address

111111111111111111111111 00000000

Network number Host IDSubnet ID
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Subnet Example

Forwarding table at router R1
Subnet Number  Subnet Mask        Next Hop

128.96.34.0        255.255.255.128  interface 0

128.96.34.128    255.255.255.128  interface 1

128.96.33.0        255.255.255.0      R2

Subnet mask: 255.255.255.128
Subnet number: 128.96.34.0

128.96.34.15 128.96.34.1
H1

R1

128.96.34.130
Subnet mask: 255.255.255.128
Subnet number: 128.96.34.128

128.96.34.129
128.96.34.139

R2
H2

128.96.33.1
128.96.33.14

Subnet mask: 255.255.255.0
Subnet number: 128.96.33.0

H3
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Forwarding Algorithm

D = destination IP address
for each entry (SubnetNum, SubnetMask, NextHop)

D1 = SubnetMask & D
if D1 = SubnetNum

if NextHop is an interface
deliver datagram directly to D

else
deliver datagram to NextHop

• Use a default router if nothing matches
• Not necessary for all 1s in subnet mask to be contiguous 
• Can put multiple subnets on one physical network
• Subnets not visible from the rest of the Internet
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Supernetting 

• Assign block of contiguous network numbers to 
nearby networks

• Called CIDR: Classless Inter-Domain Routing

• Represent blocks with a single pair
(first_network_address, count)

• Restrict block sizes to powers of 2

• Use a bit mask (CIDR mask) to identify block size

• All routers must understand CIDR addressing
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Forwarding Table Lookup

• Longest prefix match
– Each entry in the forwarding table is:

< Network Number / Num. Bits>   |     interface-id

Suppose we have:

192.20./16            |   i0

192.20.12/24        |   i1

And destination address is: 192.20.12.7, choose i1


