Lecture 5 (Feb 3, 2004)

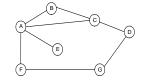
Outline

Intra-domain Routing Distance Vector, RIP Link State, OSPF

Overview

- Forwarding vs Routing
 forwarding: to select an output port based on destination address and routing table
 - routing: process by which routing table is but
- · Network as a Graph

- · Problem: Find lowest cost path between two nodes
- Factors
 - static: topology dynamic: load


CS 640

Distance Vector

- · Each node maintains a set of triples
 - (Destination, Cost, NextHop)
- · Directly connected neighbors exchange updates
 - periodically (on the order of several seconds)
 - whenever table changes (called triggered update)
- Each update is a list of pairs:
 - (Destination, Cost)
- Update local table if receive a "better" route
 - smaller cost
 - came from next-hop
- · Refresh existing routes; delete if they time out

CS 640 37

Example

Routing table for B			
	Destination	Cost	NextHop
	A	1	A
	C	1	C
	D	2	C
	E	2	A
	F	2	A
	l c	3	Λ

CS 640

Routing Loops

- Example 1
 - F detects that link to G has failed
 - F sets distance to G to infinity and sends update t o A
 - A sets distance to G to infinity since it uses F to reach G
 - A receives periodic update from C with 2-hop path to G
 - A sets distance to G to 3 and sends update to F
 - F decides it can reach G in 4 hops via A
- Example 2
 - link from A to E fails
 - A advertises distance of infinity to E
 - B and C advertise a distance of 2 to E
 - B decides it can reach E in 3 hops; advertises this to A

CS 640

A decides it can read E in 4 hops; advertises this to C

- C decides that it can reach E in 5 hops...

39

Loop-Breaking Heuristics

- Set infinity to 16
- · Split horizon
- · Split horizon with poison reverse

CS 640 40

Link State

- Strategy
 - send to all nodes (not just neighbors) information about directly connected links (not entire routing table)
- Link State Packet (LSP)
 - id of the node that created the LSP
 - cost of link to each directly connected neighbor
 - sequence number (SEQNO)
 - time-to-live (TTL) for this packet

Link State (cont)

- · Reliable flooding
 - store most recent LSP from each node
 - forward LSP to all nodes but one that sent it
 - generate new LSP periodically
 - increment SEQNO
 - start SEQNO at 0 when reboot
 - decrement TTL of each stored LSP
 - discard when TTL=0

Route Calculation

- · Dijkstra's shortest path algorithm
- Let
 - N denotes set of nodes in the graph
 - l(i, j) denotes non-negative cost (weight) for edge (i, j)
 - s denotes this node

 - M denotes the set of nodes incorporated so far
 C(n) denotes cost of the path from s to node n

```
M = \{s\}
for each n in N - \{s\}
C(n) = 1(s, n)
while (N := M)
M = M \text{ union } \{w\} \text{ such that } C(w) \text{ is the minimum for all } w \text{ in } (N - M)
for each n in (N - M)
C(n) = MIN(C(n), C(w) + 1(w, n))
                                                                                                                                                                                                                  43
```

Metrics

- Original ARPANET metric
 - measures number of packets queued on each link took neither latency or bandwidth into consideration
- New ARPANET metric
 - stamp each incoming packet with its arrival time (AT)

 - record departure time (DT)

 when link-level ACK arrives, compute
 Delay = (DT AT) + Transmit + Latency

 if timeout, reset DT to departure time for retransmission link cost = average delay over some time period
- Fine Tuning
 compressed dynamic range
 replaced Delay with link utilization

CS 640 44