Lecture 8 (Feb 12, 2004)

Outline

ICMP

RARP

DHCP

NAT

Internet Control Message Protocol (ICMP)

- Echo (ping)
- Redirect (from router to source host)
- Destination unreachable (protocol, port, or host)
- TTL exceeded (so datagrams don't cycle forever)
- · Checksum failed
- · Reassembly failed
- · Cannot fragment

40

ICMP

• Uses IP but is a separate protocol in the network layer

ICMP HEADER

IP HEADER

IP HEADER
PROTOCOL = 1

TYPE CODE CHECKSUM

REMAINDER OF ICMP
MESSAGE (FORMAT IS TYPE
SPECIFIC)

Echo and Echo Reply

TYPE CODE CHECKSUM
IDENTIFIER SEQUENCE #
DATA

TYPE: 8 = ECHO, 0 = ECHO REPLY CODE; CODE = 0

IDENTIFIER

An identifier to aid in matching echoes and replies SEQUENCE #

Same use as for IDENTIFIER UNIX "ping" uses echo/echo reply

640 4

Ping Example

C:\WINDOWS\Desktop>ping www.soi.wide.ad.jp

Pinging asari.soi.wide.ad.jp [203.178.137.88] with 32 bytes of data: Reply from 203.178.137.88: bytes=32 time=253ms TTL=240 Reply from 203.178.137.88: bytes=32 time=231ms TTL=240 Reply from 203.178.137.88: bytes=32 time=225ms TTL=240

Reply from 203.178.137.88: bytes=32 time=214ms TTL=240

Ping statistics for 203.178.137.88:

Packets: Sent = 4, Received = 4, Lost = 0 (0% loss), Approximate round trip times in milli-seconds:

Minimum = 214ms, Maximum = 253ms, Average = 230ms

S 640

Redirect when no route to Destination

TYPE CODE CHECKSUM NEW ROUTER ADDRESS IP HEADER + 64 bits data from original DG

TYPE = 5 CODE =

0 = Network redirect

- 1 = Host redirect
- 2 = Network redirect for specific TOS
- 3 = Host redirect for specific TOS

CS 640

Destination Unreachable

TYPE CODE CHECKSUM UNUSED

IP HEADER + 64 bits data from original DG

TYPE = 3

CODE 0 = Net unreachable

- 1 = Host unreachable
- 2= Protocol unreachable
- 3 = Port unreachable
- 4 = Fragmentation needed but DF set
- 5 = Source route failed

Source Quench

TYPE CODE CHECKSUM

UNUSED

IP HEADER + 64 bits data from original DG

TYPE = 4; CODE = 0

Indicates that a router has dropped the original DG or may indicate that a router is approaching its capacity limit.

Correct behavior for source host is not defined.

Traceroute

- UNIX utility displays router used to get to a specified Internet Host
- Operation
 - router sends ICMP Time Exceeded message to source if TTL is decremented to 0
 - if TTL starts at 5, source host will receive Time Exceeded message from router that is 5 hopes away
- Traceroute sends a series of probes with different TTL values... and records the source address of the ICMP Time Exceeded message for
- Probes are formatted to that the destination host will send an ICMP Port Unreachable message

CS 640

TraceRoute Example

tracert www.soi.wide.ad.jp ari.soi.wide.ad.jp [203.178.137.88]

CS 640

Determining an IP Address at Startup

- How does a machine without permanent storage determine its IP address?
 - OS images with specific IP's cannot be used on multiple machines
 - Critical for network appliances or embedded systems
- Use the network to obtain an IP from a remote server
 - System must use its physical address to to communicate
 - Requests address from server which maintains table of IP's
 - System doesn't know the server sends broadcast request for

CS 640 11

Reverse Address Resolution Protocol

- RARP is part of the TCP/IP specification
- · RARP operates much like ARP
 - A requestor broadcasts is RARP request
 - Servers respond by sending response directly to requestor
 - Requestor keeps IP delivered by first responder
 - Requestor keeps sending requests until it gets an IP
- Clearly there is a need for redundant RARP servers for reliability
 - Timeouts can be used to activate backup RARP servers
 - Backup servers reply to a RARP request if they don't hear the RARP response from the primary server after some time

CS 640 12

Alternatives to RARP

- · RARP has shortcomings
 - Most are subtle and all deal with fact that RARP operates at physical level
- BOOTstrap Protocol (BOOTP) was developed as an alternative to RARP – moves process to network level
 - Uses UDP/IP packets to carry messages
 - · Hosts are still identified by MAC address
 - How can UDP running over IP be used by a computer to discover its IP address?
 - Uses special case IP address 255.255.255.255 limited broadcast not forwarded by routers
 - · Forces IP to broadcast on LAN before host IP is known
 - · BOOTP server responds using limited broadcast
 - · Request transmission via random timeout to avoid synchronization

CS 640

Dynamic Configuration

- BOOTP was designed for relatively static environment where each host has a permanent network connection
 - Net manager creates a BOOTP config file with parameters for each host – file is typically stable for long periods
- Wireless networking enables environments much more dynamic
 - BOOTP does not provide for dynamic address assignment
- Dynamic configuration is the primary method for IP address allocation used today
 - Not only facilitates mobility but also efficient use of IPs

25 640

Dynamic Host Configuration Protocol

- DHCP extends BOOTP
 - Still supports static allocation
 - Supports automatic configuration where addresses are permanent but assigned by DHCP
 - Supports temporary allocation
- Relies on existence of a DHCP server
 - Repository for host configuration information
 - Maintains a pool of available IP's for use on demand
 - Considerably reduces administration overhead
 - Autoconfiguration of course depends on administrative policy
 - Uses UDP to send messages
 - Uses a relay agent to communicate with servers off LAN (same as BOOTP)
 - Relay agent is statically configured with DHCP server address

CS 640 15

DHCP Implementation

- State machine (6 states) which determines DHCP operation
 - Host boots into INITIALIZE state
- To contact the DHCP server(s) a client sends DHCPDISCOVER message to IP broadcast address and moves to SELECT state
 - Unique header format with variable length options field
 - UDP packet sent to well known BOOTP port 67
- Server(s) respond with DHCPOFFER message
- Client can receive 0 or more responses and responds to one
- Client moves to REQUEST state to negotiate IP lease with 1 server
- Sends DHCPREQUEST message to server which responds with DHCPACK
- Client is then in BOUND (normal) state

CS 640 16

DHCP Implementation contd.

- From BOUND, client can issue DHCPRELEASE and return to INITIALIZE state
- This is simply client deciding it no longer needs the IP
- When lease reaches 50% of lease expiration time, it issues DHCPREQUEST to extend lease of current IP with server and moves to RENEW state
 - Receipt of DHCPACK moves client back to BOUND state
- Receipt of DHCPNACK moves client back to BOOND state

 Receipt of DHCPNACK moves client back to INITIALIZE state
- If no response is received by 87.5% of lease expiration time, the client resends the DHCPREQUEST and moves to REBIND state
 - Receipt of DHCPACK moves client back to BOUND state
 - Receipt of DHCPNACK or timeout moves client back to INITIALIZE state

CS 640 17

DHCP Details

- Without relay agent, DHCP would not scale since it would require large number of servers (one per LAN)
- Addresses which are leased over a given period of time and must be updated
 - This means that DHCP requests might have to be made multiple times by the same system (RENEW requests)

CS 640 18

Network Address Translation

- Maps an internal <address, port> to an external <address, port>
 Source address, port of outgoing packet changed
 Destination address, port of incoming packet changed

Maintains a table to translate

<IP addr, port> pairs

miternar	Externar
192.168.1.4, 1336 192.168.1.3, 1455 192.168.1.2, 1336 192.168.1.2, 1771	

19

*Used to temporarily tide over IP address space depletion
 *Also avoids re-numbering of IP addresses when customer changes provider
 *But breaks end-to-end properties