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Outline

Flow Control

TCP Overview

Lecture 13 (March 2, 2004)
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Transport layer functions

• Transport protocol defines the pattern/sequence for end hosts 
sending packets

• Transport has to deal with a number of things
– Multiplexing/demultiplexing – ports and message queues

– Error detection within packets - checksums

– Reliable, in order delivery of packets - Today

– Flow control – Today

– Connection management - TBD

– Congestion control – TBD

• We’re moving toward understanding TCP
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Methods of Reliability

• Packets can be lost and/or corrupted during transmission
– Bit level errors due to noise
– Loss due to congestion

• Use checksums to detect bit level errors
– Internet Checksum is optionally used to detect errors in UDP

• Uses 16 bits to encode one’s complement sum of data + headers

– When bit level errors are detected, packets are dropped

• Build reliability into the transmission protocol
– Using acknowledgements and timeouts to signal lost or corrupt 

frame
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Acknowledgements & Timeouts

• An acknowledgement (ACK) is a packet sent by one host 
in response to a packet it has received
– Making a packet an ACK is simply a matter of changing a field in

the transport header

– Data can be piggybacked in ACKs

• A timeout is a signal that an ACK to a packet that was sent 
has not yet been received within a specified timeframe
– A timeout triggers a retransmission of the original packet from the 

sender

– How are timers set?
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Acknowledgements & Timeouts
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Propagation Delay

• Propagation delay is defined as the delay between 
transmission and receipt of packets between hosts

• Propagation delay can be used to estimate timeout 
period

• How can propagation delay be measured?

• What else must be considered in the measurement?
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Exponentially weighted moving 
average RTT estimation

• EWMA was original algorithm for TCP

• Measure SampleRTT for each packet/ACK pair

• Compute weighted average of RTT
– EstRTT = α x EstimatedRTT + β x SampleRTT
– where α + β = 1
− α between 0.8 and 0.9
− β between 0.1 and 0.2

• Set timeout based on EstRTT
– TimeOut = 2 x EstRTT
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Stop-and-Go Process

• Sender doesn’t send next packet until he’s sure receiver has last packet
• The packet/Ack sequence enables reliability
• Sequence numbers help avoid problem of duplicate packets
• Problem: keeping the pipe full
• Example

– 1.5Mbps link x 45ms RTT = 67.5Kb (8KB)
– 1KB frames imples1/8th link utilization 

Sender Receiver
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Solution: Pipelining via Sliding Window
• Allow multiple outstanding (un-ACKed) frames
• Upper bound on un-ACKed frames, called window
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Buffering on Sender and Receiver

• Sender needs to buffer data so that if data is lost, it can be resent
• Receiver needs to buffer data so that if data is received out of

order, it can be held until all packets are received
– Flow control

• How can we prevent sender overflowing receiver’s buffer?
– Receiver tells sender its buffer size during connection setup

• How can we insure reliability in pipelined transmissions?
– Go-Back-N

• Send all N unACKed packets when a loss is signaled
• Inefficient

– Selective repeat
• Only send specifically unACKed packets
• A bit trickier to implement
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Sliding Window: Sender
• Assign sequence number to each frame (SeqNum)
• Maintain three state variables:

– send window size (SWS)
– last acknowledgment received (LAR)
– last frame sent (LFS)

• Maintain invariant: LFS - LAR <= SWS

• Advance LAR when ACK arrives 
• Buffer up to SWS frames

≤SWS

LAR LFS

… …
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Sliding Window: Receiver
• Maintain three state variables

– receive window size (RWS)
– largest frame acceptable (LFA)
– last frame received (LFR)

• Maintain invariant: LFA - LFR <= RWS

• Frame SeqNum arrives:
– if LFR < SeqNum < = LFA accept
– if SeqNum < = LFR or SeqNum > LFA discarded

• Send cumulative ACKs – send ACK for largest frame such that all 
frames less than this have been received

≤ RWS

LFR LFA

… …
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Sequence Number Space
• SeqNum field is finite; sequence numbers wrap around
• Sequence number space must be larger then number of 

outstanding frames
• SWS <= SeqNumSpace is not sufficient

– suppose 3-bit SeqNum field (0..7)
– SWS=RWS=7

– sender transmit frames 0..6
– arrive successfully, but ACKs lost
– sender retransmits 0..6
– receiver expecting 7, 0..5, but receives the original incarnation of 0..5

• SWS <= SeqNumSpace/2 is correct rule
• Intuitively, SeqNum “slides”  between two halves of sequence 

number space
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Another Pipelining Possibility:  
Concurrent Logical Channels

• Multiplex 8 logical channels over a single link

• Run stop-and-wait on each logical channel

• Maintain three state bits per channel
– channel busy

– current sequence number out

– next sequence number in

• Header: 3-bit channel num, 1-bit sequence num
– 4-bits total

– same as sliding window protocol 

• Separates reliability from order
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Stop & Go sequence numbers
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• Simple sequence numbers enable the client to 
discard duplicate copies of the same frame
• Stop & go allows one outstanding frame, requires 
two distinct sequence numbers
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Sliding Window Example
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Sliding Window Summary

• Sliding window is best known algorithm in networking

• First role is to enable reliable delivery of packets
– Timeouts and acknowledgements

• Second role is to enable in order delivery of packets
– Receiver doesn’ t pass data up to app until it has packets in 

order

• Third role is to enable flow control
– Prevents server from overflowing receiver’s buffer
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TCP Overview
• TCP is the most widely used Internet protocol

– Web, Peer-to-peer, FTP, telnet, …

• A two way, reliable, byte stream oriented end-to-end 
protocol
– Includes flow and congestion control

• Closely tied to the Internet Protocol (IP)
• A focus of intense study for many years

– Our goal is to understand the RENO version of TCP
• RENO is most widely used TCP today
• RFC 2001 (now expired)
• RENO mainly specifies mechanisms for dealing with congestion 
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TCP Features
• Connection-oriented
• Byte-stream

– app writes bytes
– TCP sends segments
– app reads bytes

• Reliable data transfer

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

• Full duplex
• Flow control: keep sender 

from overrunning receiver
• Congestion control: keep 

sender from overrunning 
network
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Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31
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Segment Format (cont)
• Each connection identified with 4-tuple:

– (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

• Sliding window + flow control
– acknowledgment, SequenceNum, AdvertisedWinow

• Flags
– SYN, FIN, RESET, PUSH, URG, ACK

• Checksum is the same as UDP
– pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver
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Sequence Numbers

• 32 bit sequence numbers
– Wrap around supported

• TCP breaks byte stream from application into packets 
(limited by Max. Segment Size)

• Each byte in the data stream is considered
• Each packet has a sequence number

– Initial number selected at connection time
– Subsequent numbers indicate first data byte number in packet

• ACK’s indicate next byte expected
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Sequence Number Wrap Around

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours
Ethernet (10 Mbps) 57 minutes
T3 (45 Mbps) 13 minutes
FDDI (100 Mbps) 6 minutes
STS-3 (155 Mbps) 4 minutes
STS-12 (622 Mbps) 55 seconds
STS-24 (1.2 Gbps) 28 seconds

• Protect against this by adding a 32-bit timestamp to TCP header

CS 640 24

Connection Establishment

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1
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Connection Termination
Active participant

(server)
Passive participant

(client)

FIN, SequenceNum = x

Acknowledgment = y + 1

Acknowledgment = x + 1

FIN, SequenceNum= y
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State Transition Diagram
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ACK
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FIN/ACK
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Reliability in TCP

• Checksum used to detect bit level errors

• Sequence numbers used to detect sequencing errors
– Duplicates are ignored

– Reordered packets are reordered (or dropped)

– Lost packets are retransmitted

• Timeouts used to detect lost packets
– Requires RTO calculation

– Requires sender to maintain data until it is ACKed
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Sliding Window Revisited

• Sending side
– LastByteAcked < =
LastByteSent

– LastByteSent < =
LastByteWritten

– buffer bytes between 
LastByteAcked and 
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

• Receiving side
– LastByteRead < 
NextByteExpected

– NextByteExpected < =
LastByteRcvd +1

– buffer bytes between 
NextByteRead and 
LastByteRcvd
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Flow Control in TCP
• Send buffer size: MaxSendBuffer
• Receive buffer size: MaxRcvBuffer
• Receiving side

– LastByteRcvd - LastByteRead < = MaxRcvBuffer
– AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd -
LastByteRead)

• Sending side
– LastByteSent - LastByteAcked < = AdvertisedWindow
– EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)

– LastByteWritten - LastByteAcked < = MaxSendBuffer
– block sender if (LastByteWritten - LastByteAcked) + y > 
MaxSenderBuffer

• Always send ACK in response to arriving data segment
• Persist sending one byte seg. when AdvertisedWindow = 0
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Keeping the Pipe Full
• 16-bit AdvertisedWindow controls amount of pipelining
• Assume RTT of 100ms
• Add scaling factor extension to header to enable larger windows

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB
Ethernet (10 Mbps) 122KB
T3 (45 Mbps) 549KB
FDDI (100 Mbps) 1.2MB
OC-3 (155 Mbps) 1.8MB
OC-12 (622 Mbps) 7.4MB
OC-24 (1.2 Gbps) 14.8MB
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Making TCP More Efficient

• Delayed acknowledgements
– Delay for about 200ms

– Try to piggyback ACKs with data

• Acknowledge every other packet
– Many instances in transmission sequence which require 

an ACK

• Don’ t forget Nagle’s algorithm
– Can be switched off
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Karn/Partridge Algorithm for RTO

• Two degenerate cases with timeouts and RTT measurements
– Solution:  Do not sample RTT when retransmitting 

• After each retransmission, set next RTO to be double the value 
of the last 
– Exponential backoff is well known control theory method 
– Loss is most likely caused by congestion so be careful
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Jacobson/ Karels Algorithm
• In late ’80s, Internet was suffering from congestion collapse
• New Calculations for average RTT – Jacobson ’88
• Variance is not considered when setting timeout value

– If variance is small, we could set RTO = EstRTT
– If variance is large, we may need to set RTO > 2 x EstRTT

• New algorithm calculates both variance and mean for RTT
• Diff = sampleRTT - EstRTT
• EstRTT = EstRTT + ( d x Diff)
• Dev = Dev + d ( |Diff| - Dev)

– Initially settings for EstRTT and Dev will be given to you
– where d is a factor between 0 and 1
– typical value is 0.125
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Jacobson/ Karels contd.
• TimeOut = µ x EstRTT + φ x Dev

– where µ = 1 and φ = 4

• When variance is small, TimeOut is close to EstRTT
• When variance is large Dev dominates the calculation
• Another benefit of this mechanism is that it is very efficient 

to implement in code (does not require floating point)
• Notes

– algorithm only as good as granularity of clock (500ms on Unix)
– accurate timeout mechanism important to congestion control (later)

• These issues have been studied and dealt with in new RFC’s
for RTO calculation.

• TCP RENO uses Jacobson/Karels


