
1

CS 640 1

Outline

Flow Control

TCP Overview

Lecture 13 (March 2, 2004)

CS 640 2

Transport layer functions

• Transport protocol defines the pattern/sequence for end hosts
sending packets

• Transport has to deal with a number of things
– Multiplexing/demultiplexing – ports and message queues

– Error detection within packets - checksums

– Reliable, in order delivery of packets - Today

– Flow control – Today

– Connection management - TBD

– Congestion control – TBD

• We’re moving toward understanding TCP

CS 640 3

Methods of Reliability

• Packets can be lost and/or corrupted during transmission
– Bit level errors due to noise
– Loss due to congestion

• Use checksums to detect bit level errors
– Internet Checksum is optionally used to detect errors in UDP

• Uses 16 bits to encode one’s complement sum of data + headers

– When bit level errors are detected, packets are dropped

• Build reliability into the transmission protocol
– Using acknowledgements and timeouts to signal lost or corrupt

frame

CS 640 4

Acknowledgements & Timeouts

• An acknowledgement (ACK) is a packet sent by one host
in response to a packet it has received
– Making a packet an ACK is simply a matter of changing a field in

the transport header

– Data can be piggybacked in ACKs

• A timeout is a signal that an ACK to a packet that was sent
has not yet been received within a specified timeframe
– A timeout triggers a retransmission of the original packet from the

sender

– How are timers set?

CS 640 5

Acknowledgements & Timeouts
Sender Receiver

Frame

ACK

Ti
m

eo
ut

Ti
m

e

Sender Receiver

Frame

ACK

Ti
m

eo
ut

Frame

ACKTi
m

eo
ut

Sender Receiver

Frame

ACKTi
m

eo
ut

Frame

ACKTi
m

eo
ut

Sender Receiver

Frame

T
im

eo
ut

Frame

ACKT
im

eo
ut

(a) (c)

(b) (d)

CS 640 6

Propagation Delay

• Propagation delay is defined as the delay between
transmission and receipt of packets between hosts

• Propagation delay can be used to estimate timeout
period

• How can propagation delay be measured?

• What else must be considered in the measurement?

2

CS 640 7

Exponentially weighted moving
average RTT estimation

• EWMA was original algorithm for TCP

• Measure SampleRTT for each packet/ACK pair

• Compute weighted average of RTT
– EstRTT = α x EstimatedRTT + β x SampleRTT
– where α + β = 1
− α between 0.8 and 0.9
− β between 0.1 and 0.2

• Set timeout based on EstRTT
– TimeOut = 2 x EstRTT

CS 640 8

Stop-and-Go Process

• Sender doesn’t send next packet until he’s sure receiver has last packet
• The packet/Ack sequence enables reliability
• Sequence numbers help avoid problem of duplicate packets
• Problem: keeping the pipe full
• Example

– 1.5Mbps link x 45ms RTT = 67.5Kb (8KB)
– 1KB frames imples1/8th link utilization

Sender Receiver

CS 640 9

Solution: Pipelining via Sliding Window
• Allow multiple outstanding (un-ACKed) frames
• Upper bound on un-ACKed frames, called window

Sender Receiver

Ti
m

e

…
…

CS 640 10

Buffering on Sender and Receiver

• Sender needs to buffer data so that if data is lost, it can be resent
• Receiver needs to buffer data so that if data is received out of

order, it can be held until all packets are received
– Flow control

• How can we prevent sender overflowing receiver’s buffer?
– Receiver tells sender its buffer size during connection setup

• How can we insure reliability in pipelined transmissions?
– Go-Back-N

• Send all N unACKed packets when a loss is signaled
• Inefficient

– Selective repeat
• Only send specifically unACKed packets
• A bit trickier to implement

CS 640 11

Sliding Window: Sender
• Assign sequence number to each frame (SeqNum)
• Maintain three state variables:

– send window size (SWS)
– last acknowledgment received (LAR)
– last frame sent (LFS)

• Maintain invariant: LFS - LAR <= SWS

• Advance LAR when ACK arrives
• Buffer up to SWS frames

≤SWS

LAR LFS

… …

CS 640 12

Sliding Window: Receiver
• Maintain three state variables

– receive window size (RWS)
– largest frame acceptable (LFA)
– last frame received (LFR)

• Maintain invariant: LFA - LFR <= RWS

• Frame SeqNum arrives:
– if LFR < SeqNum < = LFA accept
– if SeqNum < = LFR or SeqNum > LFA discarded

• Send cumulative ACKs – send ACK for largest frame such that all
frames less than this have been received

≤ RWS

LFR LFA

… …

3

CS 640 13

Sequence Number Space
• SeqNum field is finite; sequence numbers wrap around
• Sequence number space must be larger then number of

outstanding frames
• SWS <= SeqNumSpace is not sufficient

– suppose 3-bit SeqNum field (0..7)
– SWS=RWS=7

– sender transmit frames 0..6
– arrive successfully, but ACKs lost
– sender retransmits 0..6
– receiver expecting 7, 0..5, but receives the original incarnation of 0..5

• SWS <= SeqNumSpace/2 is correct rule
• Intuitively, SeqNum “slides” between two halves of sequence

number space

CS 640 14

Another Pipelining Possibility:
Concurrent Logical Channels

• Multiplex 8 logical channels over a single link

• Run stop-and-wait on each logical channel

• Maintain three state bits per channel
– channel busy

– current sequence number out

– next sequence number in

• Header: 3-bit channel num, 1-bit sequence num
– 4-bits total

– same as sliding window protocol

• Separates reliability from order

CS 640 15

Stop & Go sequence numbers
Sender Receiver

Frame 0

ACK 0

Ti
m

eo
ut

Frame 0

ACK 0

Ti
m

eo
ut

Sender Receiver

Frame 0

ACK 0T
im

eo
ut

Frame 0

ACK 0Ti
m

eo
ut

(c) (d)

Sender Receiver

Frame 0

ACK 0

Frame 1

ACK 1

(e)

Frame 0

ACK 0

• Simple sequence numbers enable the client to
discard duplicate copies of the same frame
• Stop & go allows one outstanding frame, requires
two distinct sequence numbers

CS 640 16

Sliding Window Example

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0
1
2

Sender Receiver

A3

3
4
5
6

A4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

CS 640 17

Sliding Window Summary

• Sliding window is best known algorithm in networking

• First role is to enable reliable delivery of packets
– Timeouts and acknowledgements

• Second role is to enable in order delivery of packets
– Receiver doesn’ t pass data up to app until it has packets in

order

• Third role is to enable flow control
– Prevents server from overflowing receiver’s buffer

CS 640 18

TCP Overview
• TCP is the most widely used Internet protocol

– Web, Peer-to-peer, FTP, telnet, …

• A two way, reliable, byte stream oriented end-to-end
protocol
– Includes flow and congestion control

• Closely tied to the Internet Protocol (IP)
• A focus of intense study for many years

– Our goal is to understand the RENO version of TCP
• RENO is most widely used TCP today
• RFC 2001 (now expired)
• RENO mainly specifies mechanisms for dealing with congestion

4

CS 640 19

TCP Features
• Connection-oriented
• Byte-stream

– app writes bytes
– TCP sends segments
– app reads bytes

• Reliable data transfer

Application process

Write
bytes

TCP
Send buffer

Segment Segment Segment

Transmit segments

Application process

Read
bytes

TCP
Receive buffer

…

… …

• Full duplex
• Flow control: keep sender

from overrunning receiver
• Congestion control: keep

sender from overrunning
network

CS 640 20

Segment Format

Options (variable)

Data

Checksum

SrcPort DstPort

HdrLen 0 Flags

UrgPtr

AdvertisedWindow

SequenceNum

Acknowledgment

0 4 10 16 31

CS 640 21

Segment Format (cont)
• Each connection identified with 4-tuple:

– (SrcPort, SrcIPAddr, DsrPort, DstIPAddr)

• Sliding window + flow control
– acknowledgment, SequenceNum, AdvertisedWinow

• Flags
– SYN, FIN, RESET, PUSH, URG, ACK

• Checksum is the same as UDP
– pseudo header + TCP header + data

Sender

Data (SequenceNum)

Acknowledgment +
AdvertisedWindow

Receiver

CS 640 22

Sequence Numbers

• 32 bit sequence numbers
– Wrap around supported

• TCP breaks byte stream from application into packets
(limited by Max. Segment Size)

• Each byte in the data stream is considered
• Each packet has a sequence number

– Initial number selected at connection time
– Subsequent numbers indicate first data byte number in packet

• ACK’s indicate next byte expected

CS 640 23

Sequence Number Wrap Around

Bandwidth Time Until Wrap Around
T1 (1.5 Mbps) 6.4 hours
Ethernet (10 Mbps) 57 minutes
T3 (45 Mbps) 13 minutes
FDDI (100 Mbps) 6 minutes
STS-3 (155 Mbps) 4 minutes
STS-12 (622 Mbps) 55 seconds
STS-24 (1.2 Gbps) 28 seconds

• Protect against this by adding a 32-bit timestamp to TCP header

CS 640 24

Connection Establishment

Active participant
(client)

Passive participant
(server)

SYN, SequenceNum = x

SYN + ACK, SequenceNum = y,

ACK, Acknowledgment = y + 1

Acknowledgment = x + 1

5

CS 640 25

Connection Termination
Active participant

(server)
Passive participant

(client)

FIN, SequenceNum = x

Acknowledgment = y + 1

Acknowledgment = x + 1

FIN, SequenceNum= y

CS 640 26

State Transition Diagram
CLOSED

LISTEN

SYN_RCVD SYN_SENT

ESTABLISHED

CLOSE_WAIT

LAST_ACKCLOSING

TIME_WAIT

FIN_WAIT_2

FIN_WAIT_1

Passive open Close

Send/SYN
SYN/SYN + ACK

SYN + ACK/ACK

SYN/SYN + ACK

ACK

Close/FIN

FIN/ACKClose/FIN

FIN/ACKACK + FIN/ACK Timeout after two
segment lifetimes

FIN/ACK

ACK

ACK

ACK

Close/FIN

Close

CLOSED

Active open/SYN

CS 640 27

Reliability in TCP

• Checksum used to detect bit level errors

• Sequence numbers used to detect sequencing errors
– Duplicates are ignored

– Reordered packets are reordered (or dropped)

– Lost packets are retransmitted

• Timeouts used to detect lost packets
– Requires RTO calculation

– Requires sender to maintain data until it is ACKed

CS 640 28

Sliding Window Revisited

• Sending side
– LastByteAcked < =
LastByteSent

– LastByteSent < =
LastByteWritten

– buffer bytes between
LastByteAcked and
LastByteWritten

Sending application

LastByteWritten

TCP

LastByteSentLastByteAcked

Receiving application

LastByteRead

TCP

LastByteRcvdNextByteExpected

• Receiving side
– LastByteRead <
NextByteExpected

– NextByteExpected < =
LastByteRcvd +1

– buffer bytes between
NextByteRead and
LastByteRcvd

CS 640 29

Flow Control in TCP
• Send buffer size: MaxSendBuffer
• Receive buffer size: MaxRcvBuffer
• Receiving side

– LastByteRcvd - LastByteRead < = MaxRcvBuffer
– AdvertisedWindow = MaxRcvBuffer - (LastByteRcvd -
LastByteRead)

• Sending side
– LastByteSent - LastByteAcked < = AdvertisedWindow
– EffectiveWindow = AdvertisedWindow - (LastByteSent -
LastByteAcked)

– LastByteWritten - LastByteAcked < = MaxSendBuffer
– block sender if (LastByteWritten - LastByteAcked) + y >
MaxSenderBuffer

• Always send ACK in response to arriving data segment
• Persist sending one byte seg. when AdvertisedWindow = 0

CS 640 30

Keeping the Pipe Full
• 16-bit AdvertisedWindow controls amount of pipelining
• Assume RTT of 100ms
• Add scaling factor extension to header to enable larger windows

Bandwidth Delay x Bandwidth Product
T1 (1.5 Mbps) 18KB
Ethernet (10 Mbps) 122KB
T3 (45 Mbps) 549KB
FDDI (100 Mbps) 1.2MB
OC-3 (155 Mbps) 1.8MB
OC-12 (622 Mbps) 7.4MB
OC-24 (1.2 Gbps) 14.8MB

6

CS 640 31

Making TCP More Efficient

• Delayed acknowledgements
– Delay for about 200ms

– Try to piggyback ACKs with data

• Acknowledge every other packet
– Many instances in transmission sequence which require

an ACK

• Don’ t forget Nagle’s algorithm
– Can be switched off

CS 640 32

Karn/Partridge Algorithm for RTO

• Two degenerate cases with timeouts and RTT measurements
– Solution: Do not sample RTT when retransmitting

• After each retransmission, set next RTO to be double the value
of the last
– Exponential backoff is well known control theory method
– Loss is most likely caused by congestion so be careful

Sender Receiver

Original transmission

ACK

S
am

pl
eR

T
T

Retransmission

Sender Receiver

Original transmission

ACK

S
am

pl
eR

T
T

Retransmission

CS 640 33

Jacobson/ Karels Algorithm
• In late ’80s, Internet was suffering from congestion collapse
• New Calculations for average RTT – Jacobson ’88
• Variance is not considered when setting timeout value

– If variance is small, we could set RTO = EstRTT
– If variance is large, we may need to set RTO > 2 x EstRTT

• New algorithm calculates both variance and mean for RTT
• Diff = sampleRTT - EstRTT
• EstRTT = EstRTT + (d x Diff)
• Dev = Dev + d (|Diff| - Dev)

– Initially settings for EstRTT and Dev will be given to you
– where d is a factor between 0 and 1
– typical value is 0.125

CS 640 34

Jacobson/ Karels contd.
• TimeOut = µ x EstRTT + φ x Dev

– where µ = 1 and φ = 4

• When variance is small, TimeOut is close to EstRTT
• When variance is large Dev dominates the calculation
• Another benefit of this mechanism is that it is very efficient

to implement in code (does not require floating point)
• Notes

– algorithm only as good as granularity of clock (500ms on Unix)
– accurate timeout mechanism important to congestion control (later)

• These issues have been studied and dealt with in new RFC’s
for RTO calculation.

• TCP RENO uses Jacobson/Karels

