
1

CS640 30

Lecture 20 (April 8, 2004)

Outline

HTTP

Caching

CDNs

CS640 31

The Web: the http protocol

http: hypertext transfer
protocol

❒ Web’s application layer
protocol

❒ client/server model

❍ client: browser that
requests, receives,
“displays” Web objects

❍ server: Web server sends
objects in response to
requests

❒ http1.0: RFC 1945

❒ http1.1: RFC 2068

PC running
Explorer

Server
running

NCSA Web
server

Mac running
Navigator

http request

http req
uest

http response

http
res

ponse

CS640 32

The http protocol: more

http: TCP transport service:
❒ client initiates TCP connection

(creates socket) to server, port 80

❒ server accepts TCP connection
from client

❒ http messages (application-layer
protocol messages) exchanged
between browser (http client) and
Web server (http server)

❒ TCP connection closed

http is “stateless”
❒ server maintains no

information about past
client requests

Protocols that maintain “state” are
complex!

❒ past history (state) must be
maintained

❒ if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

CS640 33

http example
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. http client initiates TCP connection
to http server (process) at
www.someSchool.edu. Port 80 is
default for http server.

2. http client sends http request
message (containing URL) into
TCP connection socket

1b. http server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. http server receives request
message, forms response message
containing requested object
(someDepartment/home.index),
sends message into socket

time

(contains text,
references to 10

jpeg images)

CS640 34

http example (cont.)

5. http client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each of 10
jpeg objects

4. http server closes TCP connection.

time

CS640 35

Non-persistent, persistent connections

Non-persistent
❒ http/1.0: server parses request,

responds, closes TCP connection

❒ 2 RTTs to fetch object

❍ TCP connection

❍ object request/transfer

❒ each transfer suffers from TCP’s
initially slow sending rate

❒ many browsers open multiple
parallel connections

Persistent
❒ default for htp/1.1
❒ on same TCP connection:

server, parses request,
responds, parses new
request,..

❒ client sends requests for
all referenced objects as
soon as it receives base
HTML.

❒ fewer RTTs, less slow
start.

2

CS640 36

http message format: request

❒ two types of http messages: request, response

❒ http request message:
❍ ASCII (human-readable format)

GET / somedi r / page. ht ml HTTP/ 1. 0
User - agent : Mozi l l a/ 4. 0
Accept : t ext / ht ml , i mage/ gi f , i mage/ j peg
Accept - l anguage: f r

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

CS640 37

http request message: general format

CS640 38

http message format: response

HTTP/ 1. 0 200 OK
Dat e: Thu, 06 Aug 1998 12: 00: 15 GMT
Ser ver : Apache/ 1. 3. 0 (Uni x)
Last - Modi f i ed: Mon, 22 Jun 1998 …. . .
Cont ent - Lengt h: 6821
Cont ent - Type: t ext / ht ml

dat a dat a dat a dat a dat a . . .

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
html file

CS640 39

http response status codes

200 OK
❍ request succeeded, requested object later in this message

301 Moved Per manent l y
❍ requested object moved, new location specified later in this message

(Location:)

400 Bad Request
❍ request message not understood by server

404 Not Found
❍ requested document not found on this server

505 HTTP Ver si on Not Suppor t ed

In first line in server->client response message.

A few sample codes:

CS640 40

Trying out http (client side) for yourself

1. Telnet to your favorite Web server:

Opens TCP connection to port 80
(default http server port) at www.eurecom.fr.
Anything typed in sent
to port 80 at www.eurecom.fr

t el net www. eur ecom. f r 80

2. Type in a GET http request:

GET / ~r oss/ i ndex. ht ml HTTP/ 1. 0 By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to http server

3. Look at response message sent by http server!

CS640 41

User-server interaction: authentication

Authentication : control access to
server content

❒ authorization credentials: typically
name, password

❒ stateless: client must present
authorization in each request

❍ authorization: header line in
each request

❍ if no authorization: header,
server refuses access, sends

WWW aut hent i cat e:

header line in response

client server

usual http request msg

401: authorization req.
WWW aut hent i cat e:

usual http request msg
+ Authorization: <cred>

usual http response msg

usual http request msg
+ Authorization: <cred>

usual http response msg time

3

CS640 42

Cookies: keeping “state”

❒ server-generated # , server-
remembered #, later used for:

❍ authentication

❍ remembering user
preferences, previous
choices

❒ server sends “cookie” to
client in response msg
Set - cooki e: 1678453

❒ client presents cookie in later
requests
cooki e: 1678453

client server

usual http request msg

usual http response +
Set - cooki e: #

usual http request msg
cook i e: #

usual http response msg

usual http request msg
cook i e: #

usual http response msg

cookie-
spectific
action

cookie-
spectific
action

CS640 43

Conditional GET: client-side caching

❒ Goal: don’ t send object if
client has up-to-date
cached version

❒ client: specify date of
cached copy in http request
I f - modi f i ed- s i nce:

<dat e>

❒ server: response contains
no object if cached copy is
up-to-date:
HTTP/ 1. 0 304 Not

Modi f i ed

client server

http request msg
I f - modi f i ed- si nce:

<dat e>

http response
HTTP/ 1. 0

304 Not Modi f i ed

object
not

modified

http request msg
I f - modi f i ed- si nce:

<dat e>

http response
HTTP/ 1. 1 200 OK

<dat a>

object
modified

CS640 44

Web Caches (proxy server)

❒ user sets browser: Web
accesses via web cache

❒ client sends all http
requests to web cache

❍ object in web cache: web
cache returns object

❍ else web cache requests
object from origin server,
then returns object to
client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

http request

http req
uest

http response

http
res

ponse

http req
uest

http res
ponse

origin
server

origin
server

CS640 45

Why Web Caching?

Assume: cache is “close” to
client (e.g., in same
network)

❒ smaller response time:
cache “closer” to client

❒ decrease traffic to distant
servers

❍ link out of
institutional/local ISP
network often bottleneck

❒ Hierarchy of caches
❍ e.g., Harvest, Squid

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

CS640 46

Content Delivery Networks

❒ e.g. Akamai, DigitalIsland, etc.

❒ Has its own network of servers that replicates
some content of the content provider (e.g.
cnn.com)
❍ e.g. all images

❍ In the index.html file all references of:

www.cnn.com/images/sports.gif is re-mapped to
www.akamai.com/www.cnn.com/images/sports.gif

• Server domain name: www.akamai.com

• File: www.cnn.com/images/sports.gif

CS640 47

Content Delivery Networks

❒ When client downloads www.cnn.com/index.html

❒ Next tries to resolvewww.akamai.com/…/sports.gif

❒ When local nameserver of client tries to resolve
www.akamai.com
❍ DNS server of Akamai will identify one of its server that is

closest to the local nameserver of client

❍ Expectation is that the client is close to its local nameserver

❒ A good approximation of nearest server to client

❒ Read “King” paper from class website

