
1

CS 640 1

Lecture 21 (Apr 13, 2004)

Outline
P2P: Napster, Gnutella, KaZaA

Chord

CS 640 2

What is P2P?
• Significant autonomy from central servers

• Exploits resources at the edges of Internet

• Bandwidth

• Storage

• Processing

• Resources at edge have intermittent connectivity

• Dynamic joins and leaves

CS 640 3

Applications
• P2P file sharing

– Napster, Gnutella, KaZaA, etc.

• Storage and lookup
– Chord, CAN, etc.

• P2P communication
– Instant messaging

• P2P computation
– seti@home

CS 640 4

P2P file sharing software

• Allows Alice to open up a
directory in her file system
– Anyone can retrieve a file

from directory

– Like a Web server

• Allows Alice to copy files
from other users’ open
directories:
– Like a Web client

• Allows users to search the
peers for content based on
keyword matches:
– Like Google

CS 640 5

Napster

• the most (in)famous

• Instructive for what it gets right, and

• also wrong…

• also has a political message…and economic and
legal…

CS 640 6

Napster
• program for sharing files over the Internet
• a “disruptive” application/technology?
• history:

– 5/99: Shawn Fanning (freshman, Northeasten U.) founds
Napster Online music service

– 12/99: first lawsuit
– 3/00: 25% UWisc traffic Napster
– 2/01: US Circuit Court of

Appeals: Napster knew users
violating copyright laws

– 7/01: # simultaneous online users:

Napster 160K, Gnutella: 40K,
Morpheus (KaZaA): 300K

2

CS 640 7

Napster

• judge orders Napster to
pull plug in July ‘01

• other file sharing apps take
over!

��������
���	��

��	�
��
 ���� �� �

��

��

��

��

���

�
��
	�
��

�
	�

�

CS 640 8

Napster: how does it work

• Application-level, client-server protocol over point-to-
point TCP

• Centralized directory server

Steps:
• connect to Napster server
• upload your list of files to server.
• give server keywords to search the full list with.
• select “best” of correct answers. (pings)

CS 640 9

Napster

�������	��
����� �
���
�		��	�
���!����

"�
���	��
��!# �

����
���$�����
���!
%

CS 640 10

Napster
���	��
��!# �

����
���$�����
���!
%

& ��
%
���

�	���	

' 	�
���

�(��	�	�
	��
�)����
	�
*�
�

��

CS 640 11

Napster

����	
����	

' 	�
�����	�
)!	�	��)���
����
����%�
)�*�������

+!!
	��!
�
���� �
��	��
�

����

,�
���	��
��!# �

����
���$�����
���!
%

CS 640 12

Napster
���	��
��!# �

����
���$�����
���!
%

-��
��*�	
����

' 	�
��)!!	�	
	�
*�

��

. ��	��
/	�

����
���$���

	�
*�
���
�)���

������������# ��

�������

���0 ��)��
�����

3

CS 640 13

2. Unstructured P2P File Sharing

• Napster

• Gnutella

• KaZaA

• search theory

• dealing with flash crowds

CS 640 14

Distributed Search/Flooding

Query

CS 640 15

Distributed Search/Flooding

Response

CS 640 16

Gnutella

• focus: decentralized method of searching for files
– central directory server no longer the bottleneck

– more difficult to “pull plug”

• each application instance serves to:
– store selected files

– route queries from and to its neighboring peers

– respond to queries if file stored locally

– serve files

CS 640 17

Gnutella

• Gnutella history:
– 3/14/00: release by AOL, almost immediately withdrawn

– became open source

– many iterations to fix poor initial design (poor design turned many
people off)

• issues:
– how much traffic does one query generate?

– how many hosts can it support at once?

– what is the latency associated with querying?

– is there a bottleneck?

CS 640 18

Gnutella: limited scope query
Searching by f looding:

• if you don’ t have the file you want, query 7 of
your neighbors.

• if they don’ t have it, they contact 7 of their
neighbors, for a maximum hop count of 10.

• reverse path forwarding for responses (not files)

. !��1� ��%��������� ���# ���!����1�

)���1220 0 0 ���# �0 �
���!# 2����3�4	�2���

4

CS 640 19

Gnutella overlay management

• New node uses bootstrap node to get IP addresses
of existing Gnutella nodes

• New node establishes neighboring relations by
sending join messages

4!��

CS 640 20

Gnutella in practice

• Gnutella traffic << KaZaA traffic

• KaZaA:
– hierarchy, queue management, parallel download,…

CS 640 21

Gnutella Discussion:

• researchers like it because it’s open source
– but is it truly representative?

• architectural lessons learned?

• good source for technical info/open questions:
http://www.limewire.com/index.jsp/tech_papers

CS 640 22

2. Unstructured P2P File Sharing

• Napster

• Gnutella

• KaZaA

• search theory

• dealing with flash crowds

CS 640 23

KaZaA: The service

• more than 3 million up peers sharing over 3,000
terabytes of content

• more popular than Napster ever was
• more than 50% of Internet traffic ?
• MP3s & entire albums, videos, games
• optional parallel downloading of files
• automatically switches to new download server

when current server becomes unavailable
• provides estimated download times

CS 640 24

KaZaA: The service (2)

• User can configure max number of simultaneous uploads
and max number of simultaneous downloads

• queue management at server and client
– Frequent uploaderscan get priority in server queue

• Keyword search
– User can configure “up to x” responses to keywords

• Responses to keyword queries come in waves; stops when
x responses are found

• From user’s perspective, service resembles Google, but
provides links to MP3s and videos rather than Web pages

5

CS 640 25

KaZaA: Technology
Software
• Proprietary
• files and control data encrypted
• Hints:

– KaZaA Web site gives a few
– Some reverse engineering attempts described in Web

• Everything in HTTP request and response messages
Architecture
• hierarchical
• cross between Napster and Gnutella

CS 640 26

KaZaA: Architecture

• Each peer is either a
supernodeor is assigned
to a supernode

• Each supernodeknows
about many other
supernodes (almost mesh
overlay)

	���
�!��	

CS 640 27

KaZaA: Architecture (2)

• Nodes that have more connection bandwidth and
are more available are designated as supernodes

• Each supernodeacts as a mini-Napster hub,
tracking the content and IP addresses of its
descendants

• Guess: supernode has (on average) 200-500
descendants; roughly 10,000 supernodes

• There is also dedicated user authentication server
and supernode list server

CS 640 28

KaZaA: Overlay maintenance

• List of potential supernodes included within
software download

• New peer goes through list until it finds
operational supernode
– Connects, obtains more up-to-date list

– Node then pings 5 nodes on list and connects with the
one with smallest RTT

• If supernode goes down, node obtains updated list
and chooses new supernode

CS 640 29

KaZaA Queries

• Node first sends query to supernode
– Supernode responds with matches

– If x matches found, done.

• Otherwise, supernode forwards query to subset of
supernodes
– If total of x matches found, done.

• Otherwise, query further forwarded
– Probably by original supernode rather than recursively

CS 640 30

Parallel Downloading; Recovery

• If file is found in multiple nodes, user can select
parallel downloading

• Most likely HTTP byte-range header used to
request different portions of the file from different
nodes

• Automatic recovery when server peer stops
sending file

6

CS 640 31

3. Structured P2P: DHT Approaches

• Want a storage and lookup service with better
service guarantees and more efficient

• A Distributed Hash Table (DHT)
– Chord

– CAN

– Pastry

– Tapestry

CS 640 32

Challenge: Locating Content

• Simplest strategy: expanding ring search

• If K of N nodes have copy, expected search cost at least
N/K, i.e., O(N)

• Need many cached copies to keep search overhead small

5 �
��%!���!6
5 �
��%!���!6

�/# ��!!
�����!

78 ����. !��	

CS 640 33

Directed Searches

• Idea:
– assign particular nodes to hold particular content (or pointers to it,

like an information booth)
– when a node wants that content, go to the node that is supposed to

have or know about it
• Challenges:

– Distributed: want to distribute responsibilities among existing
nodes in the overlay

– Adaptive: nodes join and leave the P2P overlay

• distribute knowledge responsibility to joining nodes
• redistribute responsibility knowledge from leaving

nodes

CS 640 34

DHT Step 1: The Hash
• Introduce a hash function to map the object being searched for to a

unique identifier:

– e.g., h(“CS640 Class notes”) � 8045

• Distribute the range of the hash function among all nodes in the
network

• Each node must “know about” at least one copy of each object that
hashes within its range (when one exists)

�9:::
:;��9::::

"���9":::
";��9�:::

:���9:;��

�;��9�:::

����9�::: <���9�;��

���;

CS 640 35

DHT Step 2: Routing

• For each object, node(s) whose range(s) cover that object
must be reachable via a “short” path

• by the querier node (assumed can be chosen arbitrarily)

• Different approaches (CAN,Chord,Pastry,Tapestry) differ
fundamentally only in the routing approach

– any “good” random hash function will suffice

CS 640 36

DHT API

• each data item (e.g., file or metadata containing
pointers) has a key in some ID space

• In each node, DHT software provides API:
– Application gives API key k

– API returns IP address of node that is responsible for k

• API is implemented with an underlying DHT
overlay and distributed algorithms

7

CS 640 37

DHT API

application

DHT substrate
API

application

DHT substrate
API

ap
pl

ic
at

io
n

D
H

T
 s

ub
st

ra
te

A
PI

application

D
H

T
 substrate

A
PI

!*�
��%
���0 !

�%

�	�!�	����
�!��

���)���������# ������=������!
�# ��������

�!��������!�������!���	��)�	���
�%�

CS 640 38

DHT Layered Architecture

TCP/IP

DHT

Network
storage

Event
notification

Internet

P2P substrate
(self-organizing
overlay network)

P2P application layer?

CS 640 39

Consistent hashing (1)

• Overlay network is a circle

• Each node has randomly chosen id
– Keys in same id space

• Node’s successor in circle is node with next
largest id
– Each node knows IP address of its successor

• Key is stored in closest successor

CS 640 40

Consistent hashing (2)

���"

��""

�"��

�"�"

"���
"�"�

""��

""""

�����"""��
	�!
���)�
�

>)!/	�
�	��
�!
������"""�

���#

? �. ��# �		���	
!���*� �!�
�	!�*�
(��
%

. !��1��!��!�����%

�# !�������)�!
	

CS 640 41

Consistent hashing (3)

Node departures
• Each node must track s � 2

successors
• If your successor leaves, take

next one
• Ask your new successor for list

of its successors; update your s
successors

Node joins

• You’ re new, node id k

• ask any node n to find the
node n’ that is the
successor for id k

• Get successor list from n’

• Tell your predecessors to
update their successor lists

• Thus, each node must
track its predecessor

CS 640 42

Consistent hashing (4)

• Overlay is actually a circle with small chords for
tracking predecessor and k successors

• # of neighbors = s+1: O(1)
– The ids of your neighbors along with their IP addresses

is your “ routing table”

• average # of messages to find key is O(N)

Can we do better?

8

CS 640 43

Chord

• Nodes assigned 1-dimensional IDs in hash space at random
(e.g., hash on IP address)

• Consistent hashing: Range covered by node is from
previous ID up to its own ID (modulo the ID space)

"��

�<�

,��<

�<�,

�<�,
�<�,

�<�

,��<

�<�,

��;�

"��

CS 640 44

Chord Routing
• A node s’s ith neighbor has the ID that is equal to

s+2i or is the next largest ID (mod ID space), i�0

• To reach the node handling ID t, send the message
to neighbor #log2(t-s)

• Requirement: each node s must know about the
next node that exists clockwise on the Chord (0th

neighbor)

• Set of known neighbors called a finger table

CS 640 45

Chord Routing (cont’d)
• A node s is node t’sneighbor if s is the closest node to t+2i mod H for some i.

Thus,
– each node has at most log2 N neighbors

– for any object, the node whose range contains the object is reachable from any
node in no more than log2 N overlay hops

(each step can always traverse at least half the distance to theID)

• Given K objects, with high probability each node has at most
(1 + log2 N) K / N in its range

• When a new node joins or leaves the overlay, O(K / N)
objects move between nodes

326

15

864

863

722

721

720

Finger
table for
node 67

i

"

�

,�

�<
��

<�

�<

7�!	�	��
�!���
��!�
0 �	��
�!�

�<@�� # !��
"��

CS 640 46

Chord Node Insertion
• One protocol addition: each node knows its closest counter-clockwise

neighbor

• A node selects its unique (pseudo-random) ID and uses a bootstrapping
process to find some node in the Chord

• Using Chord, the node identifies its successor in the clockwise
direction

• An newly inserted node’s predecessor is its successor’s former
predecessor ��

"

�

,�

�<

�<
��

<�

�
������A<�

B3�# ���1���	�
����

CS 640 47

Chord Node Insertion (cont’d)

"

�

,�

�<

�<
��

<�

��

• First: set added node s’s fingers correctly
– s’s predecessor t does the lookup for each distance of 2i from s

676

325

14

13

862

861

860

Finger
table for
node 82

i

+!!
�������A���

+!!
���:���A�"

+!!
���:���A�"

+!!
���"���A�,�

+!!
�������A��<

+!!
�������A���

+!!
����,��A���

+!!
��	��
!# ��!���<�

CS 640 48

Chord Node Insertion (cont’d)
• Next, update other nodes’ fingers about

the entrance of s (when relevant). For
each i:
– Locate the closest node to s (counter-

clockwise) whose 2i-finger can point to s:
largest possible is s - 2i

– Use Chord to go (clockwise) to largest
node t before or at s - 2i

• route to s - 2i, if arrived at a larger
node, select its predecessor as t

– If t’s 2i-finger routes to a node larger than
s

• change t’s 2i-finger to s
• set t = predecessor of t and repeat

– Else i++, repeat from top

• O(log2 N) time to find and update nodes

"

�

,�

�<

�<
��

<�

�� ��9�,

�,9�����
A��
�� �,9�����
A��

��

�,9�����
A�<C
C

����=��!
��A,

9

CS 640 49

Chord Node Deletion

• Similar process can perform deletion
"

�

,�

�<

�<
��

<�

��9�,

�� �,9�����
A��
��

�,9�����
A�<C
C

����=��!
��A,

�,9�����
A��

