Lecture 21 (Apr 13, 2004)

Outline

P2P: Napster, Gnutella, KaZaA
Chord

CS640

What is P2P?

 Significant autonomy from central servers

» Exploits resources at the edges of Internet

* Bandwidth
« Storage

« Processing

» Resources at edge have intermittent connectivity

« Dynamic joins and leaves

CS640

Applications

« P2Pfilesharing

— Napster, Gnutella, KaZaA, etc.
¢ Storage and lookup

— Chord, CAN, etc.
¢ P2P communication

— Instant messaging
¢ P2P computation

— seti@home

CS640

P2P file sharing software

¢ AllowsAlicetoopenupa
directory in her file system
— Anyone can retrieve afile
from directory

— LikeaWeb server

» AllowsAliceto copy files
from other users’ open
directories:
— LikeaWeb client

CS640

Allows users to search the
peers for content based on
keyword matches:

— Like Google

Napster

the most (in)famous
Instructive for what it gets right, and
also wrong...

also has a political message...and economic and
legal...

CS640

Napster
program for sharing files over the Internet
a“disruptive” application/technology?

history:

— 5/99: Shawn Fanning (freshman, Northeasten U.) founds

Napster Online music service

— 12/99: first lawsuit

— 3/00: 25% UWisc traffic Napster

— 2/01: US Circuit Court of
Appeals: Napster knew users
violating copyright laws

— 7/01: # simultaneous online users:
Napster 160K, Gnutella: 40K,

Morpheus (KaZaA): 300K

CS640

vell Known Services Mi/s

Napster

* judge orders Napster to

« other file sharing apps take|

over!

‘
pull plug in July ‘01 @\ i
Sm

e e vy

0 g mg s ot e

=m| gnutella u
== | napster
== | fastrack (KaZaA

CS640 7

Napster: how does it work

« Application-level, client-server protocol over point-to-
point TCP
« Centralized directory server

Steps:

« connect to Napster server

« upload your list of filesto server.

« give server keywords to search the full list with.
« select “best” of correct answers. (pings)

Napster

napster.com

CS640 8
Napster
napster.com
2. User sts centralized directory
reque
search at
server. Query

and
results

CS640 10

L File list centralized directory
and IP
address is
uploaded
CS640 9
Napster
napster.com
3. User pingg centralized directory
hosts that
apparently
have data.
Looks for
best transfer
rate.

CS640 11

Napster

napster.com

4. User chooses centralized directory

server
Napster's \
centralized
server farm had file
difficult time o
keeping)
up with traffic

CS640 12

2. Unstructured P2P File Sharing

* Napster

Gnutella

o KaZaA

search theory

dealing with flash crowds

CS640 13

Distributed Search/Flooding

CS640 14

Distributed Search/Flooding

CS640 15

Gnutdla

« focus: decentralized method of searching for files
— central directory server no longer the bottleneck
— moredifficult to “pull plug”
« each application instance serves to:
— store selected files
— route queries from and to its neighboring peers
— respond to queriesif file stored locally
— servefiles

CS640 16

Gnutdla

« Gnutellahistory:
— 3/14/00: release by AOL, amost immediately withdrawn
— became open source
— many iterationsto fix poor initial design (poor design turned many
people off)
o issues:
— how much traffic does one query generate?
— how many hosts can it support a once?
— what isthe latency associated with querying?
— isthereabottleneck?

CS640 17

Gnutella: limited scope query
Searching by flooding:
« if you don't have the file you want, query 7 of
your neighbors.

« if they don’t have it, they contact 7 of their
neighbors, for a maximum hop count of 10.

« reverse path forwarding for responses (not files)

Note: Play gnutella animation at:
http://www.limewire.com/index.jsp/p2p

CS640 18

Gnutella overlay management

« New node uses bootstrap node to get | P addresses
of existing Gnutella nodes

« New node establishes neighboring relations by
sending join messages

& AN
V// l/

CS640 19

Gnutdlain practice
¢ Gnutellatraffic << KaZaA traffic

o KaZaA:
— hierarchy, queue management, parallel download,...

CS640 20

Gnutella Discussion:

« researcherslikeit becauseit’s open source
— but isit truly representative?

 architectural lessons learned?

« good source for technical info/open questions:
http://www.limewire.com/index.jsp/tech_papers

CS640 21

2. Unstructured P2P File Sharing

* Napster

e Gnutella

o KaZaA

 search theory

¢ dealing with flash crowds

CS640 22

KazZaA: The service

« more than 3 million up peers sharing over 3,000
terabytes of content

« more popular than Napster ever was

» more than 50% of Internet traffic ?

¢ MP3s& entire albums, videos, games
« optional parallel downloading of files

« automatically switches to new download server
when current server becomes unavailable

¢ provides estimated download times

CS640 23

KaZaA: The service (2)

« User can configure max number of simultaneous uploads
and max number of simultaneous downloads
¢ queue management at server and client
— Frequent uploaders can get priority in server queue
* Keyword search
— User can configure “up to X" responses to keywords
« Responses to keyword queries come in waves; stops when
X responses are found
« From user’s perspective, service resembles Google, but
provides links to MP3s and videos rather than Web pages

CS640 24

KazZaA: Technology

Software
« Proprietary
« filesand control data encrypted
¢ Hints:
— KaZaA Web site gives afew
— Some reverse engineering attempts described in Web
¢ Everything in HTTP request and response messages
Architecture
« hierarchical
« cross between Napster and Gnutella

CS640 25

KazZaA: Architecture

@

Each peer iseither a
supernode or is assigned
to asupernode

Each supernode knows @/

about many other
supernodes (almost mesh
overlay)

CS640 26

KazaA: Architecture (2)

» Nodes that have more connection bandwidth and
are more available are designated as supernodes

« Each supernode acts as a mini-Napster hub,
tracking the content and |P addresses of its
descendants

¢ Guess:. supernode has (on average) 200-500
descendants; roughly 10,000 supernodes

» Thereisalso dedicated user authentication server
and supernode list server

CS640 27

KaZaA: Overlay maintenance

« List of potential supernodes included within
software download

« New peer goes through list until it finds

operational supernode

— Connects, obtains more up-to-date list

— Node then pings 5 nodes on list and connects with the
one with smallest RTT

If supernode goes down, node obtains updated list

and chooses new supernode

CS640 28

KaZaA Queries

« Nodefirst sends query to supernode
— Supernode responds with matches
— If x matches found, done.
« Otherwise, supernode forwards query to subset of
supernodes
— If total of x matches found, done.
¢ Otherwise, query further forwarded
— Probably by original supernode rather than recursively

CS640 29

Parallel Downloading; Recovery

« If fileisfound in multiple nodes, user can select
parallel downloading

* Most likely HTTP byte-range header used to
request different portions of the file from different
nodes

« Automatic recovery when server peer stops
sending file

CS640 30

3. Structured P2P: DHT Approaches

« Want a storage and lookup service with better
service guarantees and more efficient

« A Distributed Hash Table (DHT)

Challenge: Locating Content

I'm looking for
CS640 Notes
GV

O

* Simplest strategy: expanding ring search

« If K of N nodes have copy, expected search cost at least
N/K, i.e,, O(N)

+ Need many cached copies to keep search overhead small
CS640 32

— Chord
— CAN
— Pastry
- Tapesry
Directed Searches
* ldea

— assign particular nodesto hold particular content (or pointersto it,
like an information booth)

— when anode wantsthat content, go to the node that is supposed to
have or know about it

« Challenges:

— Distributed: want to distribute responsibilities among existing
nodes in the overlay

— Adaptive: nodes join and leave the P2P overlay
« distribute knowledge responsibility to joining nodes

« redistribute responsibility knowledge from leaving
nodes

CS640 33

DHT Step 1: The Hash
« Introduce a hash function to map the object being searched for to a
unique identifier:
— eg., h(*CS640 Class notes’) — 8045
« Distribute the range of the hash function among all nodesin the
network

1500-4
10001999 999 4R00-6999

« Each node must “know about” at least one copy of each object that
hashes within its range (when one exists)
CS640

DHT Step 2: Routing

For each object, node(s) whose range(s) cover that object
must be reachable viaa“short” path

by the querier node (assumed can be chosen arbitrarily)

Different approaches (CAN,Chord,Pastry, Tapestry) differ
fundamentally only in the routing approach

— any “good” random hash function will suffice

CS640 35

DHT AP

« each dataitem (e.g., file or metadata containing
pointers) has akey in some ID space
¢ Ineach node, DHT software provides API:
— Application gives APl key k
— API returns | P address of node that is responsible for k
¢ API isimplemented with an underlying DHT
overlay and distributed algorithms

CS640 36

DHT AP

each data item (e.g., file or metadata
pointing to file copies) has a key

i responsible
key { application G { node

DHT substrate

overlay
network

SWISINS 1HA

DHT substrate

application

DHT substrate

CS640 37

DHT Layered Architecture

Event Network » o
notification| | storage ! P2P application layer
v P2P substrate

(self-organizing
overlay network)

DHT
v

CS640 38

Consistent hashing (1)

« Overlay network isacircle

Each node has randomly chosen id

— Keysin sameid space

¢ Node s successor in circleis node with next
largest id
— Each node knows I P address of its successor

« Key isstored in closest successor

CS640 39

Consistent hashing (2)

Who's resp
for file 1110

O(N) messages
on avg to resolve
query

D
" file 1110
stored here

Note: no locality
among neighbors

Consistent hashing (3)

Node departures Node joins
« Each node must track s> 2 . You odeid k
oy rs ou re new, nodel

« If your successor leaves, take ¢ ask any noden to find the
Z’: one o node ' that isthe
of s aucosons updteyow's Sucoessor foridk
SUCCESSOrs ¢ Get successor list from n’
¢ Tell your predecessors to
update their successor lists
¢ Thus, each node must
track its predecessor

CS640 41

Consistent hashing (4)

* Overlay isactually acircle with small chords for
tracking predecessor and k successors

¢ #of neighbors = s+1: O(1)

— Theids of your neighbors along with their |P addresses
isyour “routing table”

« average # of messagesto find key is O(N)

Can we do better?

CS640 42

Chord

* Nodes assigned 1-dimensional IDs in hash space at random
(e.g., hash on IP address)

« Consistent hashing: Range covered by node is from
previous ID up to its own ID (modulo the ID space)

Chord Routing
A nodes's it neighbor hasthe ID that is equal to
s+2i or isthe next largest ID (mod 1D space), i>0
« Toreach the node handling ID t, send the message
to neighbor #log,(t-s)

* Requirement: each node s must know about the
next node that exists clockwise on the Chord (0Ot
neighbor)

« Set of known neighbors called afinger table

CS640 44

Chord Routing (cont’ d)
A node sisnodet’s neighbor if sis the closest node to t+2 mod H for somei.
Thus,
— each node has at most log, N neighbors
— for any object, the node whose range contains the object is reachable from any
nodein no more than log, N overlay hops
(each step can always traverse at least half the distance to the ID)
Given K objects, with high probability each node has at most
(1+1log, N) K/Ninitsrange

When a new node joins or leaves the overlay, ' gg,g:fror IN)
objects move between nodes node 67
! o[72 Closest
87, 8 node
86 1y clockwise
2|72 fo
3l 86 67+2i mod
100
4] 86
501
72 32 csew 45
o7 6|32

Chord Node Insertion

One protocol addition: each node knowsiits closest counter-clockwise
neighbor

A node selectsits unique (pseudo-random) 1D and uses a bootstrapping
processto find some node in the Chord

Using Chord, the node identifies its successor in the clockwise
direction

An newly inserted node' s predecessor is its successor’s former
predecessor 82— 1

Example: Insert 82
pred(86)-72 86

Chord Node Insertion (cont’d)

« First: set added node s’ s fingers correctly
— s'spredecessor t doesthe lookup for each distance of 2 from's

Chord Node Insertion (cont’d)

« Next, update other nodes' fingers about
the entrance of s (when relevant). For
exchi: 1
— Locatethe closest node to s (counter-
clockwise) whose 2-finger can point to s: 86
largest possibleis s- 2 82 [4

i | Finger — Use Chord to go (clockwise) to largest
table for nodet beforeor at s- 2!
1 Lookups from node 72 node 82 * routetos- 2, if arrived at alarger
Lookup(83) = 86 —> [0| 86 node, select its predecessor ast
87 8 — If t's2-finger routes to anode larger than 7
86 Lookup(84) = 86 ——> | 1|86 s] 2+ finger=¥6 67 23-finger=67|
82 Lookup(86) = 86 ———> [2| 86 « changet's 2-finger to s 82 25 finger=¥
Lookup(90)=1 —— |31 . s.at:predecm)f of t and repeat 82
— Elsei++, repeat from top
Lookup(98) = 1 41 « O(log?N) time to find and update nodes eg., fori=3
32 Lookup(14) =32 — |5 32
72 67 Lookup(46) = 67 6| 67 CS640 48

Chord Node Deletion

« Similar process can perform deletion 87

86

™

. 32
23’ﬁnger:)(272 67 23-finger=67
86 23-finger=32
86

eg., fori=3

CS640 49

