Lecture 24 (April 22, 2004)

Outline

Network Security

CS 640

Why do we care about Security?

- "Toto... I have a feeling we're not in Kansas anymore." Dorothy, The Wizard of Oz
- "The art of war teaches us to rely not on the likelihood of the enemy's not coming, but on our own readiness to receive him; not on the chance of his not attacking, but rather on the fact that we have made our position unassailable." *The Art of War*, Sun Tzu
- There are bad guys out there who can easily take advantage of you.
- Reference: Cryptography and Network Security, Principles and Practice, William Stallings, Prentice Hall

CS 640

Overview

- Security services in networks
 - Privacy: preventing unauthorized release of information

 - Authentication: verifying identity of the remote participant Integrity: making sure message has not been altered
 - Non-repudiation: Recipient can prove who the sender of a message was Security

- Cryptography functions building blocks for security

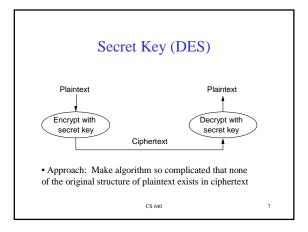
 - Privacy/Authentication
 Secret key (e.g., Data Encryption Standard (DES))
 - Public key (e.g., Rivest, Shamir and Adleman (RSA))
 - - Message digest/hash (e.g., Message Digest version 5 (MD5))
 CS 640

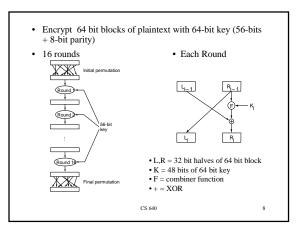
Issues in Security

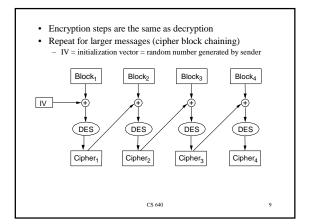
- · Threat models
 - How are bad guys trying to do bad things to you?
- · Key distribution
 - How do folks get their keys?
- · Implementation and verification
 - How can we be sure systems are secure?

CS 640

Crypto 101

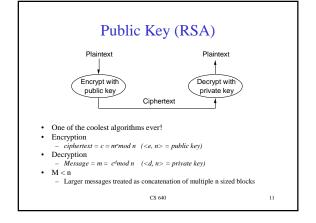

- Cryptographic algorithms determine how to generate encoded text (ciphertext) from plaintext using keys (string
 - Can only be decrypted by key holders
- Algorithms
 - Published and stable
 - Keys must be kept secret
 - Keys cannot be deduced
 - Large keys make breaking code VERY hard
 - Computational efficiency


CS 640


Basic Crypto Systems

- Symmetric Key (or Secret Key)
 - Example: DES
 - Same key for encryption and decryption
- Public Key
 - Example: RSA
 - Private key (known only to the principal), public key is publicly known
- · Message digests
 - Example: MD5

CS 640



Establishing Secret Key Diffie Hellman Key establishment protocol p is a prime, g is the generator for p A chooses a random number a B chooses a random number b

B sends to A: g b mod p
Secret key is: g ab mod p

• A sends to B: g a mod p

CS 640 10

RSA contd.

- Choose two large prime numbers p and q (each 256 bits)
- Multiply p and q together to get n
- Choose the encryption key e, such that e and $(p-1) \times (q-1)$ are relatively prime.
- Two numbers are relatively prime if they have no common factor greater than one
- Compute decryption key d such that

 $d = e^{-1} mod ((p-1) \times (q-1))$

- Construct public key as (e, n)
- Construct public key as (d, n)
- Discard (do not disclose) original primes p and q

CS 640 12

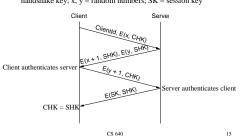
RSA contd.

- · See example in book for applying RSA
 - Many others as well
- Remember always encrypt with public key and decrypt with private key
- · Security based on premise that factoring is hard
 - The bigger the key the harder it is to factor
 - The bigger the key is more computationally expensive it is to encrypt/decrypt

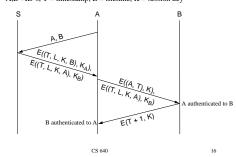
CS 640 13

Message Digest

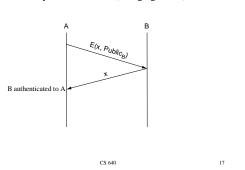
- · Cryptographic checksum
 - a fixed length sequence of bits which is used to protect the receiver from accidental changes to the message; a cryptographic checksum protects the receiver from malicious changes to the message.
- · One-way function
 - given a cryptographic checksum for a message, it is virtually impossible to figure out what message produced that checksum; it is not computationally feasible to find two messages that hash to the same cryptographic checksum.


• Relevance

if you are given a checksum for a message and you are able to compute exactly the same checksum for that message, then it is highly likely this message produced the checksum you were given.


CS 640

Authentication Protocols


- Three-way handshake (uses secret key eg. password)
 - E(m,k) = encrypt message m with key k; C/SHK = client/serverhandshake key; x, y = random numbers; SK = session key

- Trusted third party (Kerberos)
 - A and B share secret keys (K_A, K_B) with trusted third party S
 A,B = ID's; T = timestamp; L = lifetime, K = session key

• Public key authentication (using eg. RSA)

Message Integrity Protocols

- · Digital signature using RSA
 - special case of a message integrity where the code can only have been generated by one participant compute signature with private key and verify with public key

- Keyed MD5 (uses MD5 and RSA)

 sender: m + MD5(m + k) + E(k, private) where k = random number
- - recovers random key using the sender's public key
 applies MD5 to the concatenation of this random key message
- MD5 with RSA signature
 sender: m + E(MD5(m), private)
 - - decrypts signature with sender's public key
 compares result with MD5 checksum sent with message

CS 640 18

Key Distribution − a first step

- How can we be sure a key belongs to the entity that purports to own it?
- Solution = certificates
 - special type of digitally signed document:
 - "I certify that the public key in this document belongs to the entity named in this document, signed X."
 - X is the name of the entity doing the certification

 - Only useful to the entity which knows the public key for X
 Certificates themselves do not solve key distribution problem but they are a first step
- Certified Authority (CA)
 - administrative entity that issues certificates
 - useful only to someone that already holds the CA's public key.

CS 640 19

Key Distribution (cont)

- · Chain of Trust
 - if X certifies that a certain public key belongs to Y, and Y certifies that another public key belongs to Z, then there exists a chain of certificates from X to Z
 - someone that wants to verify Z's public key has to know X's public key and follow the chain
 - X.509 is a standard for certificates
- Certificate Revocation List
 - Means for removing certificates
 - Periodically updated by CA

CS 640

20

Secure Email (PGP) K_A(MD5(m)) MD5(.) MD5(m) K_A(.) K_S(K_A(MD5(m))+ m) $K_B^+(K_S)$ M: Message K +: public key K : private key K_S: secret key Message from A to B CS 640 21