CrowdAtlas: Self-Updating Maps
for Cloud and Personal Use

Yin Wang
HP Labs, Palo Alto
yin.wang@hp.com

George Forman
HP Labs, Palo Alto
george.forman@hp.com

ABSTRACT

The inaccuracy of manually created digital road maps is a
persistent problem, despite their high economic value. We
present CrowdAtlas, which automates map update based on
people’s travels, either individually or crowdsourced. Its mo-
bile navigation app detects significant portions of GPS traces
that do not conform to the existing map, as determined
by state-of-the-art Viterbi map matching. When there is
sufficient evidence collected, map inference algorithms can
automatically update the map. The CrowdAtlas server
aggregates exceptional traces from users with the navigation
app as well as from other, large-scale data sources. From
these it automatically generates high quality map updates,
which can be propagated to its navigation app and other
interested applications. Using CrowdAtlas app, we mapped
out a 4.5 km? street block in Shanghai in less than half an
hour and built a walking/cycling map of the SJTU campus.
Using taxi traces collected from Beijing, we contributed
61 km of missing roads to OpenStreetMap, the first set of
completely computer-generated roads for this large, open-
source map community.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed applications;
H.2.8 [Database Management|: Database Applications—
Data mining; Spatial databases and GIS; H.4 [Information
Systems Applications]: Miscellaneous; 1.5.4 [Pattern
Recognition]: Applications
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1. INTRODUCTION

Year 2012 marks the 500th anniversary of cartographer
Gerardus Mercator’s birth, who introduced the term “atlas”
for maps and invented the Mercator projection widely used
today. Nautical charts and terrain maps have long been
precisely plotted with modern cartography technologies.
However, digital road maps remain surprisingly inaccu-
rate and incomplete. Both keynote talks of the recent
ACM GIS conference mentioned persistent map accuracy
problems with Google, Apple, etc., and emphasized auto
map correction as one of the top open problems [35, 39].
Since people increasingly rely on navigation using smart
phones for everyday activities, inaccurate maps can have
substantial economic consequences, as evidenced by the
recent i0S map incident [19]. A British insurance survey
found 26% of drivers had been directed by their GPS to
go through no-entry signs or prohibited areas [33], and the
news periodically reports car accidents caused by or related
to digital maps [29, 52, 54].

The U.S. maps of Google, Waze, and OpenStreetMap all
stem from the TIGER products of the U.S. Census Bureau,
which have various quality issues such as road disconnections
and misalignments [1, 36, 56]. In addition to correcting
existing maps, updating them promptly and consistently can
be more challenging. TomTom estimates that up to 15% of
roads change each year in some way [5]. The map situation
is worse in developing countries where there is more new
construction and roads more often degrade beyond use. We
show later that commercial maps of central Shanghai have
missing roads and incorrect road types. While inaccurate
maps rarely create problems for daily commuting, they
cause plenty of frustration for travelers in unfamiliar areas,
especially in foreign countries because of the additional
language barrier.

In addition to heavy demand for updating road maps,
there are also growing needs for additional types of maps
for non-motorist traffic. Fueled by the green transportation
movement, many cities are ramping up the rate of bike
path development [25]. Unfortunately, most cycling maps
rely on crowdsourcing and are far from complete [22]. In
addition, personalized maps are increasingly popular. There
are many applications and online services that customize
maps to include personal points of interest. Customized
road networks can help navigate private or personal routes
not on existing maps, e.g., off-road driving or cycling, and
backcountry hiking or skiing.



Existing commercial and public maps are created manu-
ally, which is costly, error-prone, and cannot keep up with
the aggregate rate of change. For example, NAVTEQ (now
Nokia) employs more than 7,000 employees worldwide in
its Location Content team to update its maps [2]. Google,
TomTom, and Waze also encourage users to submit map
edits online, pending manual review by their teams of
content editors. The largest crowdsourced mapping project
is OpenStreetMap (OSM), which has more than 600,000
registered contributors. However, due to the skills and effort
needed for map creation, user-contributed maps on OSM are
limited in detail, freshness and accuracy. For example, its
street-level maps in China are currently limited to a few
tourist locations and have various quality issues, as we will
illustrate. There is no automated map update system.

Automated road inference using GPS probes has gained
much attention recently [12,15,17,20,23,32], partly because
large-scale GPS traces are increasingly abundant from sys-
tems that track user locations, such as fleet management,
telematics systems, and online navigation apps [9,10,37,55].
Most existing map inference methods rely on low-noise,
densely-sampled, and uniformly distributed GPS traces.
With high-noise, sparsely-sampled, and highly-disparate
data, calculating road geometry, inferring road connectivity,
and gaining high map coverage all become very challenging.
A few recent studies try to address some of the challenges
but not all of them simultaneously [12,32]. In addition,
tunnels, plane-separated roads, and road metadata cannot
be inferred from longitude/latitude data alone. By contrast,
completing and updating a reasonably accurate base map
is much more practical than generating a new map from
scratch. For example, some work has demonstrated refining
the road geometry in a base map using densely sampled GPS
traces [44,45].

Leveraging the latest GPS map inferencing techniques,
we built CrowdAtlas, a system that automatically and
continuously rectifies existing maps using data collected
from mobile probes. CrowdAtlas employs a Hidden Markov
Model (HMM)-based map matching algorithm [40,56] to de-
tect the discrepancies between GPS samples and roads, and
applies a clustering-based map inferencing algorithm [32]
to the discrepant traces to update maps. CrowdAtlas
can utilize large-scale GPS data from existing location
tracking systems and provide reciprocal benefits back to
such systems. We also built CrowdAtlas app, a map-
inaccuracy-aware navigation app, for users without access
to these systems or even without internet connection, and
for users who want to create and use customized maps.

We make the following contributions.

e An automatic map update system that consists of a
server and/or a navigation app. The server attains
coverage and accuracy by leveraging large-scale, noisy
GPS streams from existing location-tracking systems.
The app can add new roads in a standalone mode.

e The novel combination of map inference with naviga-
tion map matching for practical, highly-accurate, and
real-time map update, including heavy customization
of our prior state-of-the-art map inference and map
matching algorithms.

e Implementation and evaluation of CrowdAtlas, com-
pleting roads in a 4.5 km? street block in the Shanghai
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Figure 1: CrowdAtlas architecture

Pudong district, creating a cycling/walking campus
map of Shanghai Jiao Tong University, and contribut-
ing 61 km of roads for the Beijing map on OSM.
The latter is based on 8 days of GPS data from 70
taxis, obtained from a fleet management system. To
the best of our knowledge, this is the first set of
computer-generated roads uploaded to OSM. We make
our datasets available for public use [1].

Section 2 gives an architectural description of Crowd-
Atlas. Sections 3 and 4 describe the algorithms for map
matching and map updates, respectively, and Section 5 gives
implementation details. Section 6 contains evaluations for
standalone and server updates. Section 7 discusses related
work, and Section 8 concludes.

2. OVERVIEW

We discuss the CrowdAtlas server and its mobile naviga-
tion app in turn.
2.1 CrowdAtlas Service

Figure la shows the overall system. At a high level,
CrowdAtlas consumes GPS streams from various sources



and offers map services with real-time updates. The
idea is like crowdsourcing; however, compared with other
crowdsourced map services, updates can be automated
without requiring skilled users or user attention. Because of
this automation, it can also leverage a variety of large-scale
GPS trace sources from existing services or applications
that do location tracking, e.g., fleet management systems
for service or delivery [13,55], live traffic estimation such as
by TomTom or Garmin, and online navigation such as by
Apple or Google maps.

CrowdAtlas consists of a series of stream processing tasks.
First, the GPS traces go through a map matching procedure
using the current map data. This is a common procedure
used in location tracking and navigation, which matches a
series of GPS coordinates to the most likely passable route
on the given map. We customized a reliable map matching
algorithm [40,56] so it can recognize map inaccuracy during
the matching process, and thereby we separate matched
and unmatched trace segments. Map matching is the
most time-consuming step. Fortunately, it can be run
independently for different traces. CrowdAtlas parallelizes
map matching using multithreading for city- or state-scale
map update, or distributed computing for global-scale map
update. After map matching, CrowdAtlas infers new roads
from unmatched segments, using a streaming variant of our
prior map inference algorithm [32]. We also extend this
algorithm to infer other missing map features, including
intersections, new turn possibilities, and one-way road
directions and corrections. In addition to inferring new map
features, CrowdAtlas uses the matched segments to refine
road geometry and to detect road closures and reopenings.
The scalable and reliable map matcher also enables other
GPS-based analysis tasks, such as traffic monitoring [27,59]
and incident detection [49]. For example, each GPS sample
typically includes the travel speed measurement, or we can
estimate it from the time interval and the map matched path
between consecutive samples. The median speed of samples
matched to a road segment is the current travel speed of
the road. While CrowdAtlas can provide these additional
information services to users, we focus on inference of
missing roads in this paper, which is the most challenging
task among all updates CrowdAtlas provides.

Figure 2 illustrates the overall stream processing flow for
new road inference on the server. Figure 2a shows 8 days of
data from 70 taxis in Beijing, with a sampling interval of 10
seconds. This area has few high-rise buildings, but noise still
exists. After map matching, Figure 2b shows unmatched
sub-traces (red) with a few matched samples (black) before
and after. (The short green line segments in the figure
connect matched samples to their road locations.) The
unmatched sub-traces are then aggregated with a stream
clustering algorithm. Once a cluster exceeds a support
threshold, CrowdAtlas invokes a polygonal principal curve
algorithm [31] to extract the road centerline from the cluster.
With one week of data and a threshold of four sub-traces,
there are three clusters in the area, shown with distinct
colors in Figure 2c, and their three inferred roads are shown
in Figure 2d, overlaid on a Bing aerial image. Judging
from the image, these line segments are well aligned with
the centerlines of the actual roads. The server can infer
other missing roads in the area as more unmatched GPS
traces accumulate over time. One could lower the support
threshold to achieve greater recall of missing roads, but this
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Figure 2: Stream processing flow on CrowdAtlas server




increases the possibility of inferring roads from noise and
leads to greater position error.

2.2 CrowdAtlas App

CrowdAtlas can leverage existing GPS data from location
tracking systems and services. In addition, we built our own
navigation app that can either upload GPS traces to the
server and receive aggregated map updates, or else update
in-device maps based on personal travel habits using our
software in a standalone mode. The app has several key
benefits over other navigation apps or services that could
use CrowdAtlas as a map provider. First, it can build
personalized maps for an individual, e.g., trail, cycling,
or off-road driving maps. Second, its navigation is aware
of map-inaccuracy and is optimized for the purpose of
map update. It dynamically adjusts the sampling rate
transmitted to the server to reduce the data volume for
known roads, while providing dense sampling for unmatched
traces. Communication cost is of great economic concern
to location tracking systems, and many use low sampling
rates for this reason [55], which impair map update effi-
ciency and accuracy. Using CrowdAtlas app guarantees
high-quality map updates while incurring negligible extra
communication—proportional to the number of missing
roads on the map, not the size of the fleet. This provides
dense sampling only where the server needs it, which is
far better for map update than sending all traces at a
uniformly low sampling rate. The user can also opt to send
only unmatched segments to the server, reducing privacy
exposure somewhat but losing the opportunity to correct
existing roads. Standalone operation further avoids data
upload and internet connection altogether.

Figure 1b shows the architecture of the navigation app.
From the user’s perspective, it can be viewed as a naviga-
tion system integrated with a mini CrowdAtlas server for
standalone use. It has an interactive mode of operation to
enable users to map out an area or a road system themselves.
The clustering step is omitted, so that one need not retrace
a road multiple times to generate sufficient data. Instead,
it fits a road right away after detecting an unmatched sub-
trace and asks for user confirmation. Standalone updates
can only add new roads and other map features; it would
be risky to reposition roads based on a single user’s trace.
Updating known roads is only enabled on the server, as it
should require evidence from multiple users to justify.

3. MAP MATCHING

We first introduce the basics of the Viterbi map match-
ing algorithm and then discuss our customization for the
purpose of map update.

3.1 Background

Almost all map matching algorithms consist of two steps:
i) finding a set of candidate road match locations within
the error radius of a sample, and ii) selecting a sequence
of candidates to form the matched path maximizing some
criterion. Various algorithms differ in the second step on
the selection criteria, which can be largely divided into
two groups: incremental methods [38, 53, 57|, where the
algorithm picks the current best candidate based on previous
observations only, and global methods [34, 40, 51], where
the algorithm picks a whole sequence at once, typically
using Viterbi dynamic programming. In general, real-time
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Figure 3: Map matching illustration

(online) map matching requires incremental algorithms,
while global algorithms are more accurate for offline map
matching.

Figure 3 shows an example. GPS samples zp, z1, and
22 have candidate sets {z0, 20}, {x9, 21}, and {z3} in their
error circles, respectively. Upon observing zi, the most likely
drive path is ABD since they are closest to the samples.
However, after observing z2, the most likely path should be
ABC.

In our prior comparative study [56], global algorithms
based on Hidden Markov Models (HMM) are the most
accurate for offline map matching. In particular, the
best performers are the HMMs whose transition probability
incorporates the length of the shortest path between two
consecutive candidates [34,40]. These models are especially
robust against long sampling intervals, even up to a minute
between samples.

The CrowdAtlas server requires only offline map match-
ing. We use the HMM-based Viterbi dynamic programming
algorithm described in [56], which improves upon [40] and
is the most accurate in our prior comparative study. In
a nutshell, taking a sequence of GPS samples as input,
the Viterbi algorithm calculates the probabilities for all
candidate matches of each sample in a forward loop. Next,
starting from the candidate with the maximum probability
of the last sample, a backward loop recovers the most
likely path taken by the host generating the GPS sequence.
CrowdAtlas server breaks incoming GPS streams by time
windows and matches the streams section by section. By
contrast, the CrowdAtlas navigation app requires real-time
map matching. In this case, we simply let Viterbi output the
candidate match with the highest probability immediately
during the forward loop. The result is identical to a Bayes
filter applied to the same HMM formulation. Map matching
using a Bayes filter applied to a different HMM formulation
has been proposed previously [38]. After a mismatch
between the map and the GPS is detected, as discussed
in the next subsection, the CrowdAtlas app invokes the
backward loop of the Viterbi algorithm to more accurately
recover the unmatched segment. For this purpose, it keeps a
window of previous observations in case it needs to go back
for a mismatch.

3.2 Extracting Unmatched Segments

The HMM-based map matching algorithm discussed in
the previous subsection can detect two types of mismatches
between GPS traces and road maps. Type I mismatch
is when a sample’s error radius does not intersect any
road. Type II mismatch is when two consecutive matches
are disconnected on the existing map or the shortest path
between them is too long to be traversed by the host within
the sampling interval. In CrowdAtlas we set the maximum



travel speed to 180 km /h; therefore, any consecutive samples
matched to locations beyond 50¢ meters from each other are
considered a mismatch, where ¢ is the sampling interval.

GPS signals are inherently noisy. In addition, roads vary
in width, and maps can be misaligned. Ideally, we want
to match GPS samples to the right roads even in these
cases, but not miss any unmatched segments. To achieve
these two opposing goals, we develop a novel technique of
applying different error radius thresholds to matched and
unmatched segments. The error radius for candidate search
in the map matching algorithm is 50 m, which doubles the
maximum error in a Seattle dataset [56] and is used by
other map matching algorithms [40]. On the other hand,
when mismatches are detected, we extend the mismatched
segment both ways in a postprocessing step until the samples
are within 15 m of roads, a threshold needed to cover road
width based on our visual inspection as well as empirical
evaluation in Section 6.

Applying different error radii to matched and unmatched
segments separately, CrowdAtlas can accurately differenti-
ate new roads from noise. On one hand, noisy GPS samples
within 50 m of the road are always matched, which well
covers Gaussian GPS noise and map misalignment problems.
On the other hand, a new road is not missed as long as a
section of it is more than 50 m away from existing roads
(because GPS samples generated from that section are Type
I mismatches, and we extend them to cover the rest of the
new road until within 15 m of the connecting roads). Even if
the entire new road is within 50 m of existing roads, there is
often a Type II mismatch detected, because connecting the
start and end locations using existing roads would be very
circuitous.

In our experimental study, CrowdAtlas never missed any
new road traveled by the probe, but there are outlier samples
and traces well beyond 50 m to the path taken, e.g., the
long line segments in Figure 2a. Compared to normal GPS
noise or noise due to misaligned maps, these outliers are very
sparse and never formed a cluster.

3.3 Map Matching in the CrowdAtlas App

As discussed in Section 3.1, CrowdAtlas app employs the
same Viterbi algorithm for map matching and unmatched
segment extraction, but it also outputs the most likely
candidate immediately after each observation for navigation.

Another important feature we implement in CrowdAtlas
app is dynamic sampling, which applies a high sampling
rate to unmatched segments and a low sampling rate to
matched ones. Without sacrificing map update efficiency
and accuracy, dynamic rates significantly reduce the data
communicated over the network, saving both energy and
communication fees. The latter is a crucial concern for
many location tracking services, which typically sample at
one minute or longer just to save cost [55]. The extra cost
CrowdAtlas incurs is proportional to the number of new
roads generated (modulo noisy samples) and is not affected
by fleet size or drive distance if server updates propagate
frequently.

We apply dynamic rates only to the data transmitted to
the CrowdAtlas server. For the purpose of navigation, low
sampling rates would degrade the user experience and would
not save energy since existing mobile phones do not turn
off their GPS units for short duty cycles [42,51]. However,
many people use smart phones for navigation already. In

this case, the additional power needed is for new road
inference in standalone mode or data transmission in server
mode. The former is negligible since the inference typically
takes less than half a second. The latter is also immaterial
because dynamic sampling significantly reduces the data to
be transmitted, eliminating the bulk of the points on existing
roads.

Most GPS-equipped phones provide the accuracy estimate
of the sample, e.g., getAccuracy() in Android returns
the standard deviation of the GPS measurement in the
current location, assuming Gaussian noise. We use this
information to better adjust the error radius dynamically.
More specifically, instead of using two fixed error radii as in
the server, our app sets the radius to be twice the standard
deviation returned by getAccuracy(), with a lower bound
of 15 m to cover road width, the same used in the server. If
twice of the standard deviation is beyond 50 m, we simply
discard the sample since it is likely noise. This dynamic
error radius feature is crucial for detecting walking/cycling
trails, which often closely parallel drive roads.

4. MAP UPDATE

We describe new road inference, other map updates, and
challenges and limitations of CrowdAtlas.

4.1 New Road Inference

CrowdAtlas infers new roads using our prior clustering-
based map inference algorithm, which has been shown
to achieve good road coverage even for noisy and sparse
data [32]. In this algorithm, each cluster contains line
segments of consecutive samples that are likely generated
from one road, judged by their location proximity and
direction similarity. The road centerline is extracted from
each cluster using B-spline fitting. We customize this
algorithm for the goal of map update rather than new map
inference, described below.

Trace clustering: In CrowdAtlas, the element in each
cluster is an entire unmatched segment, i.e., a sequence
of unmatched samples, rather than a line segment of a
consecutive pair. The distance between two unmatched
segments is the Hausdorff distance of the two trajectories,
i.e., the longest distance between a sample of one segment
and the trajectory of the other. Clustering whole un-
matched segments filters out noise effectively, since multiple
traces have to follow the same trajectory to form clusters,
which does not happen for erratic, noisy samples. In
our prior work, as well as other popular Kernel Density
Estimation (KDE) based approaches, portions of noisy
traces sometimes locate together and lead to false positive
roads [12,32]. Hausdorff distance considers only the longest
distance between two traces, which is rather aggressive in
noise filtering. A softer distance measurement that considers
percentile or probability may include traces with a few
noisy samples in the cluster, in which case we would need
more robust centerline fitting algorithms. This is a typical
tradeoff between road coverage and precision. We prefer
the latter for the purpose of automated road update. We
apply a streaming variant of the single linkage clustering
algorithm [48]. Each newly extracted unmatched segment is
compared with existing segments to calculate the Hausdorff
distance. For those segments within a distance threshold
to the new one, their respective clusters are merged and
augmented with the new segment.



Centerline fitting: CrowdAtlas fits a road to a cluster
once its number of traces exceeds a support threshold. We
apply a polygonal principal curve algorithm to fit the set
of samples in the cluster [31], which generates a polyline
to minimize its mean square error to the samples. In
our experiments using real taxi traces from Beijing, this
algorithm is more accurate and more compatible with
existing maps than alternative methods such as B-spline
fitting [45] and KDE [12, 20]. B-spline fitting models
roads by smooth polynomial functions, which is often
overly smooth for straight roads or sharp turns. Even for
curved freeways, B-spline fitting is overkill since almost all
digital maps approximate curves by polygonal lines, and
CrowdAtlas must be compatible with these maps in order
to update them. KDE is good at approximating road
centerlines from samples with Gaussian noise. However,
it requires sufficient samples evenly distributed over the
road, which requires substantially more data for the same
degree of road coverage [32]. After polyline fitting, we
apply the Douglas-Peucker algorithm [21] that is widely
used in cartographic generalization and other map inference
work [12] to remove unnecessary intermediate nodes.

Connection: After fitting a centerline to a cluster, the
connectivity between the new road and existing ones is
determined by the matched samples immediately before and
after the unmatched segments in the cluster. These samples
indicate which roads the new road connects to, called anchor
roads, but not the exact intersection location unless the
sampling rate is sufficiently high, e.g., 1 Hz. Instead of
using the matched locations of these samples, we find the
intersection via a set of rules. First, if there is already an
intersection near the end node of the new road, CrowdAtlas
connects the new road to this existing intersection. If there
is no intersection nearby, CrowdAtlas extends the last line
segment of the new road until it intersects with the nearest
anchor road. We use the nearest anchor road because there
can be multiple anchor roads at low sampling rates, e.g.,
the trace completely skips a short road after the unmatched
segment. However, it is also common that a new road
connects to a major road represented by two one-way roads
of opposite directions on map. Therefore, if there is an
anchor road parallel to the nearest one, CrowdAtlas further
extends the last line segment to intersect the parallel road
of opposite direction.

Iteration: Once a new road is generated and added to the
map, future GPS traces following the road will be matched
and no new unmatched segment will be extracted. However,
existing unmatched segments in other clusters may partially
overlap with the new road. We rematch and re-cluster these
segments for iteratively more road inference. Figure 4 shows
an example, where a whole block of roads is missing from
OSM in an urban canyon area. The cluster corresponding to
Road 1 first exceeds the support threshold of three and the
road is added. Unmatched segments overlapping Road 1 are
rematched and re-clustered. Road 2 is generated next. Upon
its inference, Road 3 is immediately added after rematching
and re-clustering because it exceeds the threshold. The
unmatched segments corresponding to Road 3 did not form
a single cluster earlier because they do not follow the same
road beyond Road 3. Road 4 is added next. The rest of
the unmatched segments do not form clusters of sufficient
support because they do not fully overlap or are too noisy
to be within the Hausdorff distance to another trace, which

Figure 4: Iteratively inferring a block of missing roads

we set to 20 m based on our empirical study. All missing
roads in the block will be added eventually with more data.

Road attributes: CrowdAtlas infers the directionality of
the new road by checking whether all unmatched segments
of the cluster follow the same direction. It infers the type of
the road (e.g., freeway, primary, or residential) by comparing
the speed profile and traffic frequency of the new road with
those of the existing roads, and picks the most similar type.
The number of lanes could be inferred from GPS traces
as well [18]. Finally, there are computer vision techniques
that could extract road names and traffic signs from street
views [36], which could complement CrowdAtlas to produce
fully-fledged digital maps.

Standalone mode: CrowdAtlas app follows a similar
procedure to infer new roads in its standalone mode.
However, instead of aggregating multiple GPS traces for
high confidence, this app adds each new road immediately,
given user confirmation. The road type (e.g., driveway,
cycling way, or footpath) is determined by the travel mode
set by the user in the app. There are techniques that
infer road types in more comprehensive ways [61], which
CrowdAtlas could exploit.

4.2 Other Map Updates

In addition to new roads, CrowdAtlas infers other miss-
ing map features from unmatched segments. Even in
commercial-grade maps, missing intersections are quite
common [56]; i.e., the map data fails to connect two roads
with a connecting node, preventing navigation aids from
considering any route from one to the other. These errors
are not visually detectable on the rendered raster map if
the roads overlap or come extremely close. Fortunately,
CrowdAtlas reliably detects missing intersections as Type
II mismatches in its map matching process. When the
number of such mismatches between two close roads exceeds
a threshold, CrowdAtlas connects them at the corresponding
location, typically using the existing intersecting point of
the two road polylines. Similarly, new turn possibilities
of an existing intersection can be inferred. Incorrectly
marked one-way roads also incur Type II mismatches. If
the inferred road does not overlap with an existing one-
way road—indicating that the two opposite ways are well
separated as typical of major roads—then we add the



inferred road. Otherwise we simply change the one-way
mark of the existing road to two-way.

In order to update the geometry of existing roads, Crowd-
Atlas keeps for each a limited buffer of recently matched
traces. Periodically (e.g. daily), if the buffer has enough
newly accumulated traces and the median signed offset from
the road centerline exceeds a threshold, a revised geometry
is generated by the same centerline fitting algorithm as for
new road inference. Whether to refine an existing road or
to generate a new road is determined by the error radius in
map matching, discussed in Section 3.2. A road constantly
within the radius to the correct location is refined, otherwise
a new road is generated.

A closure of a road segment between intersections is
detected by a surprising lack of newly matched traces. Each
segment establishes an appropriate timeout proportionate
(3x) to the maximum time between vehicles in a training
window. No timeout is set for a segment until it has
accumulated at least a week of data and at least five traces.
Thus, most residential roads have no timeout established. A
reopening event is detected by a matched trace arriving for
a road segment believed closed.

Merging new roads generated by both standalone opera-
tion and the server could result in near-duplicates. To avoid
this, CrowdAtlas app employs the iterative rematching and
fitting process used by the server. Roads created in the app
save the original unmatched trace that generated the road;
later these are matched against the updated map from the
server. Standalone updates can be removed or updated if
these traces fully or partially match in the new map.

4.3 Challenges and Limitations

Inferring new roads in an existing map is significantly
easier than building from an empty map, since we only need
to focus on unmatched trace segments, which are relatively
short and easy to locate. However, CrowdAtlas still faces
several challenges and limitations. First, the base map
must have a reasonably accurate skeleton of arterial roads.
Without a base map or if the base map is too sketchy,
unmatched segments become lengthy, and it takes a long
time for them to form clusters with sufficient support. These
clusters tend to cross multiple roads in a real map, which
reduces readability. Road 2 in Figure 4 is an example; it
would likely be covered by three different roads in a manually
created map.

In the introduction, we listed tunnels and plane separated
roads as inherent limitations for map inference using only
latitude and longitude. Hopefully these road features are
already covered in the base map, since they are typically on
major roads. In practice, accurate maps of arterial roads are
relatively easy to obtain. For example, in OSM, developed
countries are relatively well covered by public or out-of-
copyright data, and a commercial donation from Automotive
Navigation Data covers major truck roads in China and
India.

Another major challenge for GPS-based map inference is
user-friendly map presentation. Road names and address
numbers cannot be added automatically. A more serious
problem is whether to represent a major road by one two-
way polyline or two one-way polylines in the map data.
Four or more separate polylines are common for parallel
expressways and freeways. Existing map inference work
always makes a single representation choice for all roads.
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(b) A double-polyline major road with both wrong direction
marks and missing segments on OSM

Figure 5: Double-polyline roads are a challenge

However, map updates must be compatible with existing
manually created maps, which commonly contain different
choices in different places. Figure 5a shows an example
where CrowdAtlas correctly inferred a missing segment in
one direction of a divided freeway. Figure 5b, however,
is a difficult case because it is missing a segment in one
direction, the direction mark of the other is backwards, and
the two opposite ways are much closer. Without both high-
precision and high-frequency data CrowdAtlas may connect
the inferred eastbound missing segment to the existing upper
polyline since it is consistent in direction, and it is closer
than the lower road stub. Fortunately, direction errors
of arterial roads are rare and easy to detect because they
quickly incur many unmatched traces. Figure 5b is the
only error of this type we found on the Beijing OSM map.
Using CrowdAtlas app for trace collection can also solve the
problem with its dynamic error radius feature, discussed in
Section 3.3, which can emit unmatched segments covering
the whole missing eastbound segment like Figure 5a, under
normal GPS measurement conditions (small error radius).

S. IMPLEMENTATION

We implemented CrowdAtlas and its app in Java. Our
implementation leverages many open source tools. We use
OSM and its tool suite for the base map and its relevant
read/write, database import/export operations. We also
use JMapView, a GUI of OSM, to visualize and verify the
results, as well as capture the screenshots in this paper.
Our road fitting algorithm leverages the implementation of
the polygonal principal curve algorithm by permission of
its author [31]. Our software development focused on the
algorithms, described in Sections 3 and 4, and scalability,
described below.

Map matching is the bottleneck of CrowdAtlas, because
it involves the Viterbi dynamic programming algorithm
with a complexity of O(nm?), where n is the number of
observations and m is the number of states of the HMM.
This algorithm further invokes the costly shortest-path
calculation for each match candidate of each sample. We
have heavily optimized our implementation in our prior
work [56], and it is one of the best performers in the
2012 GIS Cup competition for both speed and accuracy [7].
Nevertheless, it is still orders of magnitude slower than the
other processing steps of CrowdAtlas. Furthermore, map
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Figure 6: Screenshots of CrowdAtlas app: 1) OsmAnd map missing roads in an area of Shanghai Pudong (plus unmatched
GPS track overlaid); ii) user confirmation after traversing the new road (cyan, new red dots are shown as the user continues
on another missing road); iii) map after generating multiple roads, plus navigation path (dark blue) showing the use of these
new roads; iv) building a walking/cycling map of SJTU campus, where the lower left icon indicates the transportation mode.

matching must scale as more GPS data becomes available,
while the other tasks only need to scale with the map, which
is relatively stable.

Fortunately, map matching can be easily parallelized by
partitioning the input GPS streams using a spatial grid or
political boundaries. We implement both multithreaded and
distributed map matching for different scales of data. The
latter is based on Storm [4], a scalable distributed stream
processing platform. By contrast, only a single workstation
is needed for all the map update nodes in Figure la. Having
only a single map writer simplifies our implementation.

Each map matcher node caches the map in memory for
fast spatial indexing and shortest-path calculation. The
cache in map matcher can be slightly outdated because
of the delay between the inference of a new road and
its propagation back to map matcher through the map
database. Outdated caches may only produce extra un-
matched segments for already inferred roads. CrowdAtlas
uses the road version number in OSM to detect possibly
outdated unmatched segments, and rematches them using
the latest map in the new road inference node. When a new
road is inserted, the version numbers of its anchor roads
on both ends are incremented. An unmatched segment
is rematched if at least one of its anchor roads is not
current. This rematching step piggybacks on the existing
iterative fitting process of new road inference, discussed
in Section 4.1, which indexes new roads and unmatched
segments for fast computation.

CrowdAtlas does not store its input GPS streams in
persistent storage, and data loss is possible upon failure,
which includes both the input and intermediate results.
However, each node can always restart independently, and
the map updates will eventually occur as new evidence
builds up over time.

CrowdAtlas app is based on OsmAnd, an open source
navigation app for Android using OSM maps [3]. There
are many map editing tools available for OSM map for-
mats, allowing users to add road attributes and other
information.  Based on the dynamic sampling feature

discussed in Section 3.3, when the trace is matched to
the map, CrowdAtlas app samples sparsely and sends
each one to the server right away to facilitate real-time
applications such as traffic monitoring. This is similar to
many fleet management systems where the vehicle location
is transmitted periodically through SMS. On the other hand,
unmatched trace segments are densely sampled and buffered
until they again match to an existing road, triggering
batch transmission. Alternately, it could buffer all samples
and transmit only when a 3G connection is available. In
standalone mode, a popup window asks for user confirmation
when a new road is detected. We simply set a timeout for
the popup window, in which case the new road is discarded.

6. EVALUATION

We evaluate the standalone and server map updates of
CrowdAtlas separately.

6.1 Standalone Map Update

Figure 6 shows a series of screenshots from the Crowd Atlas
app. The first three were captured during an experiment in a
recently developed area of the Pudong district where a block
of roads are largely missing. We took a drive to complete
the map systematically. The first screenshot was captured
while driving a missing road. The second screenshot is
the confirmation pop-up after generating the road (cyan).
The third screenshot is the final result with all the roads
completed. We picked a pair of locations for navigation to
confirm that the roads generated are navigable, as shown
by the dark blue line. There are nine roads inferred in
total, with lengths ranging from 171 m to 1534 m. The
inference and map save time added together for each road
is between 110ms and 459ms, a minor delay for a smooth
user experience, and negligible extra energy consumption
for those who use navigation apps already. While waiting
for user confirmation, CrowdAtlas app continues to infer new
roads if there are more unmatched segments, as illustrated in
the second screenshot. Therefore, the user can drive around



Figure 7: Photo of the shortcut footway from the entrance
to the library in SJTU.

an area to map out missing roads and then confirm them in
a batch.

The whole process took only 27 minutes. In comparison,
other offline navigation apps or devices typically have an
annual map update cycle, and there is no guarantee you get
the update you want in your area. Google map in the area
has a few quality issues. Its satellite view is misaligned,
and one of the roads we generated is shown as only a road
stub. It was probably surveyed before construction was
complete. The Baidu map is more consistent with our result.
Interested readers can verify using the lat/lon provided in
the third screenshot.

In another experiment we aimed to build a cycling/walking
map for the campus of Shanghai Jiao Tong University. The
campus has an area of 3.2 km?, and it is gated to limit
motorist traffic. However, there is no cycling/walking map,
and almost every student has been asked for directions by
visitors numerous times. We mapped the campus on foot by
setting the travel mode to pedestrian in OsmAnd, indicated
by the icon in the lower left of the rightmost screenshot
of Figure 6. There is a large amount of work on automated
travel mode detection [43,61], which OsmAnd could leverage
to automatically change the travel mode. The screenshot
shows a small part of the campus, from its main entrance
(southern end) to the library (northern end). The OSM map
includes only the driveway connecting the entrance to the
library, which is a detour compared to the shortcut footway
used by most students, shown in Figure 7. The screenshot
shows this vertical shortcut, which saves walking time by
34%, as well as another four horizontal footways connecting
it to the vertical driveway on the right. CrowdAtlas app
inferred these roads correctly after we walked them. The
samples along all horizontal footways are within 50 m to
either the driveway or the shortcut inferred earlier. Without
the dynamic error radius feature, samples would have always
matched to either road and no new footway would be
detected. Comparing with commercial maps, Google map
is also missing these footways. While Baidu map contains
some of these footways, they are incorrectly marked as
driveways that can be used for vehicle navigation.

6.2 Server Map Update

Our evaluation of server map update uses taxi traces
collected from 70 taxis in Beijing for 8 days in December
2008, a total of 4,351,977 samples. The dataset was sampled
at 10 second intervals, which is relatively frequent and helps
in the verification of map matching results. We also sub-
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Figure 8: New road inference

sample the data to evaluate the performance of CrowdAtlas
under long-sampling-interval data. The standard deviation
of the Gaussian GPS noise is within 10 m under normal
conditions, but typical outliers exist, especially in urban
canyon areas, e.g. Figure 4 (detailed characteristics of
the dataset are available in [55]). We use the OSM map
of 10/31/2012 to evaluate our map update results, and
compare them with an earlier map and the latest map to
understand how the manually created OSM map evolves.
After map matching, only 37,355 unmatched samples
remain in 4,968 unmatched segments. Thus the CrowdAtlas
app could have reduced the amount of data communicated
to less than 1%. Figure 8 shows the new road inference
results. We verified our generated roads manually using
both Bing aerial images and Google maps (which agree
with each other in most cases except for two inferred roads,
which are consistent with the aerial image but still missing
from Google maps). Figure 8a shows that increasing the
support threshold can eliminate incorrectly inferred roads,
mostly due to noise or insufficient data, leading to errors
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Figure 9: New roads (red) inferred from unmatched trace segments (black) overlaid on the latest OSM base map

in road geometry. At the support threshold of three
(or four) traces, there are only six (or three) incorrectly
inferred roads, totaling less than 1 km in length in either
case; a support threshold of five or more eliminates false
positives altogether. Given our limited data volume, we also
considered even lower thresholds that would not be viable
in production. Using a threshold of two almost doubles
the length of roads inferred, albeit with more false roads.
Figure 8b shows that new roads increase linearly as time
progresses, which indicates that our dataset is not sufficient
to complete the whole city map. Finally, Figure 8c shows
that longer sampling intervals can reduce the number of
roads inferred and increase noise. Up to 30-second intervals
CrowdAtlas works reasonably well and the false roads can
be eliminated by slightly increasing the support threshold.
Beyond 30-seconds, the ratio between correct and incorrect
roads significantly decreases, because of the increasing errors
in map matching and trajectory-based clustering.

Figure 9 shows all unmatched segments and new roads
inferred in central Beijing using all eight days of data, with
a support threshold of three. There are a few urban canyon
pockets where unmatched traces are quite noisy, but the
clustering step finds the right traces to infer new roads.
The rest of the unmatched segments, especially further from
central Beijing, are indeed from missing roads but lack the
support to trigger the fitting process. In summary, the
inferred roads showed good accuracy as well as reasonable
coverage considering the volume of data, which naturally
would grow over time.

Note that the backdrop raster map in Figure 9 was
retrieved from OSM in early December, which includes

manual edits people had entered online after the date of
our map. We compared our inferred roads to these online
edits, noting that Beijing is one of the most actively updated
areas in OSM. Their map of 12/3/2012 with over a month
of additional edits includes 17 of our inferred roads, a total
length of 8.5 km—a modest subset of our ~71 km using
a small dataset. However, compared with an earlier map
of 5/8/2012, we find several correct roads that have since
been removed and not re-entered; each of these was correctly
inferred by CrowdAtlas. In general, manual edits are error-
prone and may not converge. There are also five inferred
roads that existed back in 2008 but are not in the latest map,
a total length of 1.8 km. But instead of being false positives,
we verified from dated satellite images by Google Earth that
most were actually detours used during construction. In
addition to new roads, CrowdAtlas detected 11 incorrectly
marked one-way roads, a total of 3.2 km. We have submitted
156 inferred roads not on the latest map to OSM (by userID
“CrowdAtlas”), a total length of 61 km.

Next we use the matched segments to refine road geom-
etry. Among all 25,555 roads in the map of 10/31/2012,
13,303 have no sample matched, partly because of the
limited data volume. There are also many roads for non-
motorist traffic only, and roads in rural areas of Beijing not
frequently visited by taxis. Finally, some of the roads are
constructed after 2008. For the rest of the matched roads,
we consider those visited by at least three different taxis,
with at least ten samples matched, and at least five samples
matched to locations more than 10 m apart from each other.
The last requirement ensures that samples are spread out for
correct centerline fitting. There are 6,568 roads satisfying
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these requirements, and Figure 10a is the histogram of the
median signed offset from the centerline. There are only 32
roads with the absolute median larger than 15 m. Our visual
inspection suggests that 15 m is a reasonable cutoff threshold
for well aligned roads. Within 15 m it is hard to judge which
is more accurate: the samples, the vector map, or the aerial
image. We manually inspected these 32 roads and found
19 of them are due to missing parallel roads or missing
connections between parallel roads. For example, if the
express freeway is included in the map without representing
the local freeway by separate polylines, samples generated
from local freeways are matched to express freeways, since
they are typically within our error radius of 50 m for
map matching. These samples would exhibit a significant
offset.  Using CrowdAtlas app for data collection can
solve the problem with its dynamic error radius feature,
which would extract the trace segment as unmatched rather
than matched under good GPS measurements. Another
8 roads are due to insufficient data such that the whole
matched sample set is dominated by noise, caused by high-
rise buildings or covers, e.g., elevated roads and airport
driveways. The remaining five roads are indeed misaligned;
three of them are due to earlier construction; one of them has
been manually corrected in the latest map of 12/03/2012.
The last one is shown on Figure 10b, where the vertical
road shown in white is clearly misaligned with both the
samples and the aerial image. Without CrowdAtlasit would
be very challenging to detect one misaligned road in a city-
scale map.

Finally, we examine the computation time and the scal-
ability of CrowdAtlas. Figure 1la shows the baseline
computation time of different tasks using a single core
on a dual Xeon E5 2650L 1.8G Hz workstation. We
used the full Beijing dataset, and the support threshold
for new road inference is again three. Map matching is
orders of magnitude slower than new road inference and
geometry refinement. New road inference takes much longer
than refinement because there are lots of missing roads.
Inferring each road takes less than half a second on average.
Therefore with stable maps, new road inference should be
lightweight, and one server ought to be able to handle global
updates. Figure 11b shows the scalability of map matching
by multithreading, using the same Xeon workstation, or
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Figure 11: Computation time and scalability

distributed computing, using 16 PCs. In each case, the map
is fully cached in memory so there is no communication cost
or database overhead with the map server. Not surprisingly,
the throughput scales almost linearly since each thread or
node operates on the input trace independently. Using the
Xeon workstation, the throughput is roughly 2,800 samples
per second per thread. At the sampling interval of 10
seconds, this throughput implies the scale of 28k vehicles per
core, or 448k vehicles in total for the workstation. Longer
sampling intervals may require more processing time for the
shortest-path calculation. Nevertheless one workstation is
more than sufficient for map matching city- or state-scale
data.

7. RELATED WORK

Map matching: Section 3.1 mentioned incremental map
matching algorithms using only previous observations [38,
53,57], and global algorithms using Viterbi dynamic pro-
gramming [34, 40, 51].  Incremental algorithms perform
poorly at narrow Y-splits or close parallel roads, where
future observations are often needed to correctly match the
current sample to one of the two extremely close roads.
There are also map matching algorithms that minimize
the geometric measure of Fréchet distance between a GPS
trace and a path on map [8,14]. These algorithms are
inaccurate at long sampling intervals, when there are too
many alternative paths with the same Fréchet distance to
the input trace, making it difficult for the algorithm to
choose the right one [56].

Map Inference: There are three categories of meth-
ods for GPS-based map inference: K-means [6, 23, 45,
58], Kernel Density Estimation (KDE) [12, 16, 20, 47, 50],
and trace merging or clustering [15, 30, 32, 41]. Most of
these algorithms have various unrealistic assumptions of the
GPS data, including low noise (e.g., only Gaussian noise
with a standard deviation less than 5 m [24, 40]), high
sampling frequency (e.g., 1Hz), and uniform distribution
(e.g., passing through each road to be inferred exactly
once). Their performance deteriorates rapidly if any of these
assumptions does not hold; see the comparative studies for
detailed analyses [11,32]. The only exceptions are the trace
clustering algorithm [32], which CrowdAtlas improves upon,
and a variant of a KDE-based algorithm [32] and its recent



extension [12]. The KDE-based methods estimate road
centerlines from GPS samples alone, which is particularly
good for sparse and noisy data. Road connectivity and
attributes are inferred by map matching GPS traces to
the inferred roads. Our clustering-based method is simpler
since each cluster contains all the information needed to
infer a new road and insert it into the map. Furthermore,
our trace-based clustering is more robust against random
noise since traces have to tightly overlap to form clusters,
while KDE would infer roads from noise samples if they
accumulate in one area. Finally, it is straightforward to
adapt our clustering algorithm to streams, while the KDE-
based methods are designed for offline processing. Our road
fitting step, however, could use KDE as an alternative, which
may be more robust than principal curve estimation but
requires full coverage of samples on the road.

Another category of automated map inference is based on
aerial imagery [28,46]. Roads covered by tree canopy and
road connectivity are very challenging for these methods.
Currently most contributors of OSM create maps from aerial
imagery manually, and missing connections are frequently
identified by CrowdAtlas in our experiments. Also, ob-
taining frequently updated, high-resolution aerial images is
very expensive, so updating maps periodically using aerial
imagery is not economical. Valuable future work could
combine CrowdAtlas with aerial imagery analysis to increase
the confidence of map updates.

Relevant Systems: Google, TomTom, and Waze lever-
age crowdsourcing for map update, where user-submitted
changes can be integrated into their map products after
manual review [39]. OpenStreetMap is the largest crowd-
sourcing map community. All of its user-contributed maps
so far are manually created using its GUI tools. There
are also numerous services, mobile apps, and GPS devices
that allow users to store and share their GPS traces, but
they do not create navigable maps. There is considerable
interest in mining large-scale GPS trace sources for various
transportation related tasks, e.g., traffic monitoring [27,
59], incident detection [49], empirical shortest-time route
calculation [60], and empirical taxi fare calculation [10].
It is straightforward to incorporate these systems into
CrowdAtlas and benefit from its scalable and reliable map
matching engine. There are also systems designed to store,
compare, and query GPS traces [26]. CrowdAtlas currently
does not store traces after map update, but can use these
systems to do so, and augment each trace with the map
matching result to benefit other applications.

8. CONCLUSION

CrowdAtlas offers a solution to the ongoing problem
of digital road map inaccuracy—automation to fix errors,
reduce lag times for changed roadways, and keep up with
the growing demand for specialized maps. By transmitting
high frequency samples to the server only when off the
known road network, our mobile app enables new roads to
be accurately inferred with a minimum of communication
overhead. Because the server only infers roads when
several unmatched vehicle traces cluster tightly together,
the roads produced have high precision and do not require
a specialist to edit and integrate them, yielding a high level
of automation.
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