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ABSTRACT
Small cells form a critical component of next generation cellular
networks, where spatial reuse is the key to higher spectral effi-
ciencies. Interference management in the spatial domain through
beamforming allows for increased reuse without having to sacrifice
resources in the time or frequency domain. Existing beamforming
techniques for spatial reuse, being coupled with client scheduling,
face a key limitation in practical realization, especially with OF-
DMA small cells. In this context, we argue that for a practical
spatial reuse system with beamforming, it is important to decouple
beamforming from client scheduling. Further, we show that jointly
addressing client association with beamforming is critical to maxi-
mizing the reuse potential of beamforming.

Towards our goal, we propose ProBeam – a practical multi-cell
beamforming system for reuse in small cell networks. ProBeam in-
corporates two key components - a low complexity, highly accurate
SINR estimation module that helps determine interference depen-
dencies for beamforming between small cells; and an efficient, low
complexity joint client association and beam selection algorithm
for the small cells that accounts for scheduling at the small cells
without being coupled with it. We have prototyped ProBeam on a
WiMAX-based network of four small cells. Our evaluations reveal
the accuracy of our SINR estimation module to be within 1 dB, and
the reuse gains from joint client association and beamforming to be
as high as 115% over baseline approaches.
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1. INTRODUCTION
The proliferation of smartphones and tablet devices has made it

necessary for mobile operators to consider new technologies that
provide increased network capacity. Small cells (micro and pico
cells) provide a promising solution to address this need and are al-
ready being deployed for 3G networks, with future rollouts of 4G
small cells [1]. With reduced cell sizes and dense deployments,
small cells are geared for increased spatial reuse of spectral re-
sources – a valuable and scarce commodity in next generation wire-
less networks (WiMAX, LTE, LTE-advanced, etc.).

Given the dense deployment of small cells, interference plays a
key limiting factor in harnessing their potential. While the sheer
scale limits planned deployment of small cells (similar to WiFi),
handling interference is a very different problem in small cells com-
pared to WiFi. This can be attributed to their synchronous ac-
cess mechanism (borrowed from macrocells), coupled with OF-
DMA (orthogonal frequency division multiplex access) transmis-
sions, wherein multiple users are served in the same frame. Ear-
lier works on interference management in small cell networks [2,
3] employed interference avoidance in the time or frequency do-
main by allocating orthogonal resources to interfering small cells.
In this work, we aim to avoid such sacrifices of spectral resources
by exploring interference management for small cells in the spatial
domain through beamforming antennas.

Employing beamforming or directional antennas for spatial reuse
in a multi-cell set-up has been considered in the context of WiFi [4,
5]. However, such approaches face a key limitation when it comes
to practical realization in that a single client is assumed for each
AP when computing interference conflicts and determining the spa-
tial reuse schedule. When the client scheduled for an AP changes,
the interference conflicts change, requiring a re-computation of the
schedule, potentially at the granularity of every packet. This makes
it hard to realize such solutions for practically sized WiFi networks
and more so for small-cell networks, where multiple clients are
scheduled in each OFDMA frame. Hence, the goal of this work
is to leverage beamforming for spatial reuse across small cells but
at the same time decouple it from per-frame scheduling at the small
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Figure 1: WiMAX frame structure.

cell base station (BS), thereby allowing for beam selections to be
computed only at the granularity of seconds (hundreds of frames).

Executing beam selection at coarser time scales compared to
client scheduling allows for tangible spatial reuse benefits across
cells. However, the beam chosen for a small cell must now de-
liver good transmission rates to all the users that are associated
(and hence can be scheduled) with the small cell in order to real-
ize the throughput gains from spatial reuse. Hence, we argue that
to realize practical and efficient spatial reuse with small cells, it is
important to not just decouple beam selection from scheduling but
also integrate beam selection with client association. Towards this
goal, we propose ProBeam – a practical system that enables joint
multi-cell beamforming and client association for increased spatial
reuse in small cell networks.

ProBeam incorporates two key components: (i) a SINR estima-
tion module – this captures the interference dependencies between
small cells in the presence of beamforming. Note that accurate
SINR estimation would require measurement w.r.t all possible com-
bination of beam choices at small cells, resulting in O(kn) mea-
surements, where k and n are the number of beam choices and
small cells respectively. ProBeam’s estimation module indirectly
computes SINR from SNR measurements, thereby resulting in only
linear number of measurements (O(kn)) with an estimation error
less than 1 dB for 95% confidence and a maximum error of 1.65 dB.
(ii) a joint beam selection and client association module – given the
hardness of beam selection and client association problems in isola-
tion, their joint problem is significantly challenging to address opti-
mally. ProBeam employs an efficient yet greedy 1

2
-approximation

algorithm for client association as a building block to converge to
an efficient spatial reuse solution with both beam selection for small
cells along with their client associations.

We have implemented ProBeam on a four cell WiMAX-based
small cell network. Our experimental evaluations reveal that Pro-
Beam is within 90% of the optimal solution and provides close to
50% throughput gains by addressing the joint problem of client
association along with beam selection compared to existing ap-
proaches that address only the latter.

Our contributions in this work are multi-fold.

• We propose a low, linear complexity SINR estimation sc-
heme with an error less than 1 dB to generate the interference
dependencies needed for computing spatial reuse configura-
tions.
• We establish the hardness of the joint beam selection and

client association problem and propose a practical, yet effi-
cient algorithm to address the same.
• We demonstrate the practicality and showcase the benefits

of ProBeam by prototyping and evaluating it on a WiMAX-
based network of four small cells.

The rest of the paper is organized as follows. Section 2 provides
background on OFDMA systems and related work. We motivate
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Figure 2: Illustration of beamforming.

the need to couple client association with multi-cell beamforming
in Section 3. We describe the algorithm in Section 4 and evaluate
the performance of ProBeam using WiMAX testbed in Section 5.
Section 6 concludes the paper.

2. BACKGROUND AND RELATED WORK

2.1 WiMAX Preliminaries
OFDMA small cells: Next generation small cell networks for

LTE and WiMAX borrow their access mechanism from their macro-
cell counterparts and are based on OFDMA. Further, they operate
on licensed spectrum and follow a synchronous access mechanism
(unlike WiFi), wherein frames are transmitted periodically at fixed
time intervals (1 ms in LTE, 5 ms in WiMAX). Each OFDMA
frame is a two-dimensional template (time and frequency slots) that
carries data to multiple clients – another key difference compared
to WiFi. Transmissions between downlink (DL, BS to client) and
uplink (UL, client to BS) are separated either in frequency (FDD)
or in time (TDD). Figure 1 shows an example of a WiMAX TDD
frame, the underlying structure of which is common to LTE as well.
Every frame carries a control and a data part, where the control
part (e.g., DL and UL MAPs) provides information to the clients
regarding where to pick (place) their respective downlink (uplink)
data from the frame and what parameters (MCS - modulation and
coding scheme) to use for decoding (encoding) the downlink (up-
link) data. Clients use the uplink frame to report their instantaneous
CSI (channel state information) to the BS, which in turn is used for
diversity scheduling at the BS.

Given the dense deployment of small cells, resource and inter-
ference management among small cells happens at the cluster (tens
of small cells) granularity, wherein a central entity (SON: self or-
ganizing network server [6]) or one of the small cells in the clus-
ter performs centralized resource management for the cells in the
cluster and coordination is achieved with the help of a high speed
backhaul. While clients use the preamble and control part of the
frame to synchronize to the BS, the small cell BSs themselves can
synchronize to the macrocell with the help of the SON server or
with a GPS antenna module.

Beamforming: Beamforming is one of the core features in next
generation networks that is adopted to improve SNR at the intended
receivers while decreasing interference at unintended receivers. A
beamforming system typically uses multiple antenna elements in
an array to form various beam patterns. Beam patterns reinforce
transmission energy in desired directions by weighting the signal
from the antenna array in both magnitude and phase. Beamform-
ing can be either switched (directional) or adaptive. In switched,
a pre-determined set of directional beam patterns covering the az-
imuth are stored and chosen based on coarse feedback (SNR or
RSSI) from the client. In adaptive, fine-grained feedback of chan-
nel estimation from the client is used to adapt the beam pattern on
the fly to reinforce multipath components and maximize the SINR
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at the client. By adapting to the instantaneous multipath channel,
adaptive provides higher gain (at the cost of increased feedback)
compared to switched. However, at the same time, it is more sen-
sitive to channel fluctuations and requires timely feedback to track
the channel state - a limiting constraint especially during mobility
and in multi-cell resource management.

Both switched and adaptive beamforming co-exist in a comple-
mentary manner in cellular systems. Macrocells are sectored in op-
eration (e.g., three 120◦ or six 60◦ directional beams), while adap-
tive beamforming is enabled to clients within each of the sectors
separately. Unlike macrocells, where interference is restricted to
cell-edges, thereby allowing for all sectors to operate in tandem,
interference is a more pervasive phenomenon in small cells [7].
This requires small cells to select a single sector (switched beam)
for operation in a frame (adaptable across frames) so as to avoid
interference and maximize reuse among small cells in a dense de-
ployment. Note that adaptive beamforming can still be enabled to
clients within the sector of operation at each small cell (see Figure
2 for illustration).

2.2 Related Work
Interference has been shown to be a key performance limiting

factor for small cells [7]. This necessitates interference mitigation
solutions that incorporate dynamic resource partitioning strategies.
There have been studies [8, 9] in this direction but are restricted to
theory with several simplifying assumptions that restrict their scope
and deployment. Recently [2] and [3] propose centralized and dis-
tributed resource management schemes respectively for interfer-
ence mitigation and demonstrate their efficacy in practice. These
solutions allocate orthogonal resources to interfering small cells to
avoid interference while reusing resources for the clients that do
not incur interference. However, such resource isolation either in
time or frequency comes at the cost of sacrificing resources, which
in turn can be avoided by addressing interference in the spatial do-
main through beamforming.

In the space of beamforming, [4, 5] propose to increase the ca-
pacity of WLANs through spatial reuse by considering directional
antennas only at the APs or at both APs and clients. However, client
association is assumed and conflicts and reuse schedule are com-
puted w.r.t a single client at each AP. This limits the practical appli-
cability of such solutions (especially for OFDMA systems) since
conflicts and reuse schedules have to be recomputed (potentially
every packet) every time the client scheduled with any of the AP
changes. Several theoretical works [10, 11] have looked at adaptive
beamforming in a multi-cell context. However, idealized settings
are assumed that require fine grained CSI from all transmitters to
all clients be made available to the reuse algorithm at every frame
interval. Given the practical feasibility (or lack thereof) of such ap-
proaches, experimental works [12] have appropriately focused on
adaptive beamforming for SNR improvements within a single cell.
Further, none of these works address client association jointly with
beamforming.

The focus of our work is to design a practical multi-cell spa-
tial reuse system that, decouples client scheduling from beamform-
ing, employs switched beamforming for interference management
between small cells, and jointly addresses client association to in-
crease the potential of spatial reuse from beamforming. Being com-
plementary, adaptive beamforming can still be leveraged for SNR
improvement within each small cell (although not considered in
this work).

3. MOTIVATION
We now motivate the need to couple client association with multi-
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Figure 3: Motivation for coordinated beam selection.

cell beamforming in order to maximize the benefits of spatial reuse.
We present results from an experimental WiMAX-based network of
four small cells, each equipped with an eight element phased array
antenna (details in Section 5) to substantiate our claims.

3.1 Need for Coordinated Beamforming
Beamforming in a multi-cell context has two benefits: (i) in-

crease link capacity through improved SNR, and (ii) increase net-
work capacity through reduced interference (higher SINR) and hence
higher spatial reuse. The beam choice of one cell impacts the inter-
ference seen by the clients of another cell, thereby requiring a coor-
dinated approach to beam selection across small cells for maximum
reuse benefits. However, given the simplicity of un-coordinated,
per-cell beamforming (focusing only on SNR), it is important to
understand the benefits from coordination and hence the need for
it.

We construct a topology with two small cells, each with one
scheduled client. First BS1 cycles through all its sixteen beam pat-
terns to determine the one yielding the best rate to its client (C1)
in isolation. BS1 is then fixed to use its best beam to C1. Now,
in the presence of BS1, BS2 is made to transfer data to its client
(C2) on each of its 16 patterns sequentially. We plot the throughput
observed at C1 (blue bars) and C2 (grey bars) as a function of the
beam pattern used by BS2 in Figure 3(a). Two observations can be
made: (i) The interference projected by BS2 on C1 depends tightly
on the beam chosen by BS2. C1 achieves its highest throughput
(8.3 Mbps) when BS2 employs its 9th pattern and its lowest thro-
ughput (3.7 Mbps) when BS2 employs its 16th pattern. (ii) The
beam maximizing the throughput of one cell does not necessarily
maximize the multi-cell network throughput. While the 9th beam
pattern maximizes C1’s throughput, it is the 4th pattern that max-
imizes the aggregate network throughput. A similar behavior is
also evident in the three cell experiment presented in Figure 3(b),
where the pattern (11th) maximizing throughput for C1 differs from
the one (2nd) maximizing the aggregate network throughput. The
throughput gain of employing the 2nd pattern over the 11th one is
almost 40%.

Thus, a well-coordinated beamforming algorithm across the small
cells is indeed important to maximize the aggregate network thro-
ughput.

3.2 Need for Joint Client Association
Client association has been traditionally employed to load bal-

ance clients between multiple cells so as to effectively utilize the
capacity of each cell and network as a whole. However, in the con-
text of multi-cell beamforming, client association has a bigger role
to play. Note that, unlike in WiFi systems, where a single client
is served by a cell at a time, OFDMA systems multiplex multiple
clients in the same frame (diversity scheduling). This requires that
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Figure 4: Illustration for flexible client association.

the beam selected for the small cell cater effectively to all its asso-
ciated and scheduled clients. Further, since the beam choice for a
cell impacts the interference and hence performance seen by other
cells, this naturally results in client association being closely cou-
pled with multi-cell beamforming.

To see this, consider the following illustration in Figure 4. In
conventional association, where SNR is used as a metric for client
association, clients C1 and C2 will be associated to BS1, while
C3 will be associated to BS2 based on (high) SNR and completely
decoupled from beamforming. BSs will then determine the best
beams to communicate with their respective clients. Let b1 and b2
be the only beams on which C2 and C3 can receive good signal
strength from their respective BSs. Now, when BS1 is employ-
ing beam b1 to communicate with C2, this will receive interference
from the beam b2 used by BS2 to communicate with its client C3.
By fixing the client association, depending on the location of as-
sociated clients, the ability of beamforming to effectively suppress
interference between cells is potentially limited. In contrast, by al-
lowing for flexible association (Figure 4(b)), C2 can be associated
with BS2 even though it has a lower SNR to BS2. This would
allow BS2 to schedule C2 and C3 jointly on a beam that suffers
no interference from that employed by BS1, thereby resulting in a
potentially higher SINR for all clients.

To quantify the benefits of coupling client association with beam
selection for small cells, we conduct the following experiment with
two small cells and three clients, and generate multiple topolo-
gies by varying the client locations. We consider two association
strategies: decoupled association, where the best coordinated beam
(for maximum aggregate throughput) for each small cell is selected
after client association is done based on SNR; joint association,
where the client association yielding the highest aggregate thro-
ughput is computed among all beam combinations between the two
cells. The aggregate throughput results between these two strate-
gies in Figure 5 indicates that joint association can yield gains as
high as 40%, with an average gain of about 25%.

This in turn motivates the need to jointly address client associa-
tion with beam selection for small cells, whereby client association
can be effectively used to maximize the spatial reuse potential of
beamforming.

4. DESIGN
System overview: Small cell networks can be deployed for en-

terprises as well as outdoors. A central controller (separate entity
or one of the small cells) is designated to perform resource and
interference management for a cluster (tens) of small cells jointly
with a high speed backhaul available for information exchange be-
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tween them. We expect ProBeam to reside in this central controller
(CC). Note that while our primary focus is small cell networks, our
system is equally applicable to WiFi networks as well.

ProBeam’s spatial reuse solution operates in epochs, which spans
several seconds (hundreds of frames). In each epoch, the sequence
of operations are as follows. (i) Interference estimation for beam-
forming: The clients measure the average SNR on each of the
beams from each of the BSs and forward it to the CC, which then
infers their corresponding SINR for various beam combinations at
the small cell BSs (details in subsection 4.1). (ii) Joint beam se-
lection and client association: Based on the interference informa-
tion collected, the CC runs its spatial reuse algorithm (for a de-
sired objective) to determine the beam choice for each of the small
cells as well as the clients that are associated with it for that epoch
(details in subsection 4.2). (iii) Scheduling: Once each small cell
BS receives its beam choice and client set, it begins scheduling its
clients locally using its own scheduler (proportional fair, max-min
fair, etc.) for each frame in the epoch, while applying the beam
selected to the frame transmissions (details in subsection 4.3).

4.1 Interference Estimation for Beamforming
Estimating the interference at clients accurately is critical for the

efficient operation of ProBeam.
Reducing complexity: Measuring the SINR directly at the clients

for various beam configurations (interference) used by small cells
is the most accurate approach. However, this would entail that each
small cell cycle through each beam pattern, while keeping the beam
patterns at other cells fixed and measuring the resulting SINR at all
clients. This would however result in a total of O(kn) measure-
ments, where k in the number of beam patterns and n is the number
of small cells. ProBeam measures only the client SNR from each
of the small cells in isolation for the various beam choices and then
uses this information to estimate the projected client SINR for a
given beam configuration at the small cells. By allowing the small
cells to operate in isolation during measurements, this significantly
reduces the SINR estimation complexity to O(kn). The key ques-
tion remaining is the accuracy or lack thereof of such an estimation
procedure.

Note that SINR can be expressed as SINRij =
SNRij∑

k 6=i INRkj+1
,

where SINR at client j from BS i is related to its SNR and net in-
terference to noise ratio from other BSs (INRj =

∑
k 6=i INRkj).

Small cells being interference limited, INR + 1 ≈ INR. In the
logarithmic (dB) domain, the relation can be expressed as SINR
(dB) = SNR (dB) - INR (dB). Hence, in principle, the SINR at a
client can be estimated from its SNR from the desired BS and its
aggregate INR from all interfering BSs. For this to be possible, one
needs to estimate each INRkj , which can potentially be approxi-
mated as the client SNR when associated with the interfering BS in
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Figure 6: Accurate estimation of SINR from individual SNR estimates.

isolation (i.e., SNRkj). However, in reality, the accuracy of such
an estimation may depend on multiple factors such as quantization,
offsets, estimation error, etc.

To verify this approximation, we conducted the following ex-
periment with two small cell BSs, whose beam choices are such
that they interfere with the client under consideration. The re-
sults are presented in Figure 6(a). First, the client measures the
signal strength from the associated BS in the absence (SNRBS)
and presence (SINRBS) of interference respectively, from which
we estimate INRest = SNRBS − SINRBS . Then, the client
records the signal strength SNRintf after associating with the in-
terfering BS in isolation. Comparing SNRintf with INRest in
Figure 6(a), we see that there is a consistent 4 dB offset between
the estimated interference and its corresponding signal strength and
this remains fixed regardless of the topology and client SNR con-
sidered (SNRBS range 19 to 26 dB). We attribute this constant
4 dB difference to the inherent offset β introduced (during client
feedback) by the MAC and its quantization of the signal strength
value reported from the PHY layer. β being platform dependent,
can be calibrated by the client and fed back to the Central Con-
troller for its appropriate estimation of INR. Further, note that
when SINR is directly measured, there is only one feedback value
from the client. However, when SINR is estimated from SNR
and multiple INRs, then each of the SNR feedback (correspond-
ing to INR) introduces an offset that needs to be compensated.
When appropriately compensated, the resulting estimation reduces
to SINRij (dB) = SNRij (dB)− 10 log10(

∑
k 6=i SNRkj) +β.

Note that since interference is aggregated in absolute units, the off-
set for the aggregate interference remains to be β in dB. This is
observed in Figure 6(b), where the offset in the presence of one (A
or B) and two (A+B) small cell interferers remains to be the same
4 dB. Thus, with the help of isolated measurements from the small
cells, it is indeed possible to estimate SINR, thereby resulting in a
linear (in n) complexity of only O(kn).

SINR estimation procedure: ProBeam initiates a measurement
phase at the beginning of each epoch, where it operates each small
cell BS in the cluster one after another in isolation. When acti-
vated, BS i applies its k beam patterns sequentially, each lasting ten
frames. All the clients measure the average received SNR from BS
i corresponding to beam pattern k. A client j forwards SNRijk,
i.e., measured SNR from BS i with beam pattern k to the CC in
ProBeam through its current associated BS. In WiMAX and LTE,
clients automatically send Channel State Information (CSI) to BS
periodically via dedicated uplink channel resources in every frame.
We use such standard feature for obtaining our desired SNR mea-
surements. Once ProBeam gathers SNR measurements from all
the clients, then any desired SINR (in dB) for a given beam con-

figuration (π = {π(1)}, ∀i, beam choices for small cells) can be
estimated as,

SINRijπ(dB) = SNRijπ(i)(dB)−10 log10(
∑
k 6=i

SNRkjπ(k))+β(dB)

(1)
Note that SNR measurements can be done within kn× 10 frames.
For reasonable values of k (say 10 beams) and n (say 10 cells in a
cluster), this would amount to 1 sec in LTE (for 1 ms frames). Also
actual data is transmitted during the measurement phase, therefore
we do not waste resources for SNR measurements. However, reuse
cannot be leveraged, whose overhead (reuse loss) can be amortized
as long as the epoch duration is several seconds.

Validation: To validate our estimation procedure, we conduct
the following experiments with three small cell BSs and a single
client. First, the client measures the SNRs from all three BSs for
a given beam configuration in isolation and records them. Then,
we make the client associate with one of the BS and measure the
SINR in the presence of the other two BSs projecting interference.
The beam configuration is chosen so as to project interference to
the client under consideration. We repeat the above experiment
by changing the beam configuration as well as the topology (i.e.,
client locations) to obtain confidence in results. Measurements are
taken at different client locations to generate plurality of interfer-
ence scenarios and to also emulate different clients (varying BS
deployment is considered in Section 5). We obtain over 100 sets
of measurements and present the CDF of the SINR estimation er-
ror (SINRmeas − SINRest) in Figure 6(c). As we can see, 95%
of our SINR estimates have less than 1 dB error (≤ 5%), with
the highest estimation error being only about 1.65 dB. Our results
clearly indicate the high accuracy of our SINR estimation method,
thereby avoiding the complexity of obtaining measurements from
all possible combinations of beam patterns at small cells.

4.2 Joint Client Association and Beam Selec-
tion (CABS)

Similar to other resource management problems, we can formu-
late our problem as a utility maximization problem in every epoch.

Maximize
∑
j∈K

U(tj)

where tj represents the average throughput received by client j in
the epoch and U() is a function to capture the corresponding utility.
Note that the choice of the utility function determines the fairness
policy in the system. We assume utility functions to be concave
and non-decreasing. This captures proportional fairness (defined
by using the utility function U(tj) = log(tj)) that is popular in
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the standards (WiMAX, LTE). While we need to decouple the time
scales of operation for CABS from scheduling, it must be noted that
the eventual objective is related to throughput and hence dependent
on scheduling. Hence, to allow the decoupling, throughput needs
to be modeled as the average throughput received by the client over
the epoch for a given scheduling policy. Our problem can be for-
mulated as,

(π∗,x∗) = arg max
π,x

∑
j∈K

∑
i∈S

xjiU(tπji) s.t.
∑
i∈S

xji ≤ 1, ∀j ∈ K

(2)
where K and S represents the set of clients and small cell BSs
respectively. Further, π = {πi, ∀i} denotes the beam selection
vector for all BSs, while x = {xji, ∀j, i} denotes the association
vector for all clients (xji = 1 if client j is associated with BS i and
0 otherwise). tπji indicates the client j’s average throughput when
associated with BS i under beam configuration π and depends on
the SINR (SINRijπ) seen by the client from BS i in the presence
of interference from other BSs under the beam configuration π (see
Eq. (1)).

4.2.1 A note on fairness
While fairness (starvation) among clients is typically achieved

(avoided) over a longer time period, instantaneous per-frame de-
cisions may favor clients with good channel conditions (e.g., pro-
portional fairness). In the case of CABS, decisions are made at
the granularity of epochs. Hence, if fairness is ensured over much
longer time scales (>> epoch), then several clients could be sub-
ject to starvation in an epoch (several seconds). This would in-
crease the jitter perceived by such clients – a factor critical for real-
time media and is hence not desired. Thus, it is more appropriate
to ensure fairness within each epoch. This would allow all clients
to be scheduled in every epoch. On the other hand, since beam
selection decisions are fixed for the entire epoch, accommodating
all clients could potentially limit the amount of reuse that can be
leveraged in the epoch. Hence, to strike a balance between thro-
ughput performance (reuse) and fairness, an alternative is to restrict
the utility functions to be non-negative in addition to concave and
non-decreasing. This would account for fairness, while at the same
time allowing for a small number of clients to be removed from
scheduling in an epoch. By weighting the client utility functions
inversely proportional to their throughput received (Tj) thus far,
one can avoid starvation for all clients across epochs.

In the case of proportional fairness, we can modify the util-
ity function as U(tj) = wj log(tj); if tj > 0 and 0 other-
wise, where wj ∝ 1

Tj
. Further, Tj at current epoch e is updated

through an exponentially weighted moving average as Tj(e) =
(1− 1

α
)Tj(e− 1) + ( 1

α
)tj(e), where α is the filtering coefficient.

Let rπji be the average transmission rates (MCS) seen by client j
in a slot when associated with BS i under beam configuration π,
and N be the total number of time-frequency slots in an OFDMA
frame withM frames per epoch. Then, under proportional fairness,
it can be easily shown that the number of slots are allocated among
all the scheduled clients in the proportion of their weights (equal
when wj = 1, ∀j). This would in turn result in an average client

throughput of tπji =
NMwjr

π
ji∑

k∈K xkiwk
.

4.2.2 Hardness
For a given client association, the problem of beam selection

is itself NP-hard [4, 5]. Hence, it comes as no surprise that our
joint CABS problem is NP-hard as well. From the perspective of
designing algorithms, it helps to understand if beam selection is the

only source of hardness or does client association also contribute to
the hardness. In this regard, we have the following result.

THEOREM 1. For a given beam selection, the CABS problem
remains to be NP-hard.

In the interest of space, we defer the proof to [13].

Algorithm 1 CABS Algorithm

1: INPUT: average SNR ρbji, ∀i ∈ S, j ∈ K, b ∈ B
2: OUTPUT: Beam selection π(i) and client associationAi, ∀i ∈
S

3: Initialization of beam choices, i.e., π(i),∀i
4: for i ∈ [1 : |S|], b ∈ [|B|] do
5: L = ∅, uib = 0
6: while 1 do
7: j∗ = arg maxj∈K\L

∑
k∈L∪j U(tbki)− uib

8: if j∗ = ∅ then break
9: L ← L ∪ j∗; uib =

∑
k∈L U(tbki)

10: end while
11: end for
12: π(i) = arg maxb uib, ∀i
13:
14: for i ∈ [1 : |S|] do
15: for b ∈ [1 : |B|] do
16: % Solve client association by varying only one beam ele-

ment at a time
17: π(i) = b, Ai = ∅, ∀i
18: (i∗, j∗) = arg max(i,j)s.t. j /∈∪iAi{

∑
k∈Ai∪j U(tπki) −∑

k∈Ai U(tπki)}
19: Ai∗ ← Ai∗ ∪ j∗; uπib =

∑
i

∑
j∈Ai U(tπji)

20: end for
21: π(i) = arg maxb u

π
ib

22: end for

4.2.3 Algorithm
Since both components of our CABS problem are hard, we must

carefully choose the interaction between these components in our
solution. Unlike the beam selection problem, the client association
problem, although hard, can be solved more efficiently. Hence,
ProBeam proposes and employs a simple but efficient client asso-
ciation algorithm as the core building block for solving the CABS
problem. At a high level, it solves the client association problem for
a given beam configuration and the resulting utility is used to ma-
nipulate the beam configuration of small cells in an iterative manner
till an efficient CABS solution is attained. The algorithm is given
in Algorithm CABS.

The input to the algorithm is the average client SNR (ρbji) for the
epoch with respect to its neighboring small cells when they employ
different beams (b ∈ B) in isolation (step 1). Using the approach
in Section 4.1, the CC can then determine the average client rates
in the presence (rπji) and absence (rbji) of interference. The CC
first determines a bootstrap beam configuration for the small cells
as follows (steps 3-12). For each of the small cells, it determines
the beam that yields the highest utility in the absence of interfer-
ence, assuming all active clients can be potentially associated with
it, i.e., π(i) = arg maxb∈B{

∑
j∈K xjiU(tbji)}. Note that tbji de-

pends on the scheduling policy and is hence coupled with the set of
clients associated with the small cell. For example, in proportional

fairness, tbji =
NMwjr

b
ji∑

k∈K xkiwk
. Hence, even to determine a beam ini-

tialization π(i), one needs to determine the set of clients (xji) that
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maximize the utility for the given beam in the absence of interfer-
ence.1 This can be done optimally (easy to verify) by adding users
one by one such that incremental utility is maximized (steps 6-10).
Specifically, for proportional fairness, the incremental utility (step
7) would correspond to,

j∗ = arg max
j∈K\L

∑
k∈L∪j

wk log(
NMrbki
1 + |L| )−

∑
k∈L

wk log(
NMrbki
|L| )

After the beam initialization, CABS algorithm perturbs the beam
choice for each of the small cells, one by one and one beam at a
time. For each of the beam choices at a given cell (π(i) = b),
CABS retains the rest of the beam choices for the other cells un-
changed and solves the client association problem for all the small
cells jointly under the updated beam configuration to determine the
new utility (steps 16-19). CABS then fixes the beam choice for
the small cell as the one that yields the highest utility among all its
choices (step 21). The same process is repeated for updating the
beam choice for each of the small cells sequentially (steps 14-22).
Note that, although after one complete round of beam updates for
each of the small cells (along with joint client re-association), we
cannot guarantee convergence to the optimal solution, our evalua-
tions in Section 5 reveal this is sufficient to obtain a performance
very close to that of exhaustive search for beam configurations.
CABS runs in O(|K|2|S|2|B|), with a large portion of the com-
plexity coming from the client association module O(|K|2|S|).

4.2.4 Performance Guarantee
Given the hardness of the joint CABS problem, it is hard to es-

tablish an approximation guarantee for the entire algorithm. How-
ever, we can establish the following performance guarantee for the
core building block in CABS, namely the client association part
when the popular proportional fair scheduling policy is considered
at the small cells.

THEOREM 2. CABS is a 1
2
−approximation algorithm under pro-

portional fairness when beam configuration is given.

We provide some definitions on matroid and sub-modularity that
are relevant for the proof.

Partition Matroid: Consider a ground set Ψ and let S be a set of
subsets of Ψ. S is a matroid if, (i) ∅ ∈ S, (ii) If P ∈ S andQ ⊆ P ,
then Q ∈ S, and (iii) If P,Q ∈ S and |P | > |Q|, there exists an
element x ∈ P\Q, such that Q ∪ {x} ∈ S. A partition matroid
is a special case of a matroid, wherein there exists a partition of
Ψ into components, φ1, φ2, . . . such that P ∈ S if and only if
|P ∩ φi| ≤ 1, ∀i.

Sub-modular function: A function f(·) on S is said to be sub-
modular and non-decreasing if ∀x, P,Q such that P ∪ {x} ∈ S
and Q ⊆ P then,

f(P ∪ {x})− f(P ) ≤ f(Q ∪ {x})− f(Q)

f(P ∪ {x})− f(P ) ≥ 0, and f(∅) = 0

PROOF. The sub-optimality of maximizing a sub-modular func-
tion over a partition matroid using a greedy algorithm of the form
x = arg maxx∈φi f(P∪{x})−f(P ) in every iteration was shown
to be bounded by 1

2
in [14]. We will now show that CABS is such

an algorithm (step 18 being the key step), with our client associa-
tion objective for a given beam configuration (π) corresponding to
a sub-modular function to obtain the desired result.
1Note that accommodating all users can hurt the utility due to fixed
frame resources but varying client rates.

Consider the ground set to be composed of the following tuples.

Ψ = {(i, j) : i ∈ [1 : |S|] ∪ ∅, j ∈ [1 : |K|]

Now Ψ can be partitioned into φj = {(i, j) : i ∈ [1 : |S|]∪∅}, ∀j.
i = ∅ allows for the possibility of clients not being scheduled in
an epoch. Let R be defined on Ψ as a set of subsets of Ψ such that
for all subsets P ∈ R, we have (i) if Q ⊆ P , then Q ∈ R; (ii) if
element x ∈ P\Q, then Q∪ {x} ∈ R; and (iii) |P ∩ φj | ≤ 1, ∀j.
This means that R is a partition matroid. Now, it is easy to see
that any P ∈ R will provide a feasible schedule with at most one
feasible association to a small cell for each client (|P ∩ φj | ≤
1, ∀j), thereby allowing the partition matroid R to capture our
client association problem. Since each client can associate to only
one small cell, our client association objective can be given as,

f(P ) =
∑
i∈K

µi(P )

where, µi(P ) =
∑

j:(i,j)∈P

wj log(
NMwjr

π
ij∑

k:(i,k)∈P wk
)

It can be seen that if Q ⊆ P , then µi(Q) ≤ µi(P ) since the
algorithm picks only elements that result in positive incremental
utility. Hence, it only remains to be shown that for an element (i, `)
such that P∪{(i, `)} forms a valid schedule, then f(P∪{(i, `)})−
f(P ) ≤ f(Q ∪ {(i, `)}) − f(Q). Now, define incremental utility
∆P (i, `) = f(P ∪{(i, `)})−f(P ) and similarly define ∆Q(i, `).
Applying the objective function and simplifying, we can show that,

∆P (i, `) = w` log(NMw`r
π
i`)− w` log(w` +

∑
k:(i,k)∈P

wk)

−
∑

j:(i,j)∈P

wj log(
w` +

∑
k:(i,k)∈P wk∑

k:(i,k)∈P wk
)

∆Q(i, `) = w` log(NMw`r
π
i`)− w` log(w` +

∑
k:(i,k)∈Q

wk)

−
∑

j:(i,j)∈Q

wj log(
w` +

∑
k:(i,k)∈Q wk∑

k:(i,k)∈Q wk
)

Thus, the difference between ∆P (i, `) and ∆Q(i, `) arises in the
second (reduction) term, which increases with the number of ele-
ments in the allocation thus far. SinceQ ⊆ P , the reduction term is
more for P than for Q, resulting in ∆P (i, `) ≤ ∆Q(i, `). This es-
tablishes that the function f(P ) is indeed sub-modular. Further, our
client association problem aims to maximize this non-decreasing
sub-modular function over a partition matroid. Hence, picking the
(client, small cell) pair yielding the highest marginal utility for a
given beam configuration in CABS (steps 16-19) would correspond
to determining

(i∗, j∗) = arg max
(i,j)∈R

{f(P ∪ {(i, j)})− f(P )}

Thus, the sub-optimality of 1
2

would then follow from the result in
[15].

4.3 Scheduling
Once the CC determines the beam configuration and client asso-

ciation for the epoch, the appropriate beam and allowable client set
are notified to each of the small cell BSs for configuration. Each
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small cell BS then locally runs its scheduling algorithm (e.g., pro-
portional fair) among the associated clients for each frame in the
epoch, while employing the chosen beam for its transmissions. Fur-
ther, instantaneous channel rate feedback from clients is used in
per-frame scheduling for leveraging multi-user diversity.

4.4 Practical Considerations
Mobile clients: While beamforming algorithms work well for

static clients, it is important to understand their limitations with
respect to mobile clients. Note that, any adaptive beamforming sc-
heme that relies on fine grained channel state information (CSI)
will be highly sensitive to lack of timely and accurate CSI, both
of which are hard to obtain during mobility. On the other hand,
switched beamforming relies only on coarse grained channel feed-
back (SNR or RSSI) and hence is less sensitive to mobility. As long
as the epoch duration is not long enough (several seconds is reason-
able), pedestrian to moderate vehicular speeds can be accommo-
dated without warranting a completely new beam to be employed
for the client.

Epoch duration: Keeping the epoch duration long is conducive
for implementation and overhead. However, it must also be capable
of tracking traffic dynamics and client mobility. Allowing for a few
seconds of epoch duration strikes a good balance between these
objectives.

5. SYSTEM EVALUATION
Testbed and prototype implementation: Our WiMAX testbed

consists of four small cells (deployed in an indoor enterprise envi-
ronment), clients and a central controller as depicted in Figure 7.
The small cell BS is a PicoChip [16] WiMAX platform based on
IEEE 802.16e standard [17]. The BS is tuned to operate in a 10
MHz bandwidth with the center carrier frequency of 2.59 GHz, for
which we have obtained an experimental license to transmit Wi-
MAX signals over the air. In the absence of a macro cell to coordi-
nate with, we use a GPS module to synchronize the WiMAX frame
transmissions across the small cells. Each BS has an eight element
(analog) phased array antenna [18] connected to its RF port. The
antenna array generates sixteen overlapping beam patterns of 45◦

each, spaced 22.5◦ apart to cover the entire azimuth of 360◦. The
BS controls the antenna array through a serial port application that
we have developed in C. There is a delay of one frame (5 msec)
before a particular beam pattern is actually applied by the antenna
following the command from the application. This is not an issue
given the time scale of epoch or the measurement phase.

ProBeam is standards compatible and works with commercial
off-the-shelf clients. We use Windows laptops with a WiMAX in-
terface [19] and omni-directional antennas as our clients. Investi-
gating directionality at the clients is part of our future work. We
select 30 locations as marked in Figure 7 for client deployments.
The clients are oblivious to beam selection at BS and simply mea-
sure the SNR and report them back to the BS for SINR estimations
through standard feedback mechanisms. Our experiments have ver-
ified that the SNR received on each beam is relatively stable over
several seconds for static clients. This gives confidence to the SNR
measurements reported by clients in the measurement phase.

All algorithms (CABS and reference schemes) are implemented
on the CC and do not require any changes or operational overhead
to the BS. All BSs are connected to the CC through an ethernet
switch in our set-up.

5.1 Prototype Evaluations
Topologies and rate adaptation: Each data point in our result is

averaged over multiple topologies, which are generated by picking

Figure 7: Small cell, beamformer, client and deployment

random subsets of client locations (among 30) for a given number
of clients. Further, unless otherwise specified, we consider topolo-
gies with four small cells and twenty clients. To remove the influ-
ence of rate adaptation algorithms, we consider an ideal PHY rate
adaptation by trying out all MCS and record the highest throughput
(best MCS) for a client given a network configuration.

Reference schemes: We evaluate the performance of our CABS
algorithm in ProBeam against the following benchmark algorithms.

• Decoupled: Client association is decoupled and first com-
puted based on SNR, followed by determination of coordi-
nated beams for each BS using the same beam selection com-
ponent as in CABS.
• CABS-all: Allows for joint determination of client associ-

ation and beam selection as in CABS but requires that all
clients be associated and scheduled in every epoch.
• UB-beam: Employs the same client association component

as in CABS but exhaustively searches over all possible beam
combinations at BSs - serves as an upper bound for beam
selection in CABS.
• UB-assoc: Employs the same beam selection component as

in CABS but exhaustively searches over all possible combi-
nations of client association.

Evaluation metrics: We consider the following metrics.

• Throughput: Aggregate throughput of all clients in the net-
work.
• Utility: Captures both throughput and fairness; aggregate

utility of all clients:
∑
j∈K wj log(Tj) (details in subsection

4.2).
• Fraction of scheduled clients: Captures the number of clients

not scheduled in an epoch to improve spatial reuse (in CABS
and upper bounds).
• Load balancing factor: Measures Jain’s fairness index among

the number of clients associated with each BS.

Throughput: Figure 8(a) presents the throughput results as a func-
tion of number of clients in the network. Three observations can be
made: (i) CABS’ performance is within 96% of that of exhaus-
tive beam search and is not impacted by client density. Given the
complexity of the latter, CABS provides a fine balance between
performance and complexity. (ii) The increased spatial reuse from
jointly addressing client association with beamforming (CABS-all)
provides gains as high as 50% (over the decoupled approach). Fur-
ther, the gains are more pronounced at higher client density, where
it becomes harder to isolate interference between small cells with-
out a joint optimization that allows for flexible client association.
(iii) Interestingly, by going one step further and allowing some
clients from not being scheduled in a given epoch provides CABS
with an additional 50% gain over CABS-all, resulting in a net gain
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Figure 8: Experimental evaluation of ProBeam with 4 small cells.
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Figure 9: Effective client management in ProBeam.

of around 115% over the decoupled approach. Removing even a
small fraction of bottleneck clients from scheduling in an epoch
can greatly improve the spatial reuse configuration between small
cells.

The impact of interference from increased number of BSs is pre-
sented in Figure 8(b). The ability to jointly address client asso-
ciation with beam selection helps CABS handle interference ef-
fectively, the benefits of which are more pronounced with larger
number of interferers.
Fairness: Recall that some of the reuse gains in CABS comes from
removing a subset of clients from scheduling in a given epoch.
While starvation of such clients is avoided across epochs, it is im-
portant to understand if the throughput gains of CABS are not re-
alized at the expense of fairness even within an epoch. The utility
measure helps account for fairness within an epoch, whose results
are presented in Figure 8(c). It can be clearly seen that CABS’ util-
ity is very close to that of its upper bound and outperforms that of
the (baseline) decoupled approach. Thus, adopting a utility based
approach to joint CABS, enables ProBeam to bypass some clients
from an epoch to maximize reuse gains without compromising on
fairness.

Note that if the number of clients bypassed is large, this would
automatically reflect in a reduced system utility. Hence, to further
verify this, we present the fraction of scheduled clients in an epoch
in Figure 9(a). This clearly shows that only a small fraction of
clients (10-20%) are bypassed in CABS. The upper bound is more
aggressive in deferring clients to the next scheduling epoch, which
in turn contributes to its marginal throughput gains over CABS
(Figure 8(a)).
Load balancing: A by-product of utility maximization in CABS
is that it should automatically lead to load balancing. This is be-
cause, given a fixed amount of frame resources, balancing number
of users across cells, provides more resources per user and hence
better aggregate utility. The load balancing factor, captured thr-

ough Jain’s fairness index between number of clients associated
with small cells, is presented in Figure 9(b). CABS provides very
good load balancing as expected. The decoupled approach does
not implicitly account for load balancing, but a uniform distribu-
tion of clients automatically provides reasonable load balancing,
when SNR-based client association is employed. The interesting
observation is that CABS-all’s load balancing suffers, especially
when the number of clients is not high. Recall that CABS-all’s
throughput gain (over the decoupled approach) from better inter-
ference suppression (and hence reuse) through flexible association,
comes at the expense of potential load imbalance across cells, es-
pecially when all clients are accommodated.

5.2 Trace-driven Simulations
Our experimental set-up with few tens of clients and three dom-

inant interferers constitutes a realistic set-up for a cluster of small
cells. However, to further understand CABS’s effectiveness in much
denser deployments (10 BSs and 90 clients), we resort to trace
based simulations. We collect SNR traces for clients from our
experimental network, feed it into a simulator running ProBeam
(SINR estimation and CABS) to evaluate the various algorithms.
We place our four BSs in various other locations to emulate more
small cell BSs and measure SNR traces at the clients from them on
all beams. Similarly, we also vary the client locations to emulate
a larger set of clients and obtain corresponding SNR traces. Given
the traces, we can generate a topology with a specific number of
BSs and clients, by sampling BSs and clients randomly from our
SNR trace database.

Our simulation results are presented in Figure 10, where thro-
ughput is measured as a fraction of that achieved by the upper
bound (UB-beam). The trends in these large scale results, includ-
ing the magnitude of gains possible with CABS, are very similar
to those from the experiments, thereby reinforcing our inferences
from the prototype evaluation. Hence, in the interest of space, we
do not discuss them further. CABS close performance with respect
to its upper bound in these results indicates the efficiency of its
beam selection component as both the schemes employ the same
client association mechanism. Given the hardness of computing a
tight upper bound for the joint CABS solution, we now evaluate the
efficiency of its client association component as well. We compare
it against an upper bound for client association (UB-assoc) that ex-
haustively searches over all possible client associations, while em-
ploying the same beam selection mechanism as in CABS. The re-
sults in Figure 11 indicate that, while the sub-optimality of CABS’
client association component can at most be within half of the op-
timal (see Sec.4.2.4) in the worst case, in practice, it yields a per-
formance that is very close to its upper bound. Thus, the high effi-
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Figure 10: Large scale evaluation of ProBeam through trace-driven simulations.
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Figure 11: Evaluation of client association component in Pro-
Beam.

ciency of the individual components in CABS in turn synergistically
contribute to the net gains seen by it.

6. CONCLUSIONS
We design and implement ProBeam – a practical system for im-

proving spatial reuse through beamforming in OFDMA based small
cell networks. We show that decoupling beamforming from client
scheduling is necessary for practical feasibility. Further, we high-
light the need to jointly address client association with beamform-
ing to maximize the reuse benefits from the latter. ProBeam incor-
porates a low complexity, highly accurate SINR estimation module
with less than 1 dB error (≤ 5%) to determine interference depen-
dencies between small cells. It also houses an efficient, low com-
plexity joint client association and beam selection algorithm for the
small cells that yields close-to-optimal performance. Prototype im-
plementation in a real WiMAX networks of four small cells shows
115% of capacity gain compared to other baseline reuse schemes.
We also demonstrate the scalability and efficacy of our system in
larger scale settings through simulations. Most of our system com-
ponents are also applicable to LTE and LTE-A with minor modi-
fications. As part of future work, we plan to investigate synthesis
of new beam patterns for beamforming based on client feedback in
lieu of a pre-determined set (code-book).
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