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1 The Big Ideas of Computing

Welcome to the study of computer organization! Before we dive into the nuts and bolts
of bits, bytes, and processors, we need to start with the foundational concepts that make
computers possible. What is a computer, really? And how can a machine built from
simple on/off switches perform tasks of such breathtaking complexity?

The answer lies in a handful of profound “Big Ideas.” These are the pillars upon
which the entire digital world is built. Understanding them gives you a framework for
everything that follows in this book.

Big Idea #1: The Universal Computing Machine &

In the 1930s, long before physical computers existed, a brilliant mathematician named
Alan Turing asked a powerful question: Is there a limit to what can be computed? He
devised a thought experiment to answer this, and in doing so, designed the theoretical
blueprint for every computer that would ever be built.

He imagined a simple machine:

e An infinitely long tape, divided into cells, each containing a symbol (like a 0, 1, or
blank).

e A head that can read the symbol in a cell, write a new symbol, and move left or
right on the tape.

e A set of rules that tells the head what to do based on the machine’s current state
and the symbol it just read.

Figure 1.1: A Turing Machine head moving along the infinite tape following rule S3 cur-
rently.
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This theoretical device, the Turing Machine, seems primitive. Yet, Turing proved
something astonishing: this simple machine could compute any problem that was com-
putable by any conceivable machine. It is a universal computing machine. This
principle is now called Turing Completeness. If a system (like a programming lan-
guage or a processor) is Turing complete, it has the power to simulate any other Turing
machine—meaning it can compute anything that is fundamentally computable.

This is the bedrock of all modern computing: we don’t need a special machine for
calculating finances, another for playing music, and a third for editing photos. A single,
universal machine can do it all.

Big Idea #2: The Stored-Program Computer B

Turing’s machine was a theoretical concept. The practical leap forward was the idea
of a programmable computer, where the instructions (the program) could be easily
changed. The key innovation that made this possible is the stored-program concept:
the idea that the instructions for the computer are stored in memory, right alongside the
data the instructions operate on.

This means the program isn’t physically wired into the machine; it’s just data. To
change what the computer does, you simply load a different program into its memory.
This simple but powerful idea is the defining characteristic of every modern computer.
This concept has evolved over time:

e The Atanasoff-Berry Computer (ABC) (early 1940s) is often considered the
first electronic digital computing device, taking early steps toward this goal.

e ENTAC (mid-1940s) was a huge leap in speed, but it had to be physically rewired
to change its program, a tedious process that could take days.

e The IBM System/360 (1960s) introduced the idea of a family of computers that
could all run the same programs (software), cementing the stored-program model
in the commercial world.

e The Intel 8086 processor (late 1970s) launched the personal computer (PC) revo-
lution, bringing the power of the stored-program computer into homes and offices.

e ARM processors (popularized in the 2000s) powered the smartphone revolution
with their efficient design, putting a powerful stored-program computer in billions
of pockets.

e Modern Deep Learning chips (GPUs, TPUs) are specialized processors de-
signed to execute the mathematical operations needed for Al at incredible speeds.

All these machines, from the room-sized ENIAC to the chip in your phone, share the
same fundamental DNA: they are all implementations of the stored-program computer.



Big Idea #3: Specialization vs. Generality =

If a single machine can do everything, why would we ever build one that can’t? The
answer is a classic engineering trade-off: efficiency. A general-purpose, programmable
computer is flexible, but a specialized, fixed-function device that does only one task
can be much faster, cheaper, and more power-efficient.

You're surrounded by fixed-function computers: the chip in your microwave, a simple
pocket calculator, or the controller for your car’s anti-lock brakes. A modern, high-
stakes example is a Bitcoin mining chip like the BM1370. Its one and only job is to
perform a specific cryptographic calculation (SHA-256) over and over, as fast as humanly
possible. It can’t run a web browser or a word processor, but it can perform its one task
millions of times more efficiently than a general-purpose CPU.

Big Idea #4: New Frontiers in Computation 4

For decades, the stored-program model has been the undisputed king. But today, we are
exploring fundamentally new types of computing.

¢ Quantum Computing: This is a completely different model built on the strange
rules of quantum mechanics. Instead of bits (0 or 1), it uses qubits, which can be 0,
1, or a superposition of both at the same time. This allows quantum computers to
explore a vast number of possibilities simultaneously, making them potentially mil-
lions of times faster for specific problems like materials science and code-breaking.

e Deep Learning: This represents a new way of creating a program. Instead of a
human writing explicit rules (an algorithm), a program called a model is generated
by training it on massive amounts of data. The model itself—a giant collection of
numbers—becomes the program. You interact with it using prompts, which are
a new kind of input that directs this learned program. While the theory is still
evolving, it’s important to remember that these powerful DL models are still created
by and run on the stored-program computers we will be studying.

The Overarching Idea: Abstraction S

So how do we manage all this complexity? A modern processor has billions of transis-
tors. An operating system has millions of lines of code. No single person can possibly
understand every detail. The magic that makes this all work is abstraction.

Abstraction is the process of hiding complex details behind a simple model, or inter-
face. This allows us to build complex systems in layers, where each layer only needs to
understand the layer immediately below it, not all the details beneath.

The key to abstraction is separating the interface (the what) from the implementa-
tion (the how).

e Interface: A set of simple rules and guarantees about what a system can do.

e Implementation: The complex, hidden details of how the system actually does
it.
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Think about driving a car. The interface is the steering wheel, pedals, and gear shift.
You know that pressing the accelerator makes the car go faster. The implementation
is the engine, fuel injectors, transmission, and exhaust system. You don’t need to know
anything about internal combustion to drive to the store. The simple interface hides the
complex implementation.

Computers are built on layers and layers of abstraction. A programmer doesn’t think
about individual transistors; they use a programming language (an abstraction). The
language is converted to machine instructions (another abstraction), which are executed
by processor components (another abstraction), which are built from logic gates (another
abstraction), which are finally built from transistors.

This book is a journey through these layers of abstraction, starting from the bottom
up. We will focus on the dominant model of computing—the programmable, stored-
program computer—and see how these powerful ideas work in practice.

e Universal Computation: The concept of a Turing Machine proved that
a single, simple machine could theoretically solve any computable problem.
This property is called Turing Completeness.

e The Stored-Program Computer: The defining feature of modern com-
puters. The instructions (software) are stored in memory just like
data, which allows the computer’s function to be changed easily.

e Specialization vs. Generality: This is the fundamental trade-off between
a flexible, general-purpose computer (like a CPU) and a highly efficient
but inflexible fixed-function device (like a Bitcoin mining chip).

e Abstraction: The essential technique for managing complexity. It involves
hiding the complex details (implementation) behind a simple set of rules or
guarantees (interface). This allows us to build incredibly complex systems
in layers.

e New Frontiers: New computing paradigms are emerging. Quantum
Computing uses qubits to solve certain problems exponentially faster, while
Deep Learning creates “programs” (models) by learning from data rather
than being explicitly programmed.
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The Digital Universe: It's All About the Bits

Take a moment to think about your digital world. The music you stream, the high-
definition videos you watch, the photos you share, the very words you are reading right
now—all of it seems incredibly complex and diverse. Yet, at the most fundamental level
inside any computer, all of this information is stored and processed in the exact same
way: as a massive collection of simple, tiny switches. The state of these switches, either
on or off, is the basic language of the computer. Our first step in understanding how a
computer works is to learn this language, which begins with a single concept: the bit.

What is a Bit?

A bit, short for binary digit, is the smallest and most basic unit of information in
computing. A bit can only have one of two possible values, which we represent with the
symbols 0 and 1.

You can think of a bit like a light switch. It can either be in the “off” position (0)
or the “on” position (1). There are no other possibilities. This two-state system is the
foundation upon which all digital information is built.

e 0: Represents off, false, low voltage.

e 1: Represents on, true, high voltage.

Image of a single light switch in the off position labeled '0’ and on position labeled ’1’

A single bit by itself isn’t very useful; it can only answer a yes/no question. To
represent more complex information, we need to group bits together.

Grouping Bits to Represent More Information

If we use two bits, we can represent four unique combinations:
00 01 10 11
With three bits, we can create eight unique combinations:

000 001 010 011 100 101 110 111
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Notice the clear pattern emerging? Every time we add a new bit, we double the
number of unique things we can represent. This relationship can be expressed with a
simple formula:

Core Principle

With n bits, you can represent 2™ unique things.

This exponential growth is the key to a computer’s power. For example, a group of 8
bits, known as a byte, can represent 28 = 256 different things.

When we write down a string of bits, which we call a binary string, there is a standard
convention. We write the bits in order of their position, or index. For a 4-bit string, we
might label the bits as follows:

b3bab1bg

By convention, the rightmost bit, by, is called the least significant bit (LSB), and
the leftmost bit, bs, is the most significant bit (MSB). For now, don’t think of these
strings as numbers. Think of them simply as unique patterns. For example, if a grocery
store sold 11 types of fruit, we couldn’t give each fruit a unique 3-bit code (since 23 = 8
is not enough). However, we could use 4-bit codes (since 24 = 16 is more than enough).
We could assign ‘apple‘ the code 0000, ‘banana‘ the code 0001, and so on.

A Glimpse into Quantum Computing: The Qubit

While this textbook focuses on classical computers, it’s worth knowing about a
fascinating development in computing. Quantum computers don’t use bits;
they use qubits. Unlike a bit, which must be either a 0 or a 1, a qubit can exist
in a state of superposition, meaning it can be a combination of both 0 and 1 at
the same time.

This property gives quantum computers immense potential power. A system of
n classical bits can only represent one of 2™ possible values at any given mo-
ment. A system of n qubits, however, can represent all 2" values simultaneously!
This allows them to tackle certain problems—like code-breaking and molecular
simulation—that are impossible for even the most powerful classical supercomput-
ers.

What's Next?

We’ve established that we can use groups of bits to represent a collection of unique items.
This is a powerful idea, but to build a computer, we need to represent something more
structured and universally useful. In the following sections, we will explore how these
simple strings of Os and 1s form the foundation for representing numbers, characters, and
other data types that are the bedrock of all computation.

10



A bit (binary digit) is the smallest unit of data in a computer and can have
one of two values: 0 or 1.

The fundamental formula: with n bits, you can represent 2™ unique patterns
or values.

A byte is a group of 8 bits and can represent 28 = 256 different values.

e In a binary string (e.g., bsbab1bp), the rightmost bit (bg) is the Least Sig-
nificant Bit (LSB) and the leftmost bit (b3) is the Most Significant Bit
(MSB).

Representing Numbers: Integers

Now that we understand that bits can represent unique patterns, let’s apply this to
something concrete: representing numbers. The most fundamental type of number in
computing is the integer. Before we dive into how binary is used, let’s revisit how our
familiar decimal number system works.

The Power of Position: Decimal and Binary

When we write the number ‘743’ in the decimal (base-10) system, we intuitively under-
stand that the position of each digit matters. The ‘3’ is in the ones place, the ‘4’ is in the
tens place, and the ‘3’ is in the hundreds place. This is called a weighted positional
notation. Each position has a weight that is a power of 10.

743 = (7 x 10%) + (4 x 10%) + (3 x 10%)

743 = (7 x 100) + (4 x 10) + (3 x 1) = 700 + 40 + 3
The binary system works on the exact same principle, but the base is 2 instead of 10.
Each position’s weight is a power of 2.
Unsigned Integers

The most straightforward way to represent an integer is as an unsigned integer, which
means it can only represent non-negative values (zero and positive numbers). To find the
value of an unsigned binary number, you simply sum the weights of the positions that
contain a ‘1.

For example, let’s find the value of the 4-bit binary number ‘1101’:

1101 = (1 x 23) 4+ (1 x 23) + (0 x 21) + (1 x 29)

1101 = (1 x 8) + (1 x4) + (0 x 2) + (1 x 1)

11
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1101 =8 +4+04+1= 1349

With n bits, we can represent any integer from 0 (all bits are 0) to 2" —1 (all bits are 1).

The Problem of Negativity: Signed Integers

Unsigned numbers are great, but we often need to represent negative values. How can we
do this with only 0s and 1s? The most obvious approach is to reserve one bit, typically
the most significant bit (MSB), to represent the sign. This bit is called the sign bit.
By convention, a ‘0’ in the sign bit means the number is positive, and a ‘1’ means it
is negative. The remaining bits represent the number’s magnitude (its absolute value).
This method is called Sign and Magnitude.

For example, with 4 bits:

e ‘0101’ represents +5 (sign bit is 0, magnitude is 1015 = 5).
e ‘1101’ represents —5 (sign bit is 1, magnitude is 101 = 5).
However, this simple approach has two major flaws:

1. Two Zeros: ‘0000’ represents 40, and ‘1000’ represents —0. Having two different
patterns for the same value is inefficient and complicates the computer’s hardware.

2. Difficult Arithmetic: The hardware for addition and subtraction becomes very
complex, as it has to check the signs before performing an operation. If you try to
add +5 and —5 (‘0101 + 1101’), simple column-wise addition does not work: you
get ‘10010” which does not match the expected result of ‘0000’.

A Better Way: Complements

To solve the problems with sign and magnitude, computer scientists developed comple-
ment systems. The goal was to make arithmetic simple and have only one representation
for zero.

One’s Complement

In a one’s complement system, positive numbers are represented just like in sign and
magnitude. To get the negative representation of a number, you simply flip every bit.
This is called taking the complement.

e To represent +5: 0101
e To get —5: Flip every bit of 0101 — 1010

This system makes some arithmetic easier, but it still suffers from one major flaw: it has
two representations for zero. 0000 is +0, and if you flip all its bits, you get 1111, which
represents —0.

12



Two's Complement: The Gold Standard

This brings us to two’s complement, the system used by virtually all modern comput-
ers. It is elegant, efficient, and solves the problems of the previous systems.

To get the negative of a number in two’s complement:
1. Flip every bit (like one’s complement).
2. Add 1.
Let’s find the representation of —5 using 4 bits:
1. Start with +5: 0101
2. Flip all the bits: 1010
3. Add 1: 1010 + 1 = 1011.

So, 1011 represents —5 in two’s complement.
Why is this so powerful?

e One Zero: There is only one representation for zero (0000). If we try to negate
0000, we flip the bits (1111) and add 1, which results in (1)0000. The carry bit is
discarded, leaving 0000.

e Simple Arithmetic: Addition works for both positive and negative numbers with-
out any special logic. Let’s add +5 and —5:

0101 (+5)
+ 1011 (-5)

(1)0000 (0, after discarding the carry bit)

The hardware for addition now automatically handles subtraction. The system works
perfectly. We will shortly explain more about this carry bit - it’s similar to the carryover
of addition in decimal numbers.

Integer Representation Tables

The following tables compare the values represented by the same binary strings using
the different systems we’ve discussed.

13
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Table 2.1: 3-Bit Integer Representations

Binary String Unsigned Sign & Mag. One’s Comp. Two’s Comp.
000 0 +0 +0 +0
001 1 +1 +1 +1
010 2 +2 +2 +2
011 3 +3 +3 +3
100 4 -0 -3 -4
101 5 -1 -2 -3
110 6 -2 -1 -2
111 7 -3 -0 -1
Table 2.2: 4-Bit Integer Representations
Binary String Unsigned Sign & Mag. One’s Comp. Two’s Comp.
0111 7 +7 +7 +7
0110 6 +6 +6 +6
0001 1 +1 +1 +1
0000 0 +0 +0 +0
1111 15 -7 -0 -1
1110 14 -6 -1 -2
1001 9 -1 -6 -7
1000 8 -0 -7 -8

e Unsigned: Can represent 2" numbers.

— Range: 0 to 2" —1

e Sign and Magnitude: Has two zeros.

— Range: —(2" 1 —1)to + (271 -1)

e One’s Complement: Has two zeros.

— Range: —(2" 1 —1)to + (271 —1)

e Two’s Complement: The standard. Has one zero and an asymmetric

range.

— Range: —2""!1to + (271 - 1)



Operations on Bits and Numbers

We’ve now established how to represent both positive and negative integers using bits.
The next logical step is to perform operations on them. In this section, we’ll cover how
to convert between the number systems we’ve learned, how to perform arithmetic, and
finally, how to use fundamental logical operations that form the bedrock of all computa-
tion.

Conversions: Moving Between Bases

Being able to seamlessly convert numbers between their decimal (base-10) and binary
(base-2) forms is a critical skill.

Binary to Decimal Conversion

The method for converting a binary number to decimal depends on its encoding. The
first step is always to look at the most significant bit (MSB).

Case 1: The number is positive (MSB = 0) If the MSB is 0, the number is posi-
tive. For Unsigned, Sign & Magnitude, One’s Complement, and Two’s Com-
plement, the method is the same: simply sum the weighted powers of 2 for each bit
position that has a 1.

e Example: Convert the 8-bit number 01011001 to decimal.
Value = (1 x 25) + (0 x 2°) 4+ (1 x 2%) + (1 x 23) + (0 x 22) + (0 x 21) + (1 x 29)
Value = 64 4+ 16 + 8 + 1 = 899.

Case 2: The number is negative (MSB = 1) If the MSB is 1, the method depends

on the encoding. Let’s convert the 4-bit number 1101 in each system.

e Sign & Magnitude: The MSB (1) is the sign. The remaining bits (101) are the
magnitude. Magnitude = (1 x 22) 4+ (0 x 2!) + (1 x 2°) = 5. Final value = —51g.

e One’s Complement: To find the magnitude, flip all the bits back to their positive
form. Original: 1101 — Flipped: 0010. Magnitude = (1 x 2!) = 2. Final value =
—21p.

e Two’s Complement: To find the magnitude, flip all the bits and add 1. Original:
1101 — Flip: 0010 — Add 1: 0011. Magnitude = (1 x 2!) + (1 x 29) = 3. Final
value = —319.

Decimal to Binary Conversion

To convert from decimal to binary, we first handle the sign.

15
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Case 1: The number is positive (or unsigned) We use the method of repeated
division by 2. We divide the decimal number by 2, record the remainder, and continue
dividing the quotient until it becomes 0. The binary number is the sequence of remainders
read from bottom to top.

e Example: Convert 441y to an 8-bit unsigned binary number.
44 =+ 2 = 22 remainder 0 (LSB); 22 + 2 = 11 remainder 0; 11 =+ 2 = 5 remainder 1,
5+ 2 = 2 remainder 1; 2 + 2 = 1 remainder 0; 1 =+ 2 = 0 remainder 1 (MSB).
Reading the remainders up: 101100. As an 8-bit number, we pad with leading
zeros: 00101100.

Case 2: The number is negative First, convert the absolute value to binary, then
apply the rule for the target encoding.
o Example: Convert —2519 to an 8-bit binary number.
1. First, convert the absolute value, 25, to binary: 00011001.
2. Now, apply the encoding rules:
— Sign & Magnitude: Set the MSB to 1. Result: 10011001.

— One’s Complement: Flip all the bits of the positive version. Result:
11100110.

— Two’s Complement: Flip the bits and add 1. Flip 00011001 — 11100110.
Add 1 — 11100111.

Binary Addition in Two's Complement or Unsigned

Addition in binary works exactly like in decimal: you add digits column by column
from right to left and carry over when a column’s sum is too large. We focus on two’s
complement and unsigned because its design makes arithmetic simple. As there is only
a given number of bits, a carry out from the MSB is not included in the result.

Overflow: When the Result Doesn’t Fit

Sometimes, the result of an addition is too large to be represented by the given number
of bits. This is called overflow. For Unsigned, overflow is indicated by a carry out from
the MSB (yes, the one not included in the result. Two’s complement overflow is more
complicated:

e Adding two positive numbers results in a negative number.
e Adding two negative numbers results in a positive number.

e Adding two numbers with different signs can NEVER cause an overflow.

16



The hardware detects this with a clever trick involving the two most significant carries:
the carry into the MSB column (Cj,) and the carry out of the MSB column (Cyyy).

Two’s Complement Overflow Detection

Overflow occurs if and only if Cj, # Cout- This is equivalent to checking if
Cin XOR Cyyr = 1.

Why the XOR Trick Works: Let’s analyze the MSB column. The resulting sign bit is
Sout = Amsb + Bmsb + Cin-

e Positive + Positive Overflow: Here, A,,s = 0 and B, = 0. For the result to
be negative (Syy: = 1), a carry-in must have occurred: 0+0+Cj, =1 = Cj, = 1.
This sum (1) does not produce a carry-out, so Cpyy = 0. Thus, C;, = 1 and
Cout = 0. They are different.

e Negative + Negative Overflow: Here, A, = 1 and B, = 1. For the result
to be positive (St = 0), the sum must be 1 4+ 14 Cj, = 102 or 1+ 1+ Cyy, = 115,
To get Syt = 0, we must have 1+ 1 + C;;,, = 109, which means Cj;,, = 0. This sum
produces a carry-out, so Cyyy = 1. Thus, C;, = 0 and Cyyy = 1. They are different.

In all non-overflow cases, C;, and C,; will be the same. This simple check is easy to
implement in hardware.

Bitwise Logical Operations

Beyond arithmetic, computers rely heavily on bitwise logical operations. Unlike an op-
eration like addition which treats an 8-bit string as a single number (e.g., 25), bitwise
operations treat it as a collection of 8 individual bits. Each bit in the first operand
is matched with the bit in the corresponding position of the second operand, and the
operation is performed on these pairs independently. What happens in one bit position
has absolutely no effect on any other.

To formally define these operations, we use a truth table. A truth table is a straight-
forward chart that lists every possible combination of inputs for an operation and shows
the resulting output for each case. For a two-input operation, there are four possible
combinations: 0/0, 0/1, 1/0, and 1/1.

NOT The NOT operation is the simplest. It is a unary operator, meaning it acts on a
single operand.

e English Definition: The NOT operation inverts or flips the input bit. If the
input is 1, the output is 0. If the input is 0, the output is 1.

e Example:

17
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NOT 10110001

A | NOT A
0 1
1

AND

e English Definition: The AND operation outputs a 1 only if both of the input bits

are 1. If either bit is a 0, the output is 0. This is useful for “masking” or clearing
bits.

e Example: Let’s say we want to clear the upper 4 bits of a byte. We can AND it
with the mask 00001111.

10110101
AND 00001111 (The Mask)

00000101  (Result)

A B|AANDB
0 0 0
0 1 0
1 0 0
1 1 1

OR
e English Definition: The OR operation outputs a 1 if at least one of the input
bits is 1. It only outputs 0 if both inputs are 0. This is useful for setting specific
bits.

e Example: Let’s say we want to ensure the two most significant bits are set to 1.
We can OR the value with the mask 11000000.

18



10110101
OR 11000000 (The Mask)

11110101 (Result)

A B|AORB
0 0 0
0 1 1
1 0 1
11 1

XOR (Exclusive OR)

e English Definition: The XOR operation outputs a 1 only if the two input bits
are different. If they are the same (both 0 or both 1), the output is 0. This is very
useful for toggling or flipping bits.

e Example: If we XOR a value with a mask, the bits corresponding to a ‘1‘ in the
mask will be flipped, and the bits corresponding to a ‘0‘ will be unchanged.

10110101
XOR 11110000 (The Mask)

01000101 (Result: the first 4 bits are flipped)

A B| AXORB
0 O 0
0 1 1
1 0 1
1 1 0

Universal Gates and De Morgan’s Laws

Two other critical logical operations are NAND (Not-AND, the result of an AND is
negated) and NOR (Not-OR, the result of an OR is negated).

These two gates are special because they are universal gates. This means that any
other logical function (AND, OR, NOT) can be constructed using only NAND gates,
or only NOR gates. This is incredibly useful for manufacturing, as you can design a

19
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A B|ANANDB A NORB
0 O 1 1
0 1 1 0
1 0 1 0
1 1 0 0

complex chip using just one type of simple, repeated building block. The mathematical
foundation for this property is provided by De Morgan’s Laws.

Mathematically, using - for AND, + for OR, and an overbar for NOT, the laws are
stated as:

A-B=A+B

wa]]

A+B=A-

At first glance, this may seem abstract, but it’s quite intuitive in plain English.

First Law: A-B = A+ B In English: “Not (A and B) is the same as (Not A) or (Not
B).”

e Intuition: Imagine a rule that says, “To get into the party, you must be on the
list AND have an ID.” Failing this rule — i.e., NOT (on list AND have ID) —
means one of two things is true: you are NOT on the list, OR you do NOT have
an ID. You don’t need to fail both conditions to be turned away. Failing just one
is enough.

Second Law: A+ B = A- B 1In English: “Not (A or B) is the same as (Not A) and
(Not B).”

e Intuition: Imagine a different rule that says, “To get a discount, you must be a
student OR a senior citizen.” Failing this rule — i.e., NOT (student OR senior) —
means you must fail both conditions simultaneously. You must be NOT a student
AND you must be NOT a senior citizen.

De Morgan’s laws provide the formal method for converting between AND-based and
OR-based logic, proving how a universal gate like NAND can be used to create any other
logical function, forming the fundamental building blocks of digital circuits.

20



e Decimal to Binary: For positive numbers, use repeated division by 2. For
negative numbers, convert the absolute value first, then apply the rules for
Sign & Mag, 1’s Comp, or 2’s Comp.

e Binary to Decimal (Two’s Comp): If the MSB is 1, the number is
negative. To find its value, flip all the bits, add 1, convert the result to
decimal, and put a minus sign in front.

e Overflow: Occurs when the result of an addition is too large to fit. This
happens only when adding numbers of the same sign and the result has a
different sign for Two’s Complement.

e Overflow Detection (Hardware): An overflow has occurred if and only
if the carry-in to the MSB is different from the carry-out of the MSB (Cj,, #
Cout) for Two’s Complement.

¢ Bitwise Operations:
— AND is often used to clear or mask bits (e.g., xxxx & 1100 = xx00).
— OR is often used to set bits (e.g., xxxx | 0011 = xx11).

— XOR is often used to flip or toggle bits (e.g., xxxx ~0011 flips the last
two bits).

e Universal Gates: NAND and NOR are universal because all other logic
gates (AND, OR, NOT) can be constructed from them.

Representing Fractional Numbers

So far, we have only dealt with integers. But the real world is full of fractional numbers,
like the price of a coffee ($3.75) or a mathematical constant like 7 (3.14159...). To
represent these, we need to move beyond integer schemes and find a way to place a
“point” within our binary numbers.

Fixed-Point Representation

The most straightforward way to represent fractional numbers is the fixed-point method.
The idea is simple: we decide that the binary point is located at a fixed, predetermined
position within our bit string. This divides the bits into an integer part (to the left of
the point) and a fractional part (to the right of the point).

Just as the weights to the left of the point are positive powers of two (20,2122 ...),
the weights to the right of the point are negative powers of two: 271(0.5), 272(0.25),
273(0.125), and so on.
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2 Bits and Representation

Conversions with Fixed-Point Numbers

Binary Fixed-Point to Decimal To convert a fixed-point binary number to decimal,
simply sum the weighted values of each part.

e Example: Convert the 8-bit fixed-point number 0110.1101 to decimal, assuming
4 bits for the integer and 4 for the fraction.
— Integer Part: 0110 = (0 x 23) + (1 x22) + (1 x21) + (0x 2°) =4+ 2 =6.

— Fractional Part: .1101 = (1 x 27 4+ (1 x 27+ (0x273) + (1 x27%) =
0.5+ 0.25 + 0.0625 = 0.8125.

— Total Value: 6 + 0.8125 = 6.8125.

Decimal to Binary Fixed-Point This is a two-step process: convert the integer part
and the fractional part separately.

1. Integer Part: Convert using the familiar repeated division by 2.

2. Fractional Part: Convert using repeated multiplication by 2. Multiply the
fraction by 2; the integer part of the result is the next binary digit. Repeat the
process with the new fractional part until the fraction becomes 0 or you run out of
bits.

e Example: Convert 10.625 to an 8-bit fixed-point representation with 4 integer and
4 fractional bits.

— Integer Part: 10,9 = 1010,.

— Fractional Part (0.625): 0.625 x 2 = 1.25; 0.25 x 2 = 0.5; 0.5 x 2 = 1.0.
The fractional part is .101.

— Combine and Pad: We combine the parts (1010.101) and pad the fractional
part to 4 bits, giving us 1010.1010.

Negative Numbers and Arithmetic in Fixed-Point

Representing negative numbers in fixed-point is handled using the standard two’s com-
plement method, applied to the entire bit string as if the binary point wasn’t there.

e Example: Find the representation of -2.5 using an 8-bit format (4 integer, 4
fractional bits).

1. Start with positive 2.5: 2 = 109, 0.5 = .15. So, 2.5 is 0010.1000.

2. Flip all the bits: 1101.0111.

3. Add 1 to the least significant bit (LSB): 1101.0111 + 0000.0001 = 1101.1000.
Thus, 1101.1000 represents -2.5.
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A major advantage of this scheme is that arithmetic is incredibly simple. To add or
subtract fixed-point numbers, you just line up the binary points and perform standard
binary addition/subtraction on the entire string. The hardware is identical to what is
used for integers, making fixed-point operations very fast and efficient.

Pros and Cons of Fixed-Point

e Pros: Fixed-point representation is simple and fast. Arithmetic can be performed
using the exact same hardware logic as for integers.

e Cons: The biggest drawback is its limited dynamic range. You cannot represent
very large numbers and very small fractions simultaneously. The designer must
make a permanent trade-off between range (number of integer bits) and precision
(number of fractional bits). This system is inadequate for scientific applications
that deal with both the astronomically large and the microscopically small.

Floating-Point Representation

How can we represent both the mass of the sun (1.989 x 10%° kg) and the mass of an
electron (9.109 x 1073 kg) in the same number system? The solution is to adopt a
format similar to scientific notation, where the decimal point can “float” to wherever it’s
needed. This is the idea behind floating-point representation.

To ensure that floating-point numbers are handled consistently across all machines,
the industry has adopted the IEEE 754 standard. We will focus on the most common
32-bit version, known as single-precision or FP32.

The IEEE 754 FP32 Standard

An FP32 number is made of three components packed into a 32-bit string:

| S | EEEEEEEE | FFFFFFFFFFFFFFFFFFFFFEF |

1. Sign (S): 1 bit. ‘0 for positive, ‘1‘ for negative.

2. Exponent (E): 8 bits. This determines the magnitude (how large or small the
number is).

3. Fraction (F) (also called Mantissa or Significand): 23 bits. This determines the
number’s actual digits (its precision).

These components are used in the following formula:
Value = (—1)% x (1.F) x 2(F~bias)

Let’s break down the two tricky parts:
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2 Bits and Representation

e The Hidden Bit (1.F): In binary scientific notation, a normalized number always
starts with a ‘1° (e.g., 1.011 x 25). Since this leading ‘1° is always there, we don’t
need to waste a bit storing it! This “hidden bit” gives us 24 bits of precision while
only storing 23.

e Biased Exponent (E - bias): The 8-bit exponent field (E) can store values from
0 to 255. To represent both positive and negative exponents, the standard uses a
biased notation. We subtract a fixed bias of 127 from the stored value E.

Zero and Special Cases

As the hidden bit is always a one, the formula cannot represent zero! Zero uses a different
formula and thus a special case. If E = 0, then the following formula is used:

Value = (—1)% x (0.F) x 2(E~126)

No more hidden bit means zero is possible; zero is represented by 32 zeros. There are
other special cases, for example when E = 255 (all ones), but this text does not cover
them. For further reading, look at the IEEE 754 specification.

Floating-Point Examples

Let’s walk through converting decimal numbers to FP32 format.

Example 1: 1.5
1. Sign: Positive = S =0.
2. Binary: 1.519 = 1.1s.
3. Normalize: The number is already in the form 1.F. This is 1.1 x 2V.

4. Find Components: The fraction F is ‘1°, padded to 23 bits. The exponent is ‘0°,
sowe solve F —127=0 — E =127 =011111115.

5. Assemble: 0 | 01111111 | 10000000000000000000000

Example 2: 764.0
1. Sign: Positive — § =0.
2. Binary: 76419 = 10111111005.
3. Normalize: Move the point 9 places left: 1.011111100 x 2°.

4. Find Components: F is ‘011111100°, padded. The exponent is ‘9‘, so £ — 127 =
9 — F =136 = 10001000,.

5. Assemble: 0 | 10001000 | 01111110000000000000000
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Example 3: 18.547 (The Precision Problem)

1. Sign: Positive = S = 0.

2. Binary: The integer part is 18 = 10010,. The fractional part 0.547 is non-

terminating in binary (0.10001...2).
3. Normalize: 1.001010001 - - - x 2%,

4. Find Components: The exponent is ‘4‘, so £ = 131 = 100000115. The fraction
F is ‘001010001...¢. Since we only have 23 bits, we must truncate or round the
infinite series. This is where precision loss occurs. The number stored is not

exactly 18.547, but a very close approximation.

Other Floating-Point Formats

While we focus on FP32; you should be aware of other common formats.

Table 2.3: Common IEEE 754 Floating-Point Formats

Name Total Bits Sign Exponent Fraction Bias
FP32 (Single) 32 1 8 23 127
FP64 (Double) 64 1 11 52 1023
FP16 (Half) 16 1 5 10 15
FP8 (Quarter) 8 1 4orb 3or2 Torlh

Fixed-Point: Simple and fast because arithmetic is just integer arithmetic.
Negative numbers use two’s complement. Its main con is a limited dy-
namic range.

Floating-Point: Uses a form of scientific notation to represent a huge dy-
namic range. It is the standard for almost all non-integer calculations.

FP32 Formula: Value = (—1) x (1.F) x 2(F—=127)

FP32 Components: It is composed of 1 Sign bit, 8 Exponent bits, and
23 Fraction bits.

Key Concepts: Remember the hidden bit (the implicit ‘1. before the
fraction) and the exponent bias (127 for FP32).

Precision Loss: Because the fraction part has a fixed number of bits, not
all decimal numbers can be represented perfectly. This can lead to small
rounding errors in calculations.
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2 Bits and Representation

Representing Text and Data

We’ve dedicated this chapter to representing different kinds of numbers, but what about
text? When you type an essay or send a message, the computer isn’t storing the shapes
of the letters ‘A’, ‘b’, and ‘c’. It is, of course, storing them as bits. The final piece of our
puzzle is understanding the standard codes used to map characters to numbers.

The ASCII Standard

The most foundational standard for representing text is ASCII (American Standard
Code for Information Interchange). Developed in the 1960s, ASCII is a 7-bit encoding
scheme, meaning it uses 7 bits to define 27 = 128 unique codes. Each code is mapped to
a specific character.

e The character ‘A’ is assigned the decimal value 65 (010000015).
e The character ‘B’ is assigned the decimal value 66 (010000103).
e The character ‘a’ is assigned the decimal value 97 (011000012).
e The digit ‘0’ is assigned the decimal value 48 (001100003).

Since computers typically operate on 8-bit bytes, the 8th bit was often set to ‘0‘ or used
for special purposes.

The first 32 codes (0-31) and the last code (127) are non-printable control characters,
which were originally used to control teletype machines. Many are still in use today, such
as Newline (code 10), Backspace (code 8), and Tab (code 9). The remaining codes
(32-126) represent printable characters, including the space character (code 32).

A Brief Note on Unicode

ASCIT’s 128 characters are sufficient for English but fail to represent characters from other
languages, let alone symbols and emojis. The modern solution is Unicode, a universal
standard that defines over 149,000 characters. Common Unicode encodings like UTF-8
and UTF-16 can represent every character from every language. Importantly, the first
128 codes of Unicode are identical to the ASCII standard, making ASCII a direct subset
of Unicode.

Full ASCII Table (Codes 0-127)
A Human-Friendly Shorthand: Hexadecimal Notation

You will often see long binary numbers, especially memory addresses, written in a strange
format like 0x7FFFAB42. This is hexadecimal notation (often called “hex”), and it’s
important to understand what it is and why we use it.

Hexadecimal is not a data representation used by the computer. The com-
puter’s hardware only understands binary. Hexadecimal is a human-friendly short-
hand for binary.
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Table 2.4: ASCII Printable and Control Characters
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Hexadecimal is a base-16 number system. It uses the digits 0-9 and then the letters
A-F to represent the values 10-15. The magic of hexadecimal is that 16 = 2*. This
means that every one hexadecimal digit corresponds perfectly to exactly four

binary digits (a nibble). This relationship allows for quick and easy conversion.
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2 Bits and Representation

Table 2.5: Decimal, Hexadecimal, and Binary Equivalents

Decimal Hex Binary | Decimal Hex Binary

0 0 0000 8 8 1000
1 1 0001 9 9 1001
2 2 0010 10 A 1010
3 3 0011 11 B 1011
4 4 0100 12 C 1100
) ) 0101 13 D 1101
6 6 0110 14 E 1110
7 7 0111 15 F 1111

Example 1: Binary to Hex To convert a binary string to hex, group the bits in sets of
four from right to left and replace each group with its hex equivalent.

e Binary: 1101 0101 1111 0010

e Grouped: 1101 0101 1111 0010

e Hex: D 5 F 2

It is much easier for a person to read and remember D5F2 than 1101010111110010.

Example 2: Hex to Binary To convert hex to binary, simply replace each hex digit
with its 4-bit binary string. The prefix 0x is commonly used in programming languages
to indicate that a number is in hexadecimal format.

e Hex: 0x1A7

e Expand: 1 A 7

e Binary: 0001 1010 0111

Hexadecimal is an essential tool for programmers because it provides a compact and less
error-prone way to work with the raw binary data that computers actually use.
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ASCII: A 7-bit standard that maps characters (letters, symbols, numbers)
to integer values. The first 128 characters are a subset of Unicode.

Unicode: The modern, universal standard for representing text from all
languages.

Hexadecimal (Base-16): A human-friendly shorthand for representing
binary data. It is not used by the computer’s internal hardware.

The Golden Rule of Hex: 1 hexadecimal digit always represents exactly
4 binary digits.

Common Notation: The prefix 0x is used in code to signify that a number
is hexadecimal.
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3 Digital Logic

Chapter 3: Digital Logic Structures

In the last chapter, we established that all information in a computer is represented
by bits. But how does a machine physically store these bits and, more importantly,
how does it compute with them? The answer lies in the hardware that underpins all of
computing: digital logic structures. This chapter will take you on a journey from the
simplest physical switch to the complex circuits that perform calculations.

The Switch: Storing a Bit

At the most fundamental level, a computer is a collection of billions of tiny switches.
Think of a simple light switch on your wall. It can be in one of two states: ON or OFF.
There is no in-between. We can use this physical property as a direct analog for a bit:

e OFF represents a logical 0.
e ON represents a logical 1.

This is our first and most important abstraction: a physical state (the position of a
switch) represents a logical value (a bit). Using this abstraction, it’s clear we can store
information. A bank of eight switches could be set in 2% = 256 different patterns, allowing
it to store any 8-bit number.

But we want to do more than just store bits; we want to compute with them. To do
that, we need a switch that can be controlled not by a human hand, but by an electrical
signal. A switch that can be turned ON or OFF by another switch. This is the key that
unlocks computation, and the device that makes it possible is the transistor.

e A physical switch has two states: ON and OFF.

e This provides a physical implementation for the two logical states of a bit:
1 and 0.

e The core idea of computation is to have switches that are controlled by other
electrical signals (i.e., other switches), not by mechanical force.
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The Transistor: An Electrically Controlled Switch

The transistor is arguably the most important invention of the 20th century. It is the
fundamental building block of all modern electronics. The first working point-contact
transistor was demonstrated in 1947 by John Bardeen and Walter Brattain at Bell Labs,
under the guidance of William Shockley. For this work, the three shared the 1956 Nobel
Prize in Physics. (As a point of pride for our university, John Bardeen was an esteemed
alumnus, earning both his bachelor’s and master’s degrees right here at the University
of Wisconsin-Madison).

That first transistor was a bulky, discrete component. Technology has since evolved
to the MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor), and specifically
CMOS (Complementary MOS) technology, which is the workhorse of digital logic today.
Modern processors now use incredible technologies like FinFETs, which are essentially
3D transistors, allowing engineers to pack billions of them onto a single chip.

The Physics of a MOSFET

A MOSFET has three terminals: a Source, a Drain, and a Gate. The basic idea is that
the Gate controls the flow of current between the Source and Drain. This is achieved by
manipulating a semiconductor substrate (usually silicon).

Let’s consider an n-type MOSFET (nMOS). It’s built on a p-type silicon substrate
(meaning it has an excess of positive charge carriers, or “holes”). Within this substrate,
two n-type regions (with an excess of negative charge carriers, or electrons) are created for
the source and drain. Normally, no current can flow between them. However, the gate is
separated from the substrate by a thin insulating layer of oxide. When a positive voltage
(alogical 1) is applied to the gate, it creates a downward-pointing electric field. This field
pushes the positive holes away from the area under the gate and attracts the minority-
carrier electrons. A sufficient concentration of these electrons forms a conductive n-type
“channel” between the source and drain, allowing current to flow. The switch is ON.

A p-type MOSFET (pMOS) is the complementary opposite. It’s built on an n-type
substrate with p-type source and drain regions. When a low or zero voltage (a logical
0) is applied to its gate, the resulting electric field attracts positive holes, forming a
conductive p-type channel. This allows current to flow. A high voltage at the gate would
disrupt this channel and turn the switch OFF.

Circuit Rules and the Inverter

This complementary behavior is the key to CMOS design. We establish two main voltage
levels: VDD, the power supply voltage representing logical 1, and GND (Ground),
representing logical 0.

e P-type transistors are used to create a “pull-up” network that connects the output
to VDD (1). They are active when their gate is 0.

e N-type transistors are used to create a “pull-down” network that connects the
output to GND (0). They are active when their gate is 1.
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A fundamental rule of CMOS design is that for any given input, the circuit must have a
path to either VDD or GND, but never both at the same time (which would cause
a short circuit) and never neither (which would leave the output floating).

Let’s re-examine our first logic gate, the inverter, with this new terminology.

e

B

k!

Figure 3.1: CMOS Inverter with VDD and GND

When Input = 1, the pull-down network (n-type) turns ON, connecting the Output to
GND (0). The pull-up network (p-type) is OFF. When Input = 0, the pull-up network
(p-type) turns ON, connecting the Output to VDD (1). The pull-down network is OFF.
The output is always actively driven to a valid state.

A transistor is an electrically controlled switch. The Gate controls the flow
of current between the Source and Drain.

e nMOS Transistor: Gate = 1 — ON. Forms the pull-down network to
connect the output to GND (0).

e pMOS Transistor: Gate = 0 — ON. Forms the pull-up network to
connect the output to VDD (1).

¢ CMOS Rule: The pull-up and pull-down networks are complementary;
only one is active at a time.

Building More Complex Gates

An inverter is useful, but to build a computer, we need more complex logic. By arranging
transistors in clever ways, we can construct any logic gate we need. Let’s look at the
transistor-level implementation of the two universal gates: NAND and NOR.
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NAND Gate (NOT-AND) A 2-input NAND gate is constructed with two p-type tran-
sistors in parallel and two n-type transistors in series.

]
—

Figure 3.2: A 2-input NAND gate transistor diagram

The output will be connected to Ground (0) only if both n-type transistors turn on,
which requires A AND B to both be 1. In all other cases, at least one of the p-type
transistors will be on, connecting the output to Power (1).

NOR Gate (NOT-OR) A 2-input NOR gate is constructed with two p-type transistors
in series and two n-type transistors in parallel.

——

4(

Figure 3.3: A 2-input NOR gate transistor diagram

The output will be connected to Ground (0) if either of the n-type transistors turns on,
which requires A OR B to be 1. Only when both A and B are 0 will the p-type series be
on, connecting the output to Power (1).
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From these universal gates, we can create others. An AND gate is simply a NAND
gate followed by an inverter. An OR gate is a NOR gate followed by an inverter.

The Abstraction of Gate Symbols Working at the transistor level is tedious. Just
as we abstracted a physical switch to a logical bit, we can abstract these transistor
configurations into clean, simple logic gate symbols. This allows us to design complex
circuits without thinking about individual transistors.

T3> D
DD oD

Figure 3.4: The standard logic gate symbols for AND, OR, NOT, NAND, NOR, and
XOR respectively.

We have now seen two levels of our system: the physical implementation using transis-
tors, and the logical abstraction of a gate. This is a powerful example of the "Big Idea"
of abstraction from Chapter 1.

e Complex gates like NAND and NOR are built from specific series and parallel
combinations of n-type and p-type transistors.

e NAND and NOR are “universal gates” because any other logic function
can be created from them.

e We use logic gate symbols as an abstraction to hide the underlying
transistor-level complexity, allowing us to design more complex systems.

Combinational Circuits: Datapath Components

Now that we have a toolbox of logic gates, we can start building functional circuits. The
first type we’ll examine is combinational logic. In a combinational circuit, the output
is determined only by the current values of the inputs. These circuits have no memory of
what happened before. Many essential "datapath" components of a processor are built
from combinational logic.

Full Adder (FA) A full adder is a circuit that adds three bits together: A, B, and a
Carry-In (Cjiy), producing a Sum (S) bit and a Carry-Out (Coyt) bit.
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Inputs Outputs
A B Ciy | Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

§_® \DS A B

\ COUT Cout S
Figure 3.5: Image of Full Adder gate-level implementation and FA block diagram

Once we have a full adder, we abstract it into a block. We can then chain these blocks
together to create a multi-bit adder. A 4-bit adder is made by connecting four FA blocks,
where the Cyy of one block becomes the Cj, of the next. This is called a ripple-carry
adder.

A3 B3 AZ BZ A1 B1 AO BU
FA Cin FA Cin FA Cin FA Cn[0
out S3 Cout S2 Cout S1 Cout SO

Figure 3.6: Image of a 4-bit ripple-carry adder using FA blocks

Decoder A decoder takes an n-bit input and asserts exactly one of its 2" output lines.
For example, a 2-to-4 decoder takes a 2-bit input and selects one of four outputs.

36



Inputs Outputs
I, In | D3 D2 D31 Do

0 O 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

5

JUUL

D,

Figure 3.7: Image of a 2-to-4 decoder implementation

Multiplexer (Mux) A multiplexer (or “mux”) is a data selector. It has several data
inputs, a set of select lines, and a single output. The select lines determine which one
of the data inputs is passed to the output. The simplest is a 2-to-1 mux, which selects
between two inputs, Iy and I;, using a single select line, S.

37



3 Digital Logic

Output Y

S |
0 | Ip is selected
1 | I is selected

Image of 2-to-1 Mux implementation

Like adders, muxes are modular. But how do we build larger muxes from smaller ones?
Let’s consider building a 4-to-1 mux. This requires selecting one of four inputs (I, Iy,
Iz, I3), which means we will need two select lines (S, So), since 22 = 4.

We can approach this hierarchically. Let the first select bit, S;, make a high-level
choice: does it select from the first pair of inputs (Ip, I;) or the second pair (I2, I3)? We
can use two 2-to-1 muxes for this first "stage". The second select bit, Sg, can then be
used to pick the final winner from the outputs of that first stage. This requires a third
2-to-1 mux.
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Image showing a 4-to-1 Mux built from three 2-to-1 Muxes

This pattern can be extended. To build an 8-to-1 mux, which requires 3 select lines,
we can combine two 4-to-1 muxes and one 2-to-1 mux. The two 4-to-1 muxes handle the
eight inputs, and the 2-to-1 mux, controlled by the most significant select bit, chooses
which of the 4-to-1 muxes’ outputs gets passed to the final output. This hierarchical
design is a core principle of digital engineering.

e Combinational Logic: The output depends only on the current inputs.
There is no memory.

e Full Adder (FA): Adds 3 bits (A, B, Cj,) and produces a Sum and a Coy.
Multi-bit adders are built by chaining FAs.

e Decoder: Takes n inputs and activates one of 2" outputs. Used for selecting
memory locations or instructions.

e Multiplexer (Mux): Uses select lines to route one of several data inputs
to a single output. It’s like a digital switch.

e Hierarchical Design: Complex components (like a 4-bit adder or an 8-to-1
mux) are built by combining simpler, repeated blocks.
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Sequential Circuits: Adding Memory

Until now, we have only discussed combinational circuits, where the output is purely a
function of the current inputs. An AND gate’s output doesn’t depend on what its inputs
were a moment ago. But to build a computer, we need circuits that can remember past
values. We need memory.

This brings us to sequential circuits. In a sequential circuit, the output depends not
only on the current inputs but also on the circuit’s previous state. This ability to store
a state is the fundamental property that enables everything from registers to RAM. The
most basic element of memory is the latch.

The S-R Latch: The Simplest Memory Cell

The simplest way to create a memory element is to use feedback, where the output of
a gate is fed back into its input. The S-R Latch (Set-Reset Latch) is built from two
cross-coupled NOR gates. It has two inputs, S (Set) and R (Reset), and two outputs, Q
and its complement, Q’.

R Q

3 Q

‘Image of an S-R Latch circuit using two NOR gates‘

Let’s walk through its behavior:

e Hold State (S=0, R=0): This is the memory state. If Q is currently 1, the top
NOR gate receives (0,0) from R and Q’, outputting 1. If Q is 0, the top NOR gate
receives (1,0) from R and Q’, outputting 0. The feedback loop holds the current
value of Q indefinitely.

e Set State (S=1, R=0): When S goes to 1, it forces the output of the bottom
NOR gate (Q’) to become 0. This 0 is fed to the top NOR gate along with R=0.
The inputs (0,0) to the top NOR gate force its output (Q) to become 1. The latch
is now "set" to 1.
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e Reset State (S=0, R=1): When R goes to 1, it forces the output of the top
NOR gate (Q) to become 0. This 0 is fed to the bottom NOR gate along with S=0.
The inputs (0,0) to the bottom NOR gate force its output (Q’) to become 1. The
latch is now "reset" to 0.

e Invalid State (S=1, R=1): This state is forbidden. It forces both Q and Q’ to
0, which violates the rule that they must be complements. If S and R then return
to 0 simultaneously, the final state of the latch is unpredictable.

Table 3.1: S-R Latch Characteristic Table

S R ‘ Qunext ‘ Action

0 0 Q Hold (Memory)
0 1 0 Reset

1 0 1 Set

1 1 ? Invalid

The Gated D Latch: Controlling When to Write

The S-R latch is useful but has two issues: the invalid state and the fact that we need
two inputs to control one output. We can solve both by creating a Gated D Latch
(Data Latch). The goal is to have a circuit that says: "When I give the signal, store the
value of this one data input, D."

We build it from an S-R latch, but add a control input, often called a clock (CLK) or
Write Enable (WE).

D+C

QI

WE

’Image of a Gated D Latch circuit diagram‘

The behavior is now much simpler:

e When CLK = 0, the latch is opaque. The AND gates are disabled, forcing S and
R to 0. The internal S-R latch enters its "hold" state, ignoring any changes on the
D input and preserving its stored value.

e When CLK = 1, the latch is transparent. The AND gates are enabled. If D=1,
S becomes 1 and the latch is set. If D=0, S becomes 0 and R becomes 1 (because
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of the inverter), and the latch is reset. In this mode, the output Q simply follows
the input D.

Table 3.2: Gated D Latch Characteristic Table
CLK D ‘ Qnext ‘ Action

0 X Q Hold (Memory)
1 0 0 Reset (Follows D)
1 1 1 Set (Follows D)

X = Don’t Care

The D Flip-Flop: Edge-Triggered Memory

The D Latch solves some problems, but its transparency can be an issue in larger circuits.
If D changes while CLK is still high, the output will change too. This can lead to
unpredictable behavior. We need a way to capture a value at a precise instant in time.
This is the job of a flip-flop.

First, let’s formally introduce the Clock (CLK) signal. In a modern computer, the
clock is a continuous, oscillating electrical signal (a square wave) that synchronizes the
actions of all circuits. It acts like a metronome for the entire processor. When you hear
about a processor with a speed of 4.5 GHz, that means this clock signal oscillates 4.5
billion times per second! The critical moments for a flip-flop are the transitions of this
signal: the rising edge (when it goes from 0 to 1) and the falling edge (when it goes
from 1 to 0).

A D Flip-Flop is an edge-triggered device. It only changes its output at one of
these precise moments (typically the rising edge). It is commonly built using two D
latches in a master-slave configuration.

— D Q D Q—

WE ’— WE

Image of a D Flip-Flop built from two D Latches (Master-Slave) ‘

Here is how it achieves its edge-triggered behavior:

1. When CLK is low (0): The first latch (master) is transparent and captures the
value from D. The second latch (slave) is opaque, holding the previous value and
keeping the final output Q stable.

2. On the RISING EDGE of CLK (0 — 1): This is the magic instant. The

master latch becomes opaque, locking in the value of D. Simultaneously, the slave
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latch becomes transparent, allowing the value just captured by the master to pass
through to the final output Q.

3. When CLK is high (1): The master latch remains opaque, ignoring any new
changes on D. The slave latch remains transparent, but its input from the master
is now stable. The final output Q is held constant.

The net effect is that the D flip-flop takes a "snapshot" of the D input at the exact
moment of the rising clock edge and holds that value until the next rising edge. This
predictable, synchronized behavior makes the D flip-flop the fundamental building block
for registers, which store all the data being actively used by the processor.

e Sequential vs. Combinational: Sequential circuits have memory (state);
Combinational circuits do not.

e S-R Latch: The most basic memory cell, built with cross-coupled gates. It
has Set (S), Reset (R), and Hold states. S=1, R=1 is an invalid state.

e D Latch: A “transparent” or level-triggered memory element. When its
CLK input is 1, the output Q follows the data input D. When CLK is 0, it
holds its value.

e D Flip-Flop: An edge-triggered memory element. It captures the value
of the D input only at a precise instant—the rising edge of the clock signal.
This is the fundamental building block for processor registers.

Memory Organization: Register Files and RAM

A single flip-flop can store a single bit. To build a useful computer, we need to store
thousands or even billions of bits. More importantly, we need a systematic way to access a
specific piece of data from this vast collection. This is achieved by organizing our memory
elements into a structured grid, as shown in the diagram below. This basic organization
is the principle behind both small register files and large-scale RAM (Random Access
Memory).
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Figure 3.8: Diagram of a 4x3 Memory Array

The diagram shows a simple memory with 4 locations, where each location can store
a 3-bit value. Let’s break down how it works by examining its inputs and outputs.
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The Core Components of Memory

Address Lines How do we tell the memory which of the four locations we want to
interact with? We use the address lines, labeled A[1:0] in the diagram. An address
is a binary number that uniquely identifies a location. Since our address input is 2 bits
wide, we can specify 22 = 4 unique locations (addresses 00, 01, 10, and 11).

On the left side of the diagram, these address lines feed into a decoder. The decoder’s
job is to take the binary address and activate a single "word line" corresponding to that
address. For example, if the address is 10, the third word line from the top will be
activated (set to 1) while all others remain 0.

Data Lines The data lines are the wires that carry the actual information being stored
or retrieved. In this memory, the data is 3 bits wide.

e Data In (D; [2:0]): When we want to write to memory, we place the 3-bit value
we want to store onto these input lines.

e Data Out (D,[2:0]): When we read from memory, the 3-bit value stored at the
selected address appears on these output lines.

Write Enable (WE) The Write Enable (WE) is a crucial control signal that tells the
memory whether to perform a read or a write operation.

e When WE = 1, the memory is in write mode. As you can see in the diagram,
the “WE* signal is ANDed with the output of the address decoder. This ensures
that the clock/enable signal is only sent to the memory cells in the single, selected
row, allowing the D; values to be written into them.

¢ When WE = 0, the memory is in read mode. The write signal to all memory
cells is disabled. Instead, the output logic at the bottom of the diagram is enabled.

The output logic itself is a set of large OR gates. The value from each cell in a column
is ANDed with its corresponding word line. This means that only the data from the
selected row will pass through the AND gates; the data from all other rows becomes
0. The OR gates then combine these results, effectively selecting the data from the one
active row and passing it to the ‘D, lines.

Addressability and Address Space

This example allows us to define two critical terms for any memory system:
e Addressability: This refers to the size of the data, in bits, stored at each unique
address. It is the "width" of the memory. In our diagram, each of the 4 locations

holds 3 bits, so the addressability is 3 bits. Most modern computers are byte-
addressable, meaning each unique address holds an 8-bit byte.
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e Address Space: This is the total number of unique locations that the memory
can store. It is determined by the number of address bits (N). The address space
is simply 2%. For our diagram with 2 address bits, the address space is 22 = 4
locations. A processor with 32 address lines can access an address space of 232
locations, which is 4 gigabytes (assuming byte-addressability).

e Memory is a grid of storage cells (latches or flip-flops) organized into ad-
dressable locations.

e The Address Lines are the input that selects which location to read from
or write to.

e The Data Lines carry the actual data being written (D_in) or read (D_out).

e The Write Enable (WE) control line specifies the operation: read (WE=0)
or write (WE=1).

e Addressability: The number of bits stored in each location (the memory
"width"). Common addressability is 8 bits (a byte).

e Address Space: The total number of unique locations. For a memory with
N address lines, the address space is 2%.

The Finite State Machine: Circuits with a Purpose

So far, we have seen two types of circuits: combinational logic (like an adder) whose
output depends only on the current inputs, and memory elements (like a flip-flop) that
simply store a value. What happens when we combine them? We get a circuit that can
remember its past and make decisions based on that memory. This powerful concept is
formalized as a Finite State Machine, or FSM.

An FSM is a model of computation that can be in one of a finite number of states. It
moves between these states in response to external inputs. A great analogy is a simple
traffic light controller at an intersection. It can be in a state like "North-South Green"
or "East-West Green." An input, such as a timer expiring, causes it to transition to
a new state, like "North-South Yellow." The FSM remembers which direction has the
green light and follows a strict set of rules to cycle through its states. It’s a circuit with
a memory and a purpose.

The Language of State Machines

We describe FSMs visually using a state diagram. This diagram has three key compo-
nents:

e States: Represented by circles. A state is a snapshot of the system’s history. The
machine can only be in one state at any given time.
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Figure 3.9: State diagram for a modulo 4 counter that outputs its current count each
input.

e Transitions: Represented by arrows between states. A transition is the move from
one state to another.

e Labels: Each transition arrow has a label in the format Input / Output. The
input is the condition that must be true for this transition to occur. The output is
the action or value produced when this transition is taken.

Examples of Finite State Machines

The world is full of processes that can be modeled as FSMs. Thinking in terms of states,
inputs, and transitions is a powerful problem-solving skill.

e A Day in the Life of a Cat: A cat’s life can be modeled as a simple FSM.

— States: Sleeping, Eating, Playing.

— Inputs: ‘owner appears‘, ‘bowl is full‘, ‘sees toy‘, ‘gets tired‘.

— Example Transition: If the cat is in the Sleeping state and the input
‘owner appears‘ occurs, it transitions to the Playing state and produces the
output ‘Purr’.

e A Basketball Game: The flowof a basketball game follows FSM rules.

— States: Team A Possession, Team B Possession, Free Throws, Timeout.

— Inputs: ‘made basket’, ‘defensive rebound‘, ‘foul‘, ‘violation‘.
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— Example Transition: If the game is in the Team A Possession state and
the input ‘made basket‘ occurs, it transitions to the Team B Possession state
and the output is ‘add 2 points to Team A’s score’.

e An Automatic Door: The controller for a supermarket door is a classic FSM.
— States: Closed, Opening, Open, Closing.
— Inputs: ‘person detected’, ‘door fully open’, ‘timer expires‘, ‘door fully closed".

— Example Transition: If the door is in the Closed state and the input ‘person
detected occurs, it transitions to the Opening state and the output is ‘turn
motor on (forward)‘.

Connecting FSMs to Digital Logic

This abstract model of states and transitions connects directly back to the hardware we’ve
been building. An FSM is not a new type of component; it is a specific arrangement of
the components we already know. In the next section, we will see how to build any FSM
using two simple parts:

1. State Memory: A register, built from D flip-flops, is used to store the FSM’s
current state.

2. Next State Logic: A block of combinational logic (AND, OR, NOT gates) takes
the current state and the external inputs and calculates two things: the next state
and the outputs.

On each tick of the clock, the next state calculated by the logic is loaded into the state
register, and the cycle begins again. This elegant combination of memory and logic allows
us to create circuits that can implement any algorithm.

e A Finite State Machine (FSM) is a computational model that combines
logic and memory. Its output depends on both its current inputs and its
past history, which is stored as its current state.

e F'SMs are described with state diagrams, which show:

— States (circles): Where the machine is.
— Transitions (arrows): How the machine moves between states.
— Labels (on arrows): The Input that causes the transition and the

resulting Output.

e At its core, any FSM can be built from two hardware components: a register
(for state memory) and combinational logic (to determine the next state
and outputs).
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Implementing a Finite State Machine in Hardware

In the last section, we described the Finite State Machine as an abstract model for
processes that have memory and a purpose. Now, we will connect this powerful idea all
the way back down to gates and flip-flops. We will see that there is a standard hardware
"template" that can be used to build a physical circuit for any FSM.

Let’s work through a specific example. Imagine we want to build a simple modulo-4
counter that advances its state only when an input signal, Count gpapie, is 1.

Step 1: State Assignment

Our FSM has four states: S0, S1, S2, and S3. To store four unique states, we need
at least [logy(4)] = 2 bits. We will use two state bits, which we'll call S; and Sp, to
represent the current state. The assignment of bit patterns to states is arbitrary, but
a simple sequential assignment is often easiest:

e State SO is encoded as 00

e State Sl is encoded as 01

e State S2 is encoded as 10

e State S3 is encoded as 11

Step 2: The State Transition Table

Next, we formalize the transitions in a truth table. The inputs to our logic will be the
current state bits (S1,.59) and the external input (Count gpape). The outputs will be the
bit pattern for the next state, which we will call N7 and Nj.

Table 3.3: State Transition Table for a Modulo-4 Counter

Inputs Next State | Description
S1 So Count Enable | NV; Ny
0 0 0 0 0 Stays in SO
0 0 1 0 1 Goes from SO to S1
0 1 0 0 1 Stays in S1
0 1 1 1 0 Goes from S1 to S2
1 0 0 1 0 Stays in S2
1 0 1 1 1 Goes from S2 to S3
1 1 0 1 1 Stays in S3
1 1 1 0 0 Goes from S3 to SO (wraps around)
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Figure 3.10: Hardware Template for a modulo-4 counter FSM

Step 3: The Hardware Template

This truth table completely defines a combinational logic circuit. We can derive Boolean
expressions for Ny and Ny and build a circuit from AND, OR, and NOT gates to produce
the next state based on the current state and inputs.

But where does the “memory” come from? The current state (Si,Sp) is stored in a
register made of D flip-flops. The magic of the FSM implementation is how we connect
everything together:

1. The current state (S1,Sp) is stored in a 2-bit register. The outputs of this register
are fed into our combinational logic block.

2. The combinational logic block also takes the external inputs (Countgpapie)-
3. The logic block computes the next state (N7, Ny) based on these inputs.

4. Crucially, the next state outputs (N, Ny) are wired directly to the D
inputs of the state register’s flip-flops.

Because a D flip-flop only updates its value on the rising edge of the clock, the entire
system works in a perfect, synchronized loop. The combinational logic continuously cal-
culates the correct next state based on the current state, but the machine only transitions
to that next state at the precise moment the clock ticks.
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The Big Picture: From Transistors to a Computer

Let’s take a step back and appreciate what we have achieved. We established that almost
any process with a memory can be described as a Finite State Machine—from a cat’s daily
routine to a basketball game to a traffic light controller. We have now also described a
concrete, universal hardware template that can build a physical machine for any of these
problems. All we need are flip-flops (for the state register) and simple logic gates (for
the next state logic), which are themselves built from transistors.

We are 99% of the way to building a computer! We know how to build a machine to
solve one specific problem.

The final, brilliant leap is this: what if we want a programmable computer that can
solve many different problems? As you may have guessed, we are going to describe the
computer itself as one giant FSM! The "state" of the computer is the contents of all its
registers and memory. The program you write is a sequence of inputs that triggers the
transitions between states, guiding the machine from a "Fetch Instruction" state to an
"Execute Addition" state, to a "Store Result" state, and so on.

This is the key that unlocks universal computation, and it’s the model we will explore
for the rest of this book.

e To implement an FSM, we first assign a unique binary code to each state.
N states require at least [logy(IN)]| bits.

e A State Transition Table (a truth table) defines the Next State for every
combination of Current State and Input.

e The FSM hardware template consists of two parts:
— A Register (D flip-flops) to store the Current State.
— Combinational Logic to calculate the Next State and Outputs.

e The output of the combinational logic (Next State) is fed into the D input
of the state register. The state transition happens on the clock edge.

e A programmable computer can be viewed as a very complex FSM where the
program provides the inputs to guide its state transitions.
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Chapter 4: Stored Program Computer

This is Big Idea #2 from Chapter 1: instructions are stored in memory, right alongside
the data the instructions operate on. This eliminates fixed functionality - simply load
in new instructions to change the function. To enable this change a couple concepts are
necessary: 1) a unit that can read, decode, and execute the instructions from memory
and 2) an instruction representation. Memory is only ones and zeros.

Hardware Components

There are three main components to this model of computers:

e Control Unit: this houses a finite state machine and any other circuit that helps
control the computer, namely the clock. The clock is a square wave that all se-
quential circuits use to change their held value. This unit keeps two registers to
simplify implementation: the program counter (PC) and the instruction register
(IR). The former is the address of the current instruction while the latter is the
current instruction. The FSM uses the IR as input to determine some state tran-
sitions.

e Processing Unit: this is the ALU and register file. The ALU performs all of the
math or logic of any instruction. The register file keeps the operands; it is many
registers (like a filing cabinet of registers). It enables higher performance by limiting
how often a program goes to memory for operands. There is a choice of how many
there are and how many bits each holds. We'll examine the tradeoffs at a later
point.

e Memory Unit: This houses memory and is the interface to the outside world. All
I/0 from the keyboard and mouse to the screen and printer is done through memory
in this model. Further discussion of 1/0 is left to a later chapter. This unit exists
because programs use more data than is capable of being stored in a register file.
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Figure 4.1: Diagram of Von Neumann Architecture. The dashed lines represent control
wires while solid arrows show data wires.

Instruction Representation

The instruction representation is highly dependent on decisions made about the address-
ability, address space, number of registers, number of operations, and others. These deci-
sions as well as the representation is defined by the instruction set architecture (ISA). We
will focus on RV32I: the chosen ISA for this book. There are 32 registers that hold 32 bits
each. Furthermore, we have settled on a 32-bit address space with byte addressability.

Each instruction has two representations: one for the computer and one for us humans.
We call the one for the computer machine code while the one for us is named assem-
bly language. Machine code is binary and has precomputed offsets and immediates.
Assembly has some very nice features that will be discussed in a later chapter.

Each instruction has the following portions:

e Opcode (required): a code that identifies the operation.
e Registers: the id number of each source register, up to two, and destination register.

e Immediate: a binary value, usually two’s complement, that is stored directly in the
instruction and therefore available immediately.

e Fixed Bits: some instructions can be represented without using all of the bits. The
ISA will define these bits to be specific values.

For assembly languages, the usual order of these are: <opcode> <destination regis-
ter> <source register> <source register | immediate>. For machine code, the binary
representation, please refer to the ISA documentation.

Examples

ADD R3, R2, R1. 0000000 00001 00010 000 00011 0110011.
ADD’s opcode is 0x33. R3 has id 3 so is 0x3. Similarly for R2 and R1. The ISA
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documentation details the correct order of these parts which is <fixed bits> <rs2>
<rsl> <fixed bits> <rd> <opcode> for machine code.

LW R4 9(R5). 000000001001 00101 010 00100 0000011.
LW'’s opcode is 0x03. Encode the registers via their id of 4 and 5 respectively. the
immediate 9 is encoded as a two’s complement value. The ISA documentation details
the order as <immediate> <rsl> <fixed bits> <rd> <opcode> for the machine code.

The Execution Cycle

The finite state machine in the Control Unit needs to, at minimum, handle the first
concept: to read, decode, and execute instructions from memory. This book uses a
slightly expanded finite state machine to more effectively separate the execution. It is
fetch, decode, execute, memory writeback, register writeback. We will call each
of these a phase because, as we’ll see, each phase can have many states.

Fetch

First, to read the instruction, the control unit tells the (instruction) memory the instruc-
tion’s address. This address is held in a special register named the program counter (PC).
It can be thought of as the line number of the currently executing code. The control unit
then tells memory to read and memory returns the data at said address. The data is
kept in a special register named the instruction register (IR). The instruction is used as
input to the FSM throughout the execution cycle. As we do not know which instruction
is being executed, the execution cycle always proceeds to Decode.

Decode

Next, the control unit decodes the instruction from the IR. This enables the later phases
to be conditional on the instruction. Additionally, during this phase, the operands are
read. They can be from registers or immediately from the instruction. Now we know
which instruction is being executed and thus change how the later phases behave based
on the instruction.

Execute

Here the instruction’s operation is executed. This occurs between the arithmetic logic
unit and the registers. It can include math, like add or mult, logic, like and or not, as well
as auxiliary math necessary for an operation: to talk to memory, we need to calculate to
an address.

For ADD: the operands are summed so the result is available by the end of the phase.
As ADD does not use memory, the next phase is Register Writeback.

For LW: the operands sum to calculate the effective address. It will be used in the
next phase: Memory Writeback.
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Memory Writeback

This phase handles interfacing with data memory and is the only phase to do so. This
communication requires sequenced data transfers so that no handshake is necessary. The
control unit first sets up the address for data memory. If it is storing a value, that data
is provided to data memory now. Then, it sends the command to memory: load or store;
retrieve from or place into memory respectively. Memory executes the command. For
loads like LW, memory disperses a value which will be stored in the next phase.

Register Writeback

Finally, the result of the operation is written back to the destination register. Some
house keeping is done at the same time: the PC is updated to the next address. We
don’t want to just keep executing the same instruction over and over again. Also, error
handling occurs; think divide by zero errors.
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What is an ISA?

At its simplest, the Instruction Set Architecture (ISA) is the "contract" between
the hardware (the CPU) and the software (the programs you run).

It’s the complete manual that defines everything a programmer (or a compiler) needs
to know to write correct machine code for a processor. It specifies what the CPU can
do, what resources it has, and how to interact with them. It is the boundary that allows
hardware and software to evolve independently.

Basic Elements and Principles of an ISA

Here are the fundamental components that every ISA must define:

Instruction Set: The complete list of all commands the CPU can execute. This
includes:
— Arithmetic/Logic: ADD, SUB, AND, OR, NOT
— Data Transfer: LOAD (from memory to register), STORE (from register to mem-
ory)

— Control Flow: BRANCH (conditional jump), JUMP (unconditional jump), CALL
(function call)

Registers: A small set of high-speed storage locations inside the CPU. The ISA
defines how many registers there are, what they are called, and their purpose (e.g.,
general-purpose, floating-point, status/flags).

Data Types: The types of data that instructions can operate on. This includes the
size (e.g., 8-bit byte, 32-bit word, 64-bit double word) and format (e.g., integers,
floating-point numbers).

Instruction Formats: The layout of an instruction in binary. This defines which
bits represent the opcode (what to do) and which bits represent the operands
(what to do it to, such as registers or memory addresses).

Addressing Modes: The set of rules for how the CPU calculates the memory
address for LOAD and STORE operations. Common modes include:

— Immediate: The value is part of the instruction itself.
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— Register: The value is in a register.

— Base + Offset (Displacement): An address is calculated by adding a con-
stant offset to the value in a register (great for accessing fields in a structure).

e Memory Model: Defines how the CPU interacts with main memory. This in-
cludes concepts like endianness (is the "big" or "little" end of a multi-byte word
stored first?) and memory ordering (which is critical for multi-core processors).

e Privilege Levels: A system for security and stability. Modern ISAs like x86
have additional support for virtual machines which are central to modern cloud
computing infrastructure. The ISA defines at least two modes:

— User Mode: For applications, which have restricted access.

— Kernel /Supervisor Mode: For the operating system, which has full access
to all hardware.

ISA Principles in Practice: RISC-V vs. ARM vs. x86

The most important design principle that splits these ISAs is RISC vs. CISC:

RISC (Reduced Instruction Set Computer)

A philosophy that favors a small, simple, and highly optimized set of instructions. In-
structions are generally fixed-length and execute in a single clock cycle. This leads to
simpler hardware design.

e Load-Store Architecture: A key part of RISC. Arithmetic/logic operations can
only be performed on data in registers. To operate on data in memory, you must
first LOAD it into a register, perform the operation, and then STORE it back.

e Applies to: RISC-V and ARM

CISC (Complex Instruction Set Computer)

A philosophy that favors a large, rich set of instructions that can perform complex, multi-
step operations in a single command. Instructions are variable-length and can take many
clock cycles.

e Register-Memory Architecture: The defining feature. A single ADD instruction,
for example, can read one value from a register, read another value directly from
memory, add them, and write the result back to memory, all in one command.

e Applies to: x86

Comparative Table
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Feature

RISC-V

ARM

x86 (Intel/AMD)

Core Philosophy

RISC (Reduced)

RISC (Reduced)

CISC (Complex)

Instruction Format

Fixed-length
bit).

Has an optional "Com-
pressed" (C) extension
for 16-bit instructions
to improve code den-
sity.

(32-

Fixed-length (32-bit
in AArch64).

Has "Thumb" (16/32-
bit) extension for code
density in older/em-
bedded versions.

Variable-length (1 to
15 bytes).

What this means:
Hardware decoding is
extremely complex.

Register Model

Large and simple.
32 general-purpose
registers (GPRs). x0
is cleverly hardwired
to zero.

Large and simple.
31 general-purpose
registers (GPRs) in
64-bit (AArch64).

Small and special-
ized.

Fewer GPRs (e.g., RAX,
RBX, RCX) which of-
ten have special, non-
general purposes.

Memory Operations

Load-Store.
Operations happen
only on registers. LOAD
and STORE are the only
instructions that touch
memory.

Load-Store.

Identical to RISC-V.
This is the hallmark of
a RISC architecture.

Register-Memory.
Many instructions (like
ADD, SUB) can oper-
ate directly on memory
operands.

Addressing Modes

Simple.
Primarily base register
+ immediate offset.

Simple.
Primarily base register
+ offset (which can be

Very Complex.
Supports
modes,

many

e.g., [base

another register, op- | + index*scale +
tionally shifted). displacement] in a
single instruction.
Licensing Open Source. Proprietary (Li- | Proprietary.
Royalty-free. Anyone | censed). Closely guarded by In-

can design and build a
RISC-V chip for free.

Arm Holdings designs
the ISA and licenses
it (or pre-built cores)
to companies (e.g.,
Apple, Qualcomm).

tel and AMD, who
have a complex cross-
licensing agreement.
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6 Assembly Language

Each ISA has two methods of encoding that are equivalent in meaning: Machine Code
and Assembly Language. An assembler is a program that takes as input the assembly
language and creates the corresponding machine code. Machine code is the computer
interpretable instructions; it is binary and each instruction has a defined sequence of
the bits. This enables the computer to know where to find what information of the
instruction. For RISC-V, the opcode is bits[6:0] of an instruction.

On the other hand, assembly language is a string representation of the instruction.
Generally, an assembly language provides a few helpful parts so that the program is
more maintainable. We will go through those shortly with examples from the chosen
ISA of this text.

This book covers most of an RISC-V ISA: RV32l. For descriptions as well as the
machine code for each instruction, see the provided supplementary material reference
chapter 2 and the complete machine code table. Note, this book does not cover FENCE,
TENCE.TSO, PAUSE, or EBREAK.

More Than Just Instructions

An assembly language is more than just the instructions in text form. It provides methods
of telling the assembler what to do, Directives, of improving comprehensibility, Pseudo
Instructions, of removing tedious computations, Labels, and of maintaining the code,
Comments.

Directives

Directives gives the assembler direction; put this bit of data into memory here or this
hex value is actually an instruction in disguise.

For RV32I, there is many directives, of which, five are implemented in our simulator.
Table gives the action and assembly language format.

Aside: String

A string is an array of characters that end in a null-terminator. The null-terminator is
zero and ASCII tables refer to it as null. Each character takes up 1 byte as they are in
ASCII representation. The memory layout of the string starts with the first character of
the string and proceeds in the order. This means that the null-terminator will always be
the last byte in memory for a string.
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6 Assembly Language

Directive Action

Anstr <value> treat this value like an instruction already in machine code.
.word <valuelist> | put these values in memory in two’s complement representation
taking one word of space each (4 bytes)
half <valuelist> | put these values in memory in two’s complement representation
taking one half-word of space each (2 bytes)

.byte <valuelist> | put these values in memory in two’s complement representation
taking one byte of space each (1 byte)

string <line> place this line in memory in ASCII representation.

Add a null terminator at the end of the line.

Table 6.1: The implemented directives of RV321

Instruction ‘ Name ‘ Operation
MV rd, rsl Move rd = rsl
LI rd, imm Load Immediate rd = signextend(imm)
NOP No Operation
NOT rd, rsl Bitwise Not rd = not(rsl)
SNEZ rd, rs2 | Set if Not Equal to Zero rd = 1if 0 !=rs2 else 0
SEQZ rd, rsl Set if Equal to Zero rd = 1if rsl == 0 else 0
J imm Jump PC = PC + signextend(imm)
RET Return PC =ra

Table 6.2: RV32I psuedo instructions that are implemented

Psuedo Instructions

These are like instructions; but, they do not exist in the ISA - their operation can
be. For example, bitwise not is not in RV32I. The operation can be performed via an
XORI instruction with immediate set to all 1s. Assembly languages include this pseudo
instructions to improve readability and clarify the intent of the instruction. Table
gives the assembly language format, full name, and operation of the implemented pseudo
instructions.

Labels

Labels are used to replace relative offsets in instructions. One can define a label on any
line through "<string>:". The label then refers to that line’s address. For accessing data
or writing loops in assembly, labels eliminate the need to count the number of instructions
in between a branch and where the branch should go. So branches or jump one would
replace the imm with the label. Accessing data is more complicated.
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Relocation Functions

These functions take a label as input and produce a portion of their binary as output
for the assembler. They start with a percent and end with the function being called.
There are four of them: %lo, %hi, %pcrel lo, %pcrel hi. Both low functions produce
the lowest 12 bits. Both high functions produce the highest 20 bits. Thus, with a low and
a high function all 32 bits are covered. The difference between standard and pc-relative
functions is that the latter takes the address of the line which the function is in (its
PC) into account. Standard functions result solely from the label’s value. PC relative
functions result in a portion of the offset to get from the calling line to the label’s value.

An example: let data_start be a label with a value of 0x0001 _0050. %hi(data_ start)=0x00010
while %lo(data_start)=0x050. If an instruction with PC = 0x0001 0010 calls the pc re-
locatable versions, then %pcrel _hi(data_start)=0x00000 and %pcrel lo(data start)=0x040
because the label and the PC have a difference of 0x40.

Comments

Just like in any programming language, comments are provided to clarify or explain
design choices to later parties reading the code. In RV32I, a comment begins with # and
extends till the end of that line.

The Assembler

An assembler is a program that takes as input the assembly language and creates the
corresponding machine code. It performs all of the directives, replaces all of the pseudo
instructions with their implementation instruction, works out where all the labels refer
to and fills in the immediate values, and removes all of the comments.

The program is one part of the compilation process, and each ISA has an assembler
unique to it. It is usually included in compilers.

One implementation is the two pass assembler. The first pass creates a symbol table:
a mapping from label to address. The assembler keeps a variable that counts up the ad-
dresses of used memory locations starting from the initial starting address: 0x0001 0000
in our implementation. In other words, it counts the bytes taken up by the program to
know what address each instruction/line is on. Then, the second pass converts from
assembler to machine code with the values from the symbol table. Again, the assembler
works through each line of code either performing the translation or the action of the
directive.
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7 Programming in Assembly Language

We have seen that assembly languages do not have statements for if or while. They do
not have a concept of a block of code; though, programmers approximate blocks through
whitespace and comments to improve readability. This chapter therefore goes over how
control flow structures are implemented in assembly language.

A note: the operations that most [SAs include are rudimentary. Any operation that
does not appear in the ISA or the pseudo instructions, e.g. multiply, will necessarily be
broken into its simpler form, e.g. repeated addition.

Control Flow Basics

There are three forms of basic control flow: sequencing, selection, and repeating.

Sequencing is executing one instruction after another and so on. In assembly language
it is instructions on consecutive lines.

Selection is making a choice between one group of instructions and another: an if or
if-else statement. In assembly, this is implemented via a few control flow instructions, 1
conditional and a couple unconditional. The visual is Figure

Repeating is looping over one group of instructions until a condition is false: a while,
for, or do-while statement. In assembly, this is implemented via 1 conditional and 1
unconditional control flow instruction. The visual is Figure For and do-while loops
are not shown since they can be represented as a while loop.

Functions

Functions in high level languages have two pieces: the definition and the call. The
call is straight forward: put the arguments of the function in the correct registers then
perform a Jump and Link - JAL. The assignment of function parameters to registers is
determined through an Application Binary Interface (ABI). In our case, the ABI says
that parameters should go in order into a#: the first parameter is in a0, second in al,
and so on.

The definition makes further use of the ABI parameter assignment. With these assign-
ments, one can write the instructions that implement the function much like a standard
alone program. Then, a few things make it a function instead of a stand alone program:
1) the function name as a label at the top of the implementation, 2) using RET instead
of HALT, and 3) register preservation.

Since RV32I only has 32 registers, at some point, we will run out of registers. Register
Preservation is our way around it. There is two types of preservation and the distinction
lies in when the preservation occurs relative to a function call. If the preservation hap-
pens before the call and after the function returns, that is calleR register preservation:
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7 Programming in Assembly Language

High Level Code | Assembly Language
=prior_block= <prior _block>

If{ condition } { <condition=
B<not cond> <rs1>, <rs2>, Fblock

<true block> TBlock:
<true block=
JNblock

lelse{ FBlock:
<false block=> <false block>

1 MBlock:
<next block= <next block>

Figure 7.1: The high level code, assembly language, and memory view of a selection
structure. Each "< block>" is replaced by the instructions that make up
that block.
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High Level Code | Assembly Language

=prior_block= <prior_block=
Loop:

while( condition ){ <condition=
B<not cond=> <rs1>, <rs2=>, Fblock

<true_block> TBlock:
<true block>
JLoop

} NBlock:
=<next block:= <next block>

Figure 7.2: The high level code, assembly language, and memory view of a repeating
structure. Each "< block>" is replaced by the instructions that make up
that block.

the preservation occurs in the calleR. If the preservation occurs within the function’s
implementation, that is after the call and before the return, then it is calleE register
preservation.

Register preservation takes the same implementation in either type. To preserve the
registers, store the values out to memory. Then, do action - the function call or the
function body. Finally, restore the register values via loads from the same memory. This
memory is reserved by the associated function, caller or callee; one word per register.
Furthermore, the ABI says that only the s# registers are preserved. The temporary, t#,
and argument, a#£, can be changed by functions. Below is an example of calleE register
preservation.

Multiply:
lui tO, %hi(SAVESO)
sw s0, %lo(SAVESO) (t0) # perserve the necessary registers

<function body that changes s0>
lui t0, %hi(SAVESO)
1w sO, %lo(SAVESO)(t0) # restore the necessary registers

ret
SAVESO: .word O0x0O # reserve a place in memory for register preservation
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8 Input and Output

Through the chapters, this book has built and defined an entire core. It can perform
computations, yet not much else. How can we interact with this core: where are the
input and output?

The Operating System

The first and simplest option is to let the operating system handle it. RISC-V refers to
this as the environment. This is implemented through ECALL which may also be known
as service routines, system calls, environment calls, syscall, or traps; though, some of
these terms have a more specific definition that this general use.

The ECALL instruction jumps to the operating system loaded into memory starting at
address 0x0000 0000. The lowest addresses are reserved for the trap vector table, a.k.a
the OS jump table, table of service routine addresses. The register a0 is the number
for the desired OS function. Table provides the functions, function numbers, and
parameters for the simulator.

The trap vector table is a mapping from the function number to where the function
starts in memory. Because addresses are 32-bits wide, the function number is multiplied
by 4 to result in the address to access the trap vector table. Table shows a partial
trap vector table specifically of the simulator’s OS. Thus, to use print char, a0 is 10.
The address that ECALL accesses the trap vector table is 10 * 4 = 0x0000 0028 (40).
The table indicates that print char starts at address 0x0000_00BS.

If a new service routine is added to the OS, then a number is chosen for it and the trap
vector table is updated at the correct address with the starting address of the function.

Function ‘ a0 Number Arguments/Return

Print _char 10 al is the character to print

Print _string 11 al is the address of the string (null-terminated) to print
Get_ char 20 al will be the input character on return
Get_line 21 al is the address of the memory buffer to place the line into

Table 8.1: OS service routines and their ECALL numbers and arguments
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8 Input and Output

Address ‘ Function Starting Address

0x0000_0024 0xFFFF_ FFFF
0x0000_ 0028 0x0000__00B8

0x0000_002C 0x0000_00D4

0x0000__ 0030 0xFFFF FFFF
0x0000 _004C 0xFFFF FFFF
0x0000_0050 OxFFFF 0104
0x0000_ 0054 OxFFFEF 0124
0x0000_004C 0xFFFF_ FFFF

Table 8.2: The trap vector table. Address OxFFFF FFFF is used to indicate an invalid
function.

Polling

The second option is to do it yourself. There are a couple of implementations: polling
and interrupts. Polling being the simplest is implemented in the simulator. Interrupts
are discussed in the next section.

Polling is the CPU repeatedly asking the 1O device if it is ready, and if so, performing
the transaction. This exchange occurs through memory in what are called memory
mapped registers. These registers are designated memory locations that the CPU and
IO device agree on to exchange data and status between them. Per IO device, there are
two: the data register and the status register. The data register holds the data that
is being input or output. The status register is a collection of flags indicating various
things; the ready flag in bit 4 is the most important for polling. It indicates if there is
data to be exchanged.

Input or Output polling follows the same sequence: a loop asking the 10 device if it is
ready followed by a section performing the transaction. Table shows both with the
differences called out in the different columns. The main differences are different memory
mapped register locations: the keyboard has status register in address 0x0002_ 1000 and
data register in 0x0002 1004, the console status register in address 0x0002 1014 and
data register in 0x0002 1018.

Interrupts

Interrupts are a more complex implementation of 10. Its management of the IO is akin
to a student, the device, interrupting a lecture, the cpu, to ask a question; the device
signals to the cpu when it wants to perform a transaction. We will not discuss how
interrupts look in code. The implementation in hardware is an extension of memory
mapped registers to include an interrupt enable flag.

The biggest advantage of interrupts is that the cpu does not waste time continuously
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Input ‘ Output
lui t0, 0x00021
loop:
Iw t1, 0x0(t0) | lw t1, 0x14(t0)
andi t2, t1, 0x10
beq t2, zero, loop ‘ bne t2, zero, loop

1b a0, 0x4(t0) sw a0, 0x18(t0)
andi t1, t1, OxFEF | ori t1, t1, 0x10
sw t1, 0x0(t0) sw t1, 0x14(t0)

Table 8.3: Input and Output polling. Assume a0 is the character input or to be output.
The loop above the line checks if the IO device is ready. The instructions below
the line perform the transaction. Note, when accessing the memory mapped

registers, the calculation of the address could look different than presented
here.

asking the 10 device if it is ready. Instead, the cpu can perform other tasks.
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