
Abstract

File systems have traditionally been a major area of 
research and development. This is evident from the 
existence of over 50 file systems of varying popularity 
in the current version of the Linux kernel. They 
represent a complex subsystem of the kernel, with each 
file system employing different strategies for tackling 
various issues. Although there are many file systems in 
Linux, there has been no prior work (to the best  of our 
knowledge) on understanding how file systems evolve. 
We believe that such information would be useful to the 
file system community allowing developers to learn 
from previous experiences.    

This paper looks at  six file systems (Ext2, Ext3, Ext4, 
JFS, ReiserFS, and XFS) from a historical perspective 
(between kernel versions 1.0 to 2.6) to get an insight  on 
the file system development  process. We study the 
source code of these file systems over years to observe 
changes in complexity of the system and relate these 
metrics to the features and stability of file systems. We 
identified that only a few components in file systems 
are difficult  to get right the first time. Also, file     
system developers do not learn from each others 
mistake. As a result they end up introducing the same 
bugs in file systems.

1. Introduction

In today’s world everything revolves around data. Data 
is critical for day-to-day operation of any system. Data 
management is taken care of by file systems which 
reliably store data on disks. Users typically have varied 
requirements ranging from scalability, availability, 
fault-tolerance, performance guarantees in business 
environment  to small memory footprints, security, 
reliability in desktop environments. This has driven the 
file system community to develop a variety of systems 
that cater to different user requirements.

An open source environment like Linux has around 50 
different  file systems that provide different guarantees, 
targeting varied media. In an open source environment, 

file systems are typically developed and maintained by 
several programmer across the globe. At any point  in 
time, for a file system, there are three to six active 
developers, ten to fifteen patch contributors but  a single 
maintainer. These people communicate through 
individual file system mailing lists [14, 16, 18] 
submitting proposals for new features, enhancements, 
reporting bugs, submitting and reviewing patches for 
known bugs. The problems with the open source 
development  approach is that all communication is 
buried in the mailing list  archives and aren’t easily 
accessible to others. As a result  when new file systems 
are developed they do not leverage past  experience and 
could end up re-inventing the wheel. To make things 
worse, people could typically end up doing the same 
mistakes as done in other file systems.

We chose to look at  the file systems in the Linux kernel 
for the following three reasons: (1) Linux is open 
source, implying that we can get access to the source 
code of the file systems, without which it is almost 
impossible to study their evolution. (2) As compared to 
other systems Linux support a large variety of file 
systems.  Most importantly, some of these have existed 
for a long time (10-15 years). Hence, it  is possible to 
look at the file systems during different  stages of its 
lifetime and derive conclusions from them. (3) All 
communications (discussion, patches, bugs, etc.) 
between file system developers can be obtained from 
the mailing list  and are publicly available in many 
websites [16]. The bugzilla database, CVS, and git 
repositories are also publicly accessible. This allowed 
us to get insight  into the development process of file 
systems in an open source environment. It  would 
definitely be interesting to look at  file systems in other 
operating systems like Solaris, BSD. or Windows to 
compare and contrast it  with file systems developed in 
Linux.

In this paper, we look at  file system code in the Linux 
kernel (version numbers 1.0 to 2.6). This covers 14 
years of kernel development (1994 to 2008). We also 
look at  patches, bug reports and other communication 
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that is available in each of the file system mailing list. 
We have built a tool that automatically crawls the 
mailing archives and extracts higher level information 
from them. We did not  use Bugzilla database [9] as it is 
restricted to Redhat  releases and they are only a subset 
of the changes that are available in the mailing lists. We 
did not use the CVS repositories for the file systems as 
they didn't  have complete information. The repositories 
are solely used by the file system maintainer to 
consolidate the patches that  developers submit over 
time and eventually the kernel maintainer picks up the 
patches from each of the maintainers and integrates it to 
the linux kernel. We already have this information by 
looking at the file system code between kernel releases 
and the mailing list. As far as we know, a study of 
similar nature does not  exist in the file system 
community.

The contributions of this paper are  as follows:

• We have developed tools to systematically mine 
information available in mailing lists [14,15,16,18] 
and source code repositories [10, 11] so that 
developers can easily query to know file system 
properties or bugs.

• As part of our preliminary analysis, we provide 
insights into the development process, common 
problem areas, and stability of file systems.

• Identification of common bugs in file systems. This 
could serve as a reference document to file system 
developers to check if their file system are immune to 
the common bugs.

From our study, we found that  out  of 60 or so file 
systems only a handful of them have lots of features 
and most widely developed and used. Most of the file 
systems are designed well and do not undergo design 
level changes during their lifetime. In a purely open 
source file system, many developers do contribute to 
the development of the file system and in contrast file 
systems that have been started. We also found that 
developers across file system do not communicate 
effectively and as a result end up repeating the same 
mistakes in their file systems.   

Rest  of the paper is organized as follows. Sections 2 
explains the difficulties in extracting higher level 
information in file system development in Linux. 
Section 3 gives a broad overview of file system in the 
latest Linux kernel and justifies our choice of file 
systems included in this study. Section 4 analyzes the 
trends in code change and complexity across file 
systems. Section 5 and Section 6 looks at the code 
contributions of developers in file systems and 

frequently changed components. Section 7 discusses 
common bugs in file systems code and looks at turn 
around time for bugs in XFS. We talk about the 
implications of this work and how open source 
community should adapt itself for more efficient 
functioning in Section 8. We comment  on related work 
in Section 9 and conclude in Section 10.

2. Problems in the Open Source Model

To our knowledge, there has been no prior work on 
understanding the file system development process, 
especially in the Linux world. Previous work on   
software evolution looked at  software repositories like 
CVS, etc[3,4]. We cannot  apply the same kind of 
analysis because the development  model in Linux is 
very different. There is to no easy way to get this 
information in the Linux world. We comment  briefly 
about the file system development  process in Linux to 
understand the difficulties involved in it. 

Figure 1 shows the development  process in linux. From 
the figure, one can see that  most of the communication 
between the developers happens through the mailing 
lists. All the discussion, patches, and issues get  buried 
in the mails and finally end up getting archived at  some 
public website (e.g., [16]). Unlike the software 
development  process employed in other open source 
projects, the Linux model is very different in the sense 
that there is no proper CVS repository where we can 
track every change in the file system. Everything has to 

Figure 1: Linux kernel development process



be inferred from the mails in the mailing lists. Although 
there are search engines that  help extract information 
quickly from these archives, there are not tools that can 
infer trends and features from these mails. To our 
knowledge, existing tools to understand the open source 
project [7] etc. do not  work well for extracting 
information from the file systems in Linux. To 
summarize, file system developers typically 
communicate within their community (file system 
mailing list) about the issues and fixes and there is no 
easy way to get this information to other file system 
developers. As a result, we believe that  file system 
developers do not learn from each other’s mistakes and 
end up repeating the same mistakes (Refer Section 6 for 
more details). 

3 Choosing File systems

To obtain insight into how file systems have evolved, it 
is important  to observe file systems over a period of 
time. For all the file systems that we looked at, we 
ensured that  they existed for at  least two years (this 
does not include the initial time spent on the file system 
before it was accepted in the Linux kernel). 

We also wanted to look at  file systems at various stages 
of their development along with how they were 
conceived. To be precise, we wanted diversity in the file 
systems origin in order to derive useful inferences. We 
chose Ext2, Ext3, Ext4, Reiserfs, XFS, and JFS in our 

study. The Ext2 file system was chosen because it  is a 
mature file system that  was derived from the Ext  file 
system and has been around for more than 15 years. 
Also, Ext2 was the default  file system for Linux for 
over 10 years which indicates its stability. We chose the 
Ext3 and Ext4 because they were derived from Ext2. 
Ext3 is a mature file system (it  is now the default file 
system in Linux) and the development in Ext4 started 
recently (in 1995). The Ext2/3/4 file system were 
started by the open source community. ReiserFS was 
chosen as it was initially conceived by a single person 
(Hans Reiser) and was slowly adopted by the open 
source community. We selected the XFS and JFS file 
systems as they were initially developed by the industry 
(SGI [21] and IBM [22] respectively) and then were 
adopted by the open source community.  By choosing 
file systems that  have evolved from different sources 
we believe we can get a broad perspective on the file 
system development process. For completeness, we 
take a brief look at  all file system in the current linux 
version.

3.1 File System Sizes

Even though we looked only at 6 file systems, we 
wanted to get a feel of all the file system that exists in 
the current Linux kernel. Figure 2 shows the lines of 
code(LOC) in file systems in Linux. For calculating 
LOC we do not include blank lines and comments. 

Figure 2. Lines of  Code for all file systems in Linux 2.6.27



File systems can be classified into three categories 
based on the lines of code. In the first category we have 
file systems that  have less than 1000 lines of code. 20 
of the 60 file systems studied fall into this category. 
These file systems are customized for a specific 
purpose or environment (for example, ramfs is 
customized for keeping all data in memory with no 
consistency guarantees). The interesting thing about 
these file systems is that they heavily use the library file 
system (libfs) code that  is available in the Linux kernel, 
which also reduces the number of errors in these file 
systems. 

In the second category, the file system sizes range 
between 1000 and 5000. There are 25 file systems that 
fall into this category. These file systems do not support 
many features and have their development  stopped 
within a few years of its acceptance in the kernel and 
hence are not so interesting to observe. 

Finally we have 15 file systems in the third category in 
which lines of code are greater than 5000. These file 
systems are more interesting to study for the following 
reasons. (a) They have significant  number of features, 
(b) Development of these file system have continued 
for more than two years, (c) They have at least  10 main 
contributors in their life time, and (d) these file systems 
are widely used.

3.2 Documentation in File systems

A major complaint  with open source software is that 
many of them are not  well documented. We wanted to 
verify if it  holds true for file systems in Linux by  

computing the ratio of lines of code to lines of 
comments (LOC/COM) for each of the file systems. 
Figure 3 shows LOC/COM ratio for all file systems. It 
is interesting to see that file systems that have more 
lines of code (or more popular) are the ones that  are 
well documented. One thing that  stood out  was XFS 
which has a very low LOC/COM ratio (it had a line of 
comment for every two lines of code). We believe there 
are two reasons for such good documentation. The 
primary reason is that it was developed in a company 
and secondary reason being that  it has around 250 files 
and it  is almost impossible to read code or track 
dependency without proper documentation.

3.3 Features in File Systems

We wanted to study the contribution of features in a file 
system towards its popularity and compare it  against 
file system size. Table 1 shows popular features that are 
supported in Ext2, Ext3, Ext4, JFS, ReiserFS and XFS. 
We did not include the other file systems because they 
are not as feature heavy as the ones shown in Table 1. 
For instance, most of the other file systems did not 
provide any feature other than hard and soft links (just 
like the Ext2 file system). Some of these file system did 
not support ACL and extended attributes (e.g., cramfs 
and ramfs). It  is obvious that only file systems that have 
large number of lines have more features in them. These 
are the file systems that are more popular amongst users  
[23].

In summary, although many file systems come along 
with the linux kernel, only a handful of those are 
popular. We observed that  all popular file systems 

Figure 3. Lines of  Comments for all file systems in Linux 2.6.27



provided stronger data reliability guarantee through 
journalling. Journalling has become a de-facto feature 
in today's file systems. Other features critical to a file 
system success are online and offline resizing of file 
systems. It was interesting to observe that extended 
attributes were first introduced in the Ext2 file system 
and was adopted by all popular file systems as it 

provided more flexibility for the users to describe her 
stored data.

Table 1: File System features

Figure 4: Ext2 Code Evolution
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4. Analysis on the life span of File Systems

In order to obtain a better understanding file system 
development  over time, we looked at  changes made to a 
file system code over time and the code complexity as a 
result of these changes. To measure code complexity, 
we used McCabe cyclomatic complexity metric [24]. 
Cyclomatic complexity measures the number of linearly 
independent  paths through a program's source code. It  is 
the one of the most popular metrics to measure the 
complexity of any code. 

We wanted to verify whether some of the popular 
wisdom in software engineering hold true. For example, 
more stable system do not  change frequently or file 
systems in the initial stages of development tend to 
change quite often. We looked at each of the six file 
systems and tried to understand the nature of code 
changes across kernel versions.

Figure 4 shows Ext2 changes between versions 1.0 to 
2.6.27.  It was surprising to observe that  although Ext2 
had been establish well before v1.0, there are changes 
to the code till the latest  version. On closer inspection 
of the diffs between the two versions where there was 
significant code change, we saw that a majority of the 
changes where due to interface changes in the linux 
kernel. There were a large number of modifications 
between versions 2.2 and 2.3, which has a significant 
drop in lines of code. On inspection, this was because 
the developers were trying to fix the file truncation 
logic and after a few attempts they threw away the 
existing code and rewrote it from scratch as the race 
conditions were difficult to handle. The huge spike near 
the 2.5.45 indicates the 1500 lines that  was added to the 
Ext2 file system (Access Control Lists (ACL) and 
extended attributes (XATTR) were introduced in this 
version). Another interesting trend that we observed in 
that some of the changes in Ext3 file system that 
improved its performance were back ported back to the 
Ext2 file system so that users who still use Ext2 could  
benefit from it. For example, the last spike near 2.6.26 
is due to the back porting of smarter resource 
management code using Red black trees used in Ext3 
file system.
 

 

The first  two significant  increases in the code was the 
introduction of a better directory look up mechanism 
using red black trees for improving performance and 
introduction of ACLs and XATTR respectively.  The 
other increase in  lines of code is due to the introduction 
of a new resource allocation policy using red black 
trees. Though people have vigorously started working 
on the Ext4 file system we still see a continuous 
development  in the Ext3 file system. In Ext4 file system 
we see a significant  amount of code churn as compared 
to Ext2 and Ext3 as it is still in the early stages of its 
development.

Figure 5c and Figure 5d shows the trend in JFS and 
ReiserFS.  Figure 5e shows the code change in XFS 

Figure 5a: Ext3 Code Evolution

Figure 5b: Ext4 Code Evolution



Figure 5c: JFS Code Evolution Figure 5d: ReiserFS Code Evolution

Figure 5e: ReiserFS Code Evolution



across kernel versions. The significant drop in the lines 
of code between 2.4.36 and 2.5 kernel is that buffer 
management and locking were inefficiently 
implemented before. They threw away almost  all of the 
code and rewrote it  from scratch. The other significant 
drop in the lines of code near 2.6.13 is due to 
simplification of the resize logic that they borrow from 
ext3 file system.

5. Code Contributors

The most important  factor for the success or failure of 
an open source project  are the people who contribute to 
it. Without constant  contributions that fixes bugs, adds 
new features and most  importantly reviews changes 
submitted by fellow contributors, an open source 
project cannot progress. The file systems under study 
represent fairly successful systems coming from 
different  backgrounds. In this section we look at the 
various code contributors to each of these systems and 
try to understand how their development processes 
differ. Here, we present the amount of code contributed 
by the developers to these file systems. We measure 
code contribution by parsing emails that contain patches 
and figuring out  what files and how many lines of code 
were affected. We consider a developer as a code 
contributor only when his overall contribution exceeds 
at  least  50 lines. We don’t have any idea about the 
initial contributors and the percentages that they 
contributed. This is an artifact  of the kernel 
development  process (the file system maintainers and 
the kernel maintainer have separate source code trees 
and they accumulate and eventually apply patches sent 
by other developers to their repositories). Due to this 
approach, it  is difficult  to find the original contributors 
of the code.

5.1 Methodology

One of the data sources for this project  is the mailing 
list archives found at  marc.info[15]. To extract  all the 
mails sent to a particular mailing list we have to crawl 
all the pages of that  list and download the emails. 
OSSMole[7] is an open source tool that can download 
mailing lists from sourceforge.net  and populate a 
MySQL database. The problem with this tool is that  it  is 
highly customized to work with sourceforge and did not 
work well with marc.info. So we developed a simple 
crawler, that would download all the emails given the 
list name. The crawler has to keep track of links 
traversed once to avoid duplication. The next  step is to 
preprocess the emails to get  rid of the HTML tags. We 
then parse the emails to get  relevant information out of 

them (sender, date, subject, content) and populate the 
MySQL database. We also segregate mails on contents, 
into bugs, patches and general discussion. We maintain 
separate databases for each mailing list and we can use 
these tables to run queries that could give us useful 
information. We illustrate the process in Figure 6.

5.2 Results

5.2.1 Ext2, Ext3, Ext4

Figure 7.a, 7.b. 7.c shows the percentage of code 
contributed by individual developers over the complete 
history of Ext2, Ext3 and Ext4. There are few 
interesting things that stand out from this pie chart.
• The overall contributions from major contributors 

(>5% code) is ~ 50% in each of the case, with the 
exception of Ext4 which is still under development 
and so fewer people contribute. The other side of the 
same picture is that  almost 50% of the code comes 
from the community. This represents a significant 
contribution considering the fact that  these are really 
complex systems, without  the best  documentation and 
development methodologies and standards.

• We find a lot  of common developers (Andreas Dilger, 
Ming Ming Cao, Ted Tso, Andrew Morton etc) in 
these file systems clearly indicating the origin of the 
system (Ext3 evolved from Ext2 and Ext4 from 
Ext3).

Figure 6: Information Extraction Methodology
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5.2.2. ReiserFS

As mentioned ReiserFS is an unique case - it  was 
sponsored by Namesys (and supported by Novell) and 
initially developed only by Hans Reiser. Figure 7d 
shows the contributors to ReiserFS. Apart from Hans 
Reiser (~30%), other major contributors like Jeff 
Mahoney (SUSE/Novell, ~8%), Chris Mason (SUSE, 
~7%) etc account for over 50% of the code.

5.2.3. XFS

XFS, as mentioned before, was originally developed by 
SGI Corp for the IRIX operating system and later made 
open source. To this day, SGI continues to spearhead 
the development of XFS and so most of the major code 
contributions come from people directly employed by 
SGI. This is clear from Figure 7e, which shows that 
over 70% of the code was written by SGI employees 
(Chris Hellwig, Barry Naujok, Dave Chinner etc). The 
fewer developer count  can also be attributed to the fact 
that XFS code base is generally considered to be 
complex with over 200 files. Even with well 
documented code, new developers find it  hard to 
understand this massive code base.

Summary

As we can observe, purely open source projects tend to 
have a lot  more developers contributing whereas 
projects driven by corporations have fewer developers. 
Another thing to note is simpler file systems are easier 
to understand and so the community can contribute to 
its development. We notice that  a lot  of people are 
continuously involved in the development process of 
Ext2, Ext3, Ext4 file system and it is this constant 
influx of contributions that  keep these projects 
successful. Ext2, Ext3 are relatively mature systems and 
the code is well understood, where as Ext4 is a system 
under development  and so people are still in the process 
of understanding how it  works. More over, one wouldn't 
expect  a new system to have good documentation. Once 
Ext4 stabilizes, we expect  the same level of 
involvement from the community.

6. Frequently Changed Components

In this section we find what components were modified 
frequently in each of the file systems. Frequently 
changed components not  only represent  hot  spots for 
changes, but  also could relate to components that  are 
more bug prone and are difficult  to get right  at  the first 
attempt. To evaluate this metric, we create a list  of file 
names in each email that  was downloaded. This is under 
the assumption that  when a developer submits a patch, 
the file names and the lines modified are included in the 
email. By searching for specific patterns like "fs/
reiserfs/*.c or *.h", we can generate a list of files that 
were modified in a patch. To avoid double counting of 
files, we group emails by similarity of their subjects and 
each file mentioned in the concatenated contents is 
counted exactly once. We have done this study at a file 
level. It is possible to drill down to the granularity of 
functions, but that would require correlating diffs to 
function names.

In Figure 8a, the slices represent  the frequency at which 
a file was modified. In case of Ext2, we see that  the 
superblock (super.c), inode (inode.c), inode allocation 
(ialloc.c) and bitmap allocation (balloc.c) represents 
over 60% of all modification done to ext2. This 
includes frequent changes in kernel interfaces as well as 
mount options. We see a similar trend in ext3, ext4 and 
ReiserFS as well (Figure 8b, 8c, 8d respectively). This 
goes to show that  in these popular file systems, there 
are few components that are hard to get right. Most 
others are relatively stable and dont often change.Figure 7e: XFS Contributers
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xfs_extfree_item.c xfs_bit.c xfs_iocore.c xfs_error.h xfs_rw.h xfs_qm_syscalls.c xfs_vfsops.h
xfs_arch.h xfs_trans_priv.h xfs_bit.h xfs_dir2.h xfs_dquot.c xfs_trans_item.c xfs_ialloc.h
xfs_alloc.h xfs_dir2_sf.h xfs_quota.h libxfs.h xfs_attr_leaf.h xfs_filestream.c xfs_macros.c
xfs_mru_cache.c xfs_dir2_leaf.h xfs_trans_inode.c xfs_buf_item.h xfs_qmops.c linux.c xfs_inode_item.h
util.c vxfs_super.c

(a) (b)

(c) (d)

XFS

(e)

Figure 8: Contributions to file system code by individuals 



On the other hand, Figure 8e shows the pie chart for 
frequently changed components in XFS. All of the 250 
files in XFS were modified sometime or the other and 
no single file contributed to a major modification which 
is clearly evident from the figure. We understand from 
this graph is that we find a lot of dependancy between 
components in XFS and functionality distributed over 
multiple files. This also relates to the fact that XFS code 
is a lot more complex than Ext or ReiserFS.

In order to understand the nature of changes in 
frequently changed files we looked at  super.c and 
balloc.c in all the Ext series file system. super.c and 
balloc.c was the among the top three frequently 
changed files. The changes in super.c where mainly 
related to the interface changes in the kernel across 
versions. As super.c is typically the interfaces between 
the kernel and the file system it  needs to be changed 
whenever the kernel interface changes. The other 
changes in super.c were related to parsing the mount 
option and super block flags. On the other hand, in the 
balloc.c file, several corner cases were ignored. 

7 Bugs in file system code

We wanted to systematically study file system bugs as 
they are the primary cause of file system instability. 
This holds true for most  of the software systems. We 
attempted to provide a deep insight into the origin and 
likely cause of these bugs. Bugs in file systems need not 
only result from logical errors, but may also represent 
fundamental design issues that restrict the file system 
from functioning correctly. Our end goal was to come 
up with a bug classification taxonomy would provide 
the right  level of abstraction to allow developers to 
communicate and reason about  bugs. We believe that it 
could give further insight into density of each class of 
bugs and how this varies with the various releases as 
well as within each release.

We were really disappointed in the way bugs were 
reported and tracked in the Linux kernel. Though there 
is a bugzilla database for the linux kernel [8] most of 
the bugs aren't  reported here. Even though there is a 
standard format for submitting bugs to the mailing list 
[25] most  of the reports do not follow this format. To 
make things worse, the developers do not include 
proper explanation about how they fixed these bugs. 
They consolidate their other changes along with the bug 
fixes to the mailing list. They also use different subjects 
to discuss bugs that are reported in the mailing lists 
which made it even worse to track bugs in these file 

systems. In file systems like ReiserFS, they 
acknowledge that it  is a bug and reply saying the fix 
will be available in the next version. Almost in all the 
file systems, the patches do not mention about the bugs 
that are being fixed. As a result, we had a tough time in 
consolidating bug reports to read the bug report  and 
track patches. We ended up manually looking at  most  of 
the mails that had subject like 'bugs', 'oops', 'panic' or 
'crash' and body containing the above mentioned key 
words. We only present our preliminary analysis of our 
findings here. We plan to continue working on it and try 
to come up with a taxonomy which will be part  of the 
future work.       

Common File System Mistakes

Though there are many file systems present  today, the 
higher level operations on each of them are very 
similar. Interestingly, simple checks in one file system 
are also applicable to other file systems. For example, 
file size can never be greater than the file system size. 
We randomly selected 10% of the useful bug reports 
from each of the file systems and looked at  the report to 
understand the type of bugs. We define useful bug 
report as one that has initial bug report  along with a 
discussion on the bug (whose thread count is greater 
than 1) that  has the same subject.  We were happy to 
identify bugs that  were reported in more than one file 
system.  The common bugs in the file system code can 
broadly classified in terms of following four category. It 
is important  to note that this is no way complete and 
should be considered as a preliminary finding. More 
through study is required to quantify the results.

Trivial  Errors. These were very simple errors usually 
c a u s e d b y p r o g r a m m e r s n e g l i g e n c e o r 
misunderstanding of the file system API's. Few of the 
errors that  we observed in this category were as 
follows: (a) Missed update: this is the case when the 
programmer does not update part of the data structure. 
For example, in ReiserFS file system we saw that 
developer forgot  to update the atime field in the Inode 
structure during stat  operations.  (b) Forgetting to lock 
shared data structures (c) Revert  back patches by 
mistake. In all file system we observed that patches 
were reverted back by mistakes and as a result 
previously fixed bugs were reintroduced. (d) Changed 
the negation condition. Negation of the condition could 
exercise the wrong code which results in a bug. The 
following code patch fixes a bug in the ReiserFS code.

 -} else if (!mutex_trylock(&journal->j_flush_mutex)) {
 +} else if (mutex_trylock(&journal->j_flush_mutex)) {
             BUG();



Miss Dependency between two components. These 
errors usually arise because the developer is not  very 
familiar with the code or more importantly due to 
insufficient  documentation in the code. We observed 
bugs of this nature in Ext2, ReiserFS and also in XFS.

Not handling corner cases. As mentioned earlier. 
Some of the sanity checks are common across file 
system. Typically, file system developers miss these 
corner cases. For example, we saw that Ext2, Ext3 and 
ReiserFS didnt  not check if the file size is greater than 
the file system size. 

Failure to handle  partial disk failures. Most  of the 
file systems in our study neglected the errors reported 
by the disks in some I/O paths. As a result it caused 
them to panic the kernel. We observed bug reports in 
Ext3, ReiserFS and XFS about this behavior. 

8 Discussion

During the course of this project, we faced a lot of 
difficulty in extracting information required to 
understand the file system development process. This 
made us wonder if the current  practices are good 
enough. In this section, we would like to discuss some 
of the pitfalls in file system development and possible 
solutions that  could make file system development in a 
open source development  faster and enjoyable. File 
systems are one of the critical component of the 
operating system as it  is responsible for storing data 
persistently in the storage media. Hence, more attention 
should be paid to the development process in order to 
avoid pitfalls that could lead to data loss. 

Need for better information  dissemination. File 
systems are typically implemented by a bunch of 
developers who get  it  to a working state before it gets 
included in the Linux kernel. Each file system has their 
own mailing lists and we saw that  not  much 
communication happens between developers across file 
systems. Documentation about  critical decisions, trade 
offs, bugs are almost  never documented and end up 
getting buried in the huge mailing list archives. Also 
people do not use bugzilla for reporting and tracking 
bugs. Currently, they are all tracked through mails 
which as we all know is very inefficient. Other open 
source systems (e.g., Mozilla, MySQL, etc.) have 
embraced Buzilla and have shown that  it is very 
effective in tracking bugs in their file systems. It would 
be really useful if the file system maintainers enforce 
the use of bug tracking systems and document critical 

design decisions and changes and send it  to a common 
list (linux-fsdevel) so as to inform other maintainers. 
Once a centralized bug tracking system is put in place, 
the patches should include the bug numbers to help 
reviewers easily understand the context.

Avoiding common bugs.  Once a repository of 
common bugs is created, we can create complier 
extensions (as in [26]) that  would automatically check 
for certain common errors. For bugs that  cant be 
checked using the above tool (e.g., file size greater than 
file system size), we need to develop a regression suite 
that can be used by all file systems.

9. Related Work

Mining Software Repository provides a valuable 
resource for relevant work on extraction of information 
from software repositories [3, 5, 7]. Previous work on 
extracting information from CVS Repositories for 
various open source projects, Sourceforge mailing lists 
and also bugzilla database, correlating these sources to 
provide a global view of changes has also been 
explored [6, 4]. People have also looked at patch 
submission and acceptance in open source communities 
[8]. 

Quite a few researchers have looked at creating 
taxonomies for bugs. Lu et al.[27] have presented a 
comprehensive list  of concurrency bugs in 4 open 
source projects and constructed a taxonomy for the 
same. Previous work on bug ontologies have an 
exhaustive list that  include categories like requirements, 
design, implementation (structural, control flow, 
sequencing), data etc. [1].

In [28], Chou et al. looked at operating system bugs that 
were found mainly by a static analysis tool. They 
further looked at turnaround time and error rates. These 
dont  include bugs that are reported through the mailing 
lists. To our knowledge, no prior work has been done in 
understanding the file system bugs in Linux kernel. We 
plan to leverage some of the above techniques to extract 
information from multiple mailing lists and understand 
file system evolution.

10 Conclusions

This paper attempts to trace the file system 
development  process in the Linux kernel. To our best 
knowledge, no prior work exists on providing an insight 
in to file system development process. It  is important to 



note that  we have just  scratched the surface and more 
detailed analysis is required to quantify our results. The 
main contributions of this paper are three folds. First, a 
tool to automatically mine information from source 
code repositories and mailing lists. Second, insights into 
the development process, common problem areas, and 
stability of file systems. Third, identification of 
common errors that  happen across file systems we 
studied.

In our study, we verified that like other software 
systems, lines of code, code complexity, and bugs are 
correlated in file systems. Even though many 
developers work on a file system, they do not affect the 
stability of the file system due to the strong code 
control practice employed by the Linux kernel 
community. From our bug analysis study, we found that 
file system developers do not  learn from each other 
mistakes and end up repeating the same mistakes. Bug 
tracking mechanisms are almost  nonexistent  in many 
file systems. We believe adopting Bugzilla, 
documenting design decisions, common errors, 
implementation issues would help file system 
developers to learn from each others mistake.  
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