
Abstract

File systems have traditionally been a major area of
research and development. This is evident from the
existence of over 50 file systems of varying popularity
in the current version of the Linux kernel. They
represent a complex subsystem of the kernel, with each
file system employing different strategies for tackling
various issues. Although there are many file systems in
Linux, there has been no prior work (to the best of our
knowledge) on understanding how file systems evolve.
We believe that such information would be useful to the
file system community allowing developers to learn
from previous experiences.

This paper looks at six file systems (Ext2, Ext3, Ext4,
JFS, ReiserFS, and XFS) from a historical perspective
(between kernel versions 1.0 to 2.6) to get an insight on
the file system development process. We study the
source code of these file systems over years to observe
changes in complexity of the system and relate these
metrics to the features and stability of file systems. We
identified that only a few components in file systems
are difficult to get right the first time. Also, file
system developers do not learn from each others
mistake. As a result they end up introducing the same
bugs in file systems.

1. Introduction

In today’s world everything revolves around data. Data
is critical for day-to-day operation of any system. Data
management is taken care of by file systems which
reliably store data on disks. Users typically have varied
requirements ranging from scalability, availability,
fault-tolerance, performance guarantees in business
environment to small memory footprints, security,
reliability in desktop environments. This has driven the
file system community to develop a variety of systems
that cater to different user requirements.

An open source environment like Linux has around 50
different file systems that provide different guarantees,
targeting varied media. In an open source environment,

file systems are typically developed and maintained by
several programmer across the globe. At any point in
time, for a file system, there are three to six active
developers, ten to fifteen patch contributors but a single
maintainer. These people communicate through
individual file system mailing lists [14, 16, 18]
submitting proposals for new features, enhancements,
reporting bugs, submitting and reviewing patches for
known bugs. The problems with the open source
development approach is that all communication is
buried in the mailing list archives and aren’t easily
accessible to others. As a result when new file systems
are developed they do not leverage past experience and
could end up re-inventing the wheel. To make things
worse, people could typically end up doing the same
mistakes as done in other file systems.

We chose to look at the file systems in the Linux kernel
for the following three reasons: (1) Linux is open
source, implying that we can get access to the source
code of the file systems, without which it is almost
impossible to study their evolution. (2) As compared to
other systems Linux support a large variety of file
systems. Most importantly, some of these have existed
for a long time (10-15 years). Hence, it is possible to
look at the file systems during different stages of its
lifetime and derive conclusions from them. (3) All
communications (discussion, patches, bugs, etc.)
between file system developers can be obtained from
the mailing list and are publicly available in many
websites [16]. The bugzilla database, CVS, and git
repositories are also publicly accessible. This allowed
us to get insight into the development process of file
systems in an open source environment. It would
definitely be interesting to look at file systems in other
operating systems like Solaris, BSD. or Windows to
compare and contrast it with file systems developed in
Linux.

In this paper, we look at file system code in the Linux
kernel (version numbers 1.0 to 2.6). This covers 14
years of kernel development (1994 to 2008). We also
look at patches, bug reports and other communication

Study of File System Evolution

Swaminathan Sundararaman, Sriram Subramanian
Department of Computer Science

University of Wisconsin
{swami, srirams} @cs.wisc.edu

that is available in each of the file system mailing list.
We have built a tool that automatically crawls the
mailing archives and extracts higher level information
from them. We did not use Bugzilla database [9] as it is
restricted to Redhat releases and they are only a subset
of the changes that are available in the mailing lists. We
did not use the CVS repositories for the file systems as
they didn't have complete information. The repositories
are solely used by the file system maintainer to
consolidate the patches that developers submit over
time and eventually the kernel maintainer picks up the
patches from each of the maintainers and integrates it to
the linux kernel. We already have this information by
looking at the file system code between kernel releases
and the mailing list. As far as we know, a study of
similar nature does not exist in the file system
community.

The contributions of this paper are as follows:

• We have developed tools to systematically mine
information available in mailing lists [14,15,16,18]
and source code repositories [10, 11] so that
developers can easily query to know file system
properties or bugs.

• As part of our preliminary analysis, we provide
insights into the development process, common
problem areas, and stability of file systems.

• Identification of common bugs in file systems. This
could serve as a reference document to file system
developers to check if their file system are immune to
the common bugs.

From our study, we found that out of 60 or so file
systems only a handful of them have lots of features
and most widely developed and used. Most of the file
systems are designed well and do not undergo design
level changes during their lifetime. In a purely open
source file system, many developers do contribute to
the development of the file system and in contrast file
systems that have been started. We also found that
developers across file system do not communicate
effectively and as a result end up repeating the same
mistakes in their file systems.

Rest of the paper is organized as follows. Sections 2
explains the difficulties in extracting higher level
information in file system development in Linux.
Section 3 gives a broad overview of file system in the
latest Linux kernel and justifies our choice of file
systems included in this study. Section 4 analyzes the
trends in code change and complexity across file
systems. Section 5 and Section 6 looks at the code
contributions of developers in file systems and

frequently changed components. Section 7 discusses
common bugs in file systems code and looks at turn
around time for bugs in XFS. We talk about the
implications of this work and how open source
community should adapt itself for more efficient
functioning in Section 8. We comment on related work
in Section 9 and conclude in Section 10.

2. Problems in the Open Source Model

To our knowledge, there has been no prior work on
understanding the file system development process,
especially in the Linux world. Previous work on
software evolution looked at software repositories like
CVS, etc[3,4]. We cannot apply the same kind of
analysis because the development model in Linux is
very different. There is to no easy way to get this
information in the Linux world. We comment briefly
about the file system development process in Linux to
understand the difficulties involved in it.

Figure 1 shows the development process in linux. From
the figure, one can see that most of the communication
between the developers happens through the mailing
lists. All the discussion, patches, and issues get buried
in the mails and finally end up getting archived at some
public website (e.g., [16]). Unlike the software
development process employed in other open source
projects, the Linux model is very different in the sense
that there is no proper CVS repository where we can
track every change in the file system. Everything has to

Figure 1: Linux kernel development process

be inferred from the mails in the mailing lists. Although
there are search engines that help extract information
quickly from these archives, there are not tools that can
infer trends and features from these mails. To our
knowledge, existing tools to understand the open source
project [7] etc. do not work well for extracting
information from the file systems in Linux. To
summarize, file system developers typically
communicate within their community (file system
mailing list) about the issues and fixes and there is no
easy way to get this information to other file system
developers. As a result, we believe that file system
developers do not learn from each other’s mistakes and
end up repeating the same mistakes (Refer Section 6 for
more details).

3 Choosing File systems

To obtain insight into how file systems have evolved, it
is important to observe file systems over a period of
time. For all the file systems that we looked at, we
ensured that they existed for at least two years (this
does not include the initial time spent on the file system
before it was accepted in the Linux kernel).

We also wanted to look at file systems at various stages
of their development along with how they were
conceived. To be precise, we wanted diversity in the file
systems origin in order to derive useful inferences. We
chose Ext2, Ext3, Ext4, Reiserfs, XFS, and JFS in our

study. The Ext2 file system was chosen because it is a
mature file system that was derived from the Ext file
system and has been around for more than 15 years.
Also, Ext2 was the default file system for Linux for
over 10 years which indicates its stability. We chose the
Ext3 and Ext4 because they were derived from Ext2.
Ext3 is a mature file system (it is now the default file
system in Linux) and the development in Ext4 started
recently (in 1995). The Ext2/3/4 file system were
started by the open source community. ReiserFS was
chosen as it was initially conceived by a single person
(Hans Reiser) and was slowly adopted by the open
source community. We selected the XFS and JFS file
systems as they were initially developed by the industry
(SGI [21] and IBM [22] respectively) and then were
adopted by the open source community. By choosing
file systems that have evolved from different sources
we believe we can get a broad perspective on the file
system development process. For completeness, we
take a brief look at all file system in the current linux
version.

3.1 File System Sizes

Even though we looked only at 6 file systems, we
wanted to get a feel of all the file system that exists in
the current Linux kernel. Figure 2 shows the lines of
code(LOC) in file systems in Linux. For calculating
LOC we do not include blank lines and comments.

Figure 2. Lines of Code for all file systems in Linux 2.6.27

File systems can be classified into three categories
based on the lines of code. In the first category we have
file systems that have less than 1000 lines of code. 20
of the 60 file systems studied fall into this category.
These file systems are customized for a specific
purpose or environment (for example, ramfs is
customized for keeping all data in memory with no
consistency guarantees). The interesting thing about
these file systems is that they heavily use the library file
system (libfs) code that is available in the Linux kernel,
which also reduces the number of errors in these file
systems.

In the second category, the file system sizes range
between 1000 and 5000. There are 25 file systems that
fall into this category. These file systems do not support
many features and have their development stopped
within a few years of its acceptance in the kernel and
hence are not so interesting to observe.

Finally we have 15 file systems in the third category in
which lines of code are greater than 5000. These file
systems are more interesting to study for the following
reasons. (a) They have significant number of features,
(b) Development of these file system have continued
for more than two years, (c) They have at least 10 main
contributors in their life time, and (d) these file systems
are widely used.

3.2 Documentation in File systems

A major complaint with open source software is that
many of them are not well documented. We wanted to
verify if it holds true for file systems in Linux by

computing the ratio of lines of code to lines of
comments (LOC/COM) for each of the file systems.
Figure 3 shows LOC/COM ratio for all file systems. It
is interesting to see that file systems that have more
lines of code (or more popular) are the ones that are
well documented. One thing that stood out was XFS
which has a very low LOC/COM ratio (it had a line of
comment for every two lines of code). We believe there
are two reasons for such good documentation. The
primary reason is that it was developed in a company
and secondary reason being that it has around 250 files
and it is almost impossible to read code or track
dependency without proper documentation.

3.3 Features in File Systems

We wanted to study the contribution of features in a file
system towards its popularity and compare it against
file system size. Table 1 shows popular features that are
supported in Ext2, Ext3, Ext4, JFS, ReiserFS and XFS.
We did not include the other file systems because they
are not as feature heavy as the ones shown in Table 1.
For instance, most of the other file systems did not
provide any feature other than hard and soft links (just
like the Ext2 file system). Some of these file system did
not support ACL and extended attributes (e.g., cramfs
and ramfs). It is obvious that only file systems that have
large number of lines have more features in them. These
are the file systems that are more popular amongst users
[23].

In summary, although many file systems come along
with the linux kernel, only a handful of those are
popular. We observed that all popular file systems

Figure 3. Lines of Comments for all file systems in Linux 2.6.27

provided stronger data reliability guarantee through
journalling. Journalling has become a de-facto feature
in today's file systems. Other features critical to a file
system success are online and offline resizing of file
systems. It was interesting to observe that extended
attributes were first introduced in the Ext2 file system
and was adopted by all popular file systems as it

provided more flexibility for the users to describe her
stored data.

Table 1: File System features

Figure 4: Ext2 Code Evolution

No

No

No

4. Analysis on the life span of File Systems

In order to obtain a better understanding file system
development over time, we looked at changes made to a
file system code over time and the code complexity as a
result of these changes. To measure code complexity,
we used McCabe cyclomatic complexity metric [24].
Cyclomatic complexity measures the number of linearly
independent paths through a program's source code. It is
the one of the most popular metrics to measure the
complexity of any code.

We wanted to verify whether some of the popular
wisdom in software engineering hold true. For example,
more stable system do not change frequently or file
systems in the initial stages of development tend to
change quite often. We looked at each of the six file
systems and tried to understand the nature of code
changes across kernel versions.

Figure 4 shows Ext2 changes between versions 1.0 to
2.6.27. It was surprising to observe that although Ext2
had been establish well before v1.0, there are changes
to the code till the latest version. On closer inspection
of the diffs between the two versions where there was
significant code change, we saw that a majority of the
changes where due to interface changes in the linux
kernel. There were a large number of modifications
between versions 2.2 and 2.3, which has a significant
drop in lines of code. On inspection, this was because
the developers were trying to fix the file truncation
logic and after a few attempts they threw away the
existing code and rewrote it from scratch as the race
conditions were difficult to handle. The huge spike near
the 2.5.45 indicates the 1500 lines that was added to the
Ext2 file system (Access Control Lists (ACL) and
extended attributes (XATTR) were introduced in this
version). Another interesting trend that we observed in
that some of the changes in Ext3 file system that
improved its performance were back ported back to the
Ext2 file system so that users who still use Ext2 could
benefit from it. For example, the last spike near 2.6.26
is due to the back porting of smarter resource
management code using Red black trees used in Ext3
file system.

The first two significant increases in the code was the
introduction of a better directory look up mechanism
using red black trees for improving performance and
introduction of ACLs and XATTR respectively. The
other increase in lines of code is due to the introduction
of a new resource allocation policy using red black
trees. Though people have vigorously started working
on the Ext4 file system we still see a continuous
development in the Ext3 file system. In Ext4 file system
we see a significant amount of code churn as compared
to Ext2 and Ext3 as it is still in the early stages of its
development.

Figure 5c and Figure 5d shows the trend in JFS and
ReiserFS. Figure 5e shows the code change in XFS

Figure 5a: Ext3 Code Evolution

Figure 5b: Ext4 Code Evolution

Figure 5c: JFS Code Evolution Figure 5d: ReiserFS Code Evolution

Figure 5e: ReiserFS Code Evolution

across kernel versions. The significant drop in the lines
of code between 2.4.36 and 2.5 kernel is that buffer
management and locking were inefficiently
implemented before. They threw away almost all of the
code and rewrote it from scratch. The other significant
drop in the lines of code near 2.6.13 is due to
simplification of the resize logic that they borrow from
ext3 file system.

5. Code Contributors

The most important factor for the success or failure of
an open source project are the people who contribute to
it. Without constant contributions that fixes bugs, adds
new features and most importantly reviews changes
submitted by fellow contributors, an open source
project cannot progress. The file systems under study
represent fairly successful systems coming from
different backgrounds. In this section we look at the
various code contributors to each of these systems and
try to understand how their development processes
differ. Here, we present the amount of code contributed
by the developers to these file systems. We measure
code contribution by parsing emails that contain patches
and figuring out what files and how many lines of code
were affected. We consider a developer as a code
contributor only when his overall contribution exceeds
at least 50 lines. We don’t have any idea about the
initial contributors and the percentages that they
contributed. This is an artifact of the kernel
development process (the file system maintainers and
the kernel maintainer have separate source code trees
and they accumulate and eventually apply patches sent
by other developers to their repositories). Due to this
approach, it is difficult to find the original contributors
of the code.

5.1 Methodology

One of the data sources for this project is the mailing
list archives found at marc.info[15]. To extract all the
mails sent to a particular mailing list we have to crawl
all the pages of that list and download the emails.
OSSMole[7] is an open source tool that can download
mailing lists from sourceforge.net and populate a
MySQL database. The problem with this tool is that it is
highly customized to work with sourceforge and did not
work well with marc.info. So we developed a simple
crawler, that would download all the emails given the
list name. The crawler has to keep track of links
traversed once to avoid duplication. The next step is to
preprocess the emails to get rid of the HTML tags. We
then parse the emails to get relevant information out of

them (sender, date, subject, content) and populate the
MySQL database. We also segregate mails on contents,
into bugs, patches and general discussion. We maintain
separate databases for each mailing list and we can use
these tables to run queries that could give us useful
information. We illustrate the process in Figure 6.

5.2 Results

5.2.1 Ext2, Ext3, Ext4

Figure 7.a, 7.b. 7.c shows the percentage of code
contributed by individual developers over the complete
history of Ext2, Ext3 and Ext4. There are few
interesting things that stand out from this pie chart.
• The overall contributions from major contributors

(>5% code) is ~ 50% in each of the case, with the
exception of Ext4 which is still under development
and so fewer people contribute. The other side of the
same picture is that almost 50% of the code comes
from the community. This represents a significant
contribution considering the fact that these are really
complex systems, without the best documentation and
development methodologies and standards.

• We find a lot of common developers (Andreas Dilger,
Ming Ming Cao, Ted Tso, Andrew Morton etc) in
these file systems clearly indicating the origin of the
system (Ext3 evolved from Ext2 and Ext4 from
Ext3).

Figure 6: Information Extraction Methodology

19%

10%

7%

6%
6%

5%4%3%
3%

7%

2%
2%
2%2%1%1%1%1%

18%

Ext2 Contributers

Others
laurentvivier
avantikamathur
josefbacik
jeffgarzik
andrewmorton
christophhellwig
matthiaskoenig
alextomas
valeriehenson
ericsandeen
alexandreratchov
danielphillips
josersantos
theodoretso
kalpakshah
girishshilamkar
aneeshkumarkv
andreasdilger

25%

14%

11%5%4%
3%
3%
2%
2%
2%
2%1%1%1%1%1%1%1%1%

20%

Ext3 Contributers

Others
takashisato
ericsandeen
pierrepeiffer
josefbacik
laurentvivier
duanegriffin
badaripulavarty
stephenctweedie
alexandreratchov
arjanvandeven
jankara
girishshilamkar
andrewmorton
aneeshkumarkv
abhishekrai
andreasdilger
theodoretso
alextomas
mingmingcao

30%

8%

7%
7% 6%

5%
4%
3%
2%
1%1%1%1%1%1%

22%

ReiserFS

Others
yuryumanets
vitalyfertman
yusufgoolamabbas
andikleen
jefflayton
vladimirvsaveliev
nikitadanilov
olegdrokin
edwardshishkin
jankara
alexeydobriyan
chrismason
dushantcholich
jeffmahoney
hansreiser

19%

17%

10%
9%

5%
4%
2%
2%
2%
2%
1%1%1%1%1%1%1%1%1%

18%

Ext4 Contributers

Others
markfasheh
girishshilamkar
frankmayhar
duanegriffin
coly
andreasdilger
harrypapaxenopoulos
jankara
josersantos
avantikamathur
ericsandeen
kalpakshah
alextomas
takashisato
amitkarora
akirafujita
theodoretso
aneeshkumarkv
mingmingcao

Figure 7: Contributions to file system code by individual developers

(b)(a)

(c) (d)

5.2.2. ReiserFS

As mentioned ReiserFS is an unique case - it was
sponsored by Namesys (and supported by Novell) and
initially developed only by Hans Reiser. Figure 7d
shows the contributors to ReiserFS. Apart from Hans
Reiser (~30%), other major contributors like Jeff
Mahoney (SUSE/Novell, ~8%), Chris Mason (SUSE,
~7%) etc account for over 50% of the code.

5.2.3. XFS

XFS, as mentioned before, was originally developed by
SGI Corp for the IRIX operating system and later made
open source. To this day, SGI continues to spearhead
the development of XFS and so most of the major code
contributions come from people directly employed by
SGI. This is clear from Figure 7e, which shows that
over 70% of the code was written by SGI employees
(Chris Hellwig, Barry Naujok, Dave Chinner etc). The
fewer developer count can also be attributed to the fact
that XFS code base is generally considered to be
complex with over 200 files. Even with well
documented code, new developers find it hard to
understand this massive code base.

Summary

As we can observe, purely open source projects tend to
have a lot more developers contributing whereas
projects driven by corporations have fewer developers.
Another thing to note is simpler file systems are easier
to understand and so the community can contribute to
its development. We notice that a lot of people are
continuously involved in the development process of
Ext2, Ext3, Ext4 file system and it is this constant
influx of contributions that keep these projects
successful. Ext2, Ext3 are relatively mature systems and
the code is well understood, where as Ext4 is a system
under development and so people are still in the process
of understanding how it works. More over, one wouldn't
expect a new system to have good documentation. Once
Ext4 stabilizes, we expect the same level of
involvement from the community.

6. Frequently Changed Components

In this section we find what components were modified
frequently in each of the file systems. Frequently
changed components not only represent hot spots for
changes, but also could relate to components that are
more bug prone and are difficult to get right at the first
attempt. To evaluate this metric, we create a list of file
names in each email that was downloaded. This is under
the assumption that when a developer submits a patch,
the file names and the lines modified are included in the
email. By searching for specific patterns like "fs/
reiserfs/*.c or *.h", we can generate a list of files that
were modified in a patch. To avoid double counting of
files, we group emails by similarity of their subjects and
each file mentioned in the concatenated contents is
counted exactly once. We have done this study at a file
level. It is possible to drill down to the granularity of
functions, but that would require correlating diffs to
function names.

In Figure 8a, the slices represent the frequency at which
a file was modified. In case of Ext2, we see that the
superblock (super.c), inode (inode.c), inode allocation
(ialloc.c) and bitmap allocation (balloc.c) represents
over 60% of all modification done to ext2. This
includes frequent changes in kernel interfaces as well as
mount options. We see a similar trend in ext3, ext4 and
ReiserFS as well (Figure 8b, 8c, 8d respectively). This
goes to show that in these popular file systems, there
are few components that are hard to get right. Most
others are relatively stable and dont often change.Figure 7e: XFS Contributers

30%

19%
13%

7%

3%
3%
3%
2%
2%
2%1%1%1%1%1%1%1%

11%

XFS Contributers

Others iustinpop andikleen
lachlanmcilroy ethanbenson michaelnishimoto
andreasgruenbacher knutjbjuland timothyshimmin
russellcattelan nathanscott takashisato
amitkarora ericsandeen davechinner
davidchinner barrynaujok christophhellwig

8%
3%

3%
4%

4%

7%

10%

12% 13%

16%

20%

Ext2

super.c
inode.c
ialloc.c
balloc.c
dir.c
ext2.h
xattr.c
namei.c
file.c
ioctl.c
others

Figure 7: Contributions to file system code by

7%2%2%
4%

4%
5%

6%

8%

11% 12%

18%

20%

Ext3

super.c
inode.c
balloc.c
namei.c
ialloc.c
resize.c
xattr.c
dir.c
ioctl.c
file.c
extents.c
Others

super.c
inode.c
mballoc.c
extents.c
balloc.c
ext4.h
ialloc.c
namei.c
resize.c
ioctl.c
xattr.c
Others

18%

3%
3%
3%
4%
5%

6%
9%

10%

11%

14%

14%

Ext4

22%

2%
2%
3%
4%
5%

5%
6%6%7%

10%

13%

14%

ReiserFS

inode.c
super.c
journal.c
stree.c
namei.c
bitmap.c
file.c
xattr.c
prints.c
do_balan.c
fix_node.c
resize.c
Others

xfs_vnodeops.c xfs_inode.c xfs_vfsops.c xfs_mount.c xfs_bmap.c xfsidbg.c xfs_log_recover.c
xfs_inode.h xfs_mount.h xfs_log.c xfs_iget.c xfs_alloc.c xfs_trans.c xfs_bmap_btree.c
xfs_fsops.c xfs_da_btree.c xfs_ialloc.c xfs_rw.c xfs_btree.c xfs_itable.c xfs_btree.h
xfs_attr.c xfs_alloc_btree.c xfs_dir2.c xfs.h xfs_ialloc_btree.c xfs_bmap_btree.h xfs_log_priv.h
xfs_acl.c xfs_rename.c xfs_buf_item.c faq.h xfs_attr_leaf.c xfs_dir2_block.c xfs_dmapi.c
xfs_utils.c xfs_dir2_node.c xfs_inode_item.c xfs_fs.h xfs_dir2_leaf.c xfs_trans.h xfs_dir2_sf.c
xfs_buf.h xfs_rtalloc.c xfs_dfrag.c xfs_trans_buf.c init.c xfs_trans_ail.c xfs_ag.h
xfs_vnodeops.h xfs_ialloc_btree.h xfs_dinode.h xfs_sb.h rdwr.c xfs_dir.c xfs_da_btree.h
xfs_dir_leaf.c xfs_clnt.h xfs_qm.c xfs_error.c xfs_alloc_btree.h xfs_dir2_data.c xfs_iomap.c
xfs_attr.h xfs_log.h xfs_bmap.h xfs_types.h xfs_utils.h xfs_dmapi.h xfs_acl.h
xfs_extfree_item.c xfs_bit.c xfs_iocore.c xfs_error.h xfs_rw.h xfs_qm_syscalls.c xfs_vfsops.h
xfs_arch.h xfs_trans_priv.h xfs_bit.h xfs_dir2.h xfs_dquot.c xfs_trans_item.c xfs_ialloc.h
xfs_alloc.h xfs_dir2_sf.h xfs_quota.h libxfs.h xfs_attr_leaf.h xfs_filestream.c xfs_macros.c
xfs_mru_cache.c xfs_dir2_leaf.h xfs_trans_inode.c xfs_buf_item.h xfs_qmops.c linux.c xfs_inode_item.h
util.c vxfs_super.c

(a) (b)

(c) (d)

XFS

(e)

Figure 8: Contributions to file system code by individuals

On the other hand, Figure 8e shows the pie chart for
frequently changed components in XFS. All of the 250
files in XFS were modified sometime or the other and
no single file contributed to a major modification which
is clearly evident from the figure. We understand from
this graph is that we find a lot of dependancy between
components in XFS and functionality distributed over
multiple files. This also relates to the fact that XFS code
is a lot more complex than Ext or ReiserFS.

In order to understand the nature of changes in
frequently changed files we looked at super.c and
balloc.c in all the Ext series file system. super.c and
balloc.c was the among the top three frequently
changed files. The changes in super.c where mainly
related to the interface changes in the kernel across
versions. As super.c is typically the interfaces between
the kernel and the file system it needs to be changed
whenever the kernel interface changes. The other
changes in super.c were related to parsing the mount
option and super block flags. On the other hand, in the
balloc.c file, several corner cases were ignored.

7 Bugs in file system code

We wanted to systematically study file system bugs as
they are the primary cause of file system instability.
This holds true for most of the software systems. We
attempted to provide a deep insight into the origin and
likely cause of these bugs. Bugs in file systems need not
only result from logical errors, but may also represent
fundamental design issues that restrict the file system
from functioning correctly. Our end goal was to come
up with a bug classification taxonomy would provide
the right level of abstraction to allow developers to
communicate and reason about bugs. We believe that it
could give further insight into density of each class of
bugs and how this varies with the various releases as
well as within each release.

We were really disappointed in the way bugs were
reported and tracked in the Linux kernel. Though there
is a bugzilla database for the linux kernel [8] most of
the bugs aren't reported here. Even though there is a
standard format for submitting bugs to the mailing list
[25] most of the reports do not follow this format. To
make things worse, the developers do not include
proper explanation about how they fixed these bugs.
They consolidate their other changes along with the bug
fixes to the mailing list. They also use different subjects
to discuss bugs that are reported in the mailing lists
which made it even worse to track bugs in these file

systems. In file systems like ReiserFS, they
acknowledge that it is a bug and reply saying the fix
will be available in the next version. Almost in all the
file systems, the patches do not mention about the bugs
that are being fixed. As a result, we had a tough time in
consolidating bug reports to read the bug report and
track patches. We ended up manually looking at most of
the mails that had subject like 'bugs', 'oops', 'panic' or
'crash' and body containing the above mentioned key
words. We only present our preliminary analysis of our
findings here. We plan to continue working on it and try
to come up with a taxonomy which will be part of the
future work.

Common File System Mistakes

Though there are many file systems present today, the
higher level operations on each of them are very
similar. Interestingly, simple checks in one file system
are also applicable to other file systems. For example,
file size can never be greater than the file system size.
We randomly selected 10% of the useful bug reports
from each of the file systems and looked at the report to
understand the type of bugs. We define useful bug
report as one that has initial bug report along with a
discussion on the bug (whose thread count is greater
than 1) that has the same subject. We were happy to
identify bugs that were reported in more than one file
system. The common bugs in the file system code can
broadly classified in terms of following four category. It
is important to note that this is no way complete and
should be considered as a preliminary finding. More
through study is required to quantify the results.

Trivial Errors. These were very simple errors usually
c a u s e d b y p r o g r a m m e r s n e g l i g e n c e o r
misunderstanding of the file system API's. Few of the
errors that we observed in this category were as
follows: (a) Missed update: this is the case when the
programmer does not update part of the data structure.
For example, in ReiserFS file system we saw that
developer forgot to update the atime field in the Inode
structure during stat operations. (b) Forgetting to lock
shared data structures (c) Revert back patches by
mistake. In all file system we observed that patches
were reverted back by mistakes and as a result
previously fixed bugs were reintroduced. (d) Changed
the negation condition. Negation of the condition could
exercise the wrong code which results in a bug. The
following code patch fixes a bug in the ReiserFS code.

 -} else if (!mutex_trylock(&journal->j_flush_mutex)) {
 +} else if (mutex_trylock(&journal->j_flush_mutex)) {
 BUG();

Miss Dependency between two components. These
errors usually arise because the developer is not very
familiar with the code or more importantly due to
insufficient documentation in the code. We observed
bugs of this nature in Ext2, ReiserFS and also in XFS.

Not handling corner cases. As mentioned earlier.
Some of the sanity checks are common across file
system. Typically, file system developers miss these
corner cases. For example, we saw that Ext2, Ext3 and
ReiserFS didnt not check if the file size is greater than
the file system size.

Failure to handle partial disk failures. Most of the
file systems in our study neglected the errors reported
by the disks in some I/O paths. As a result it caused
them to panic the kernel. We observed bug reports in
Ext3, ReiserFS and XFS about this behavior.

8 Discussion

During the course of this project, we faced a lot of
difficulty in extracting information required to
understand the file system development process. This
made us wonder if the current practices are good
enough. In this section, we would like to discuss some
of the pitfalls in file system development and possible
solutions that could make file system development in a
open source development faster and enjoyable. File
systems are one of the critical component of the
operating system as it is responsible for storing data
persistently in the storage media. Hence, more attention
should be paid to the development process in order to
avoid pitfalls that could lead to data loss.

Need for better information dissemination. File
systems are typically implemented by a bunch of
developers who get it to a working state before it gets
included in the Linux kernel. Each file system has their
own mailing lists and we saw that not much
communication happens between developers across file
systems. Documentation about critical decisions, trade
offs, bugs are almost never documented and end up
getting buried in the huge mailing list archives. Also
people do not use bugzilla for reporting and tracking
bugs. Currently, they are all tracked through mails
which as we all know is very inefficient. Other open
source systems (e.g., Mozilla, MySQL, etc.) have
embraced Buzilla and have shown that it is very
effective in tracking bugs in their file systems. It would
be really useful if the file system maintainers enforce
the use of bug tracking systems and document critical

design decisions and changes and send it to a common
list (linux-fsdevel) so as to inform other maintainers.
Once a centralized bug tracking system is put in place,
the patches should include the bug numbers to help
reviewers easily understand the context.

Avoiding common bugs. Once a repository of
common bugs is created, we can create complier
extensions (as in [26]) that would automatically check
for certain common errors. For bugs that cant be
checked using the above tool (e.g., file size greater than
file system size), we need to develop a regression suite
that can be used by all file systems.

9. Related Work

Mining Software Repository provides a valuable
resource for relevant work on extraction of information
from software repositories [3, 5, 7]. Previous work on
extracting information from CVS Repositories for
various open source projects, Sourceforge mailing lists
and also bugzilla database, correlating these sources to
provide a global view of changes has also been
explored [6, 4]. People have also looked at patch
submission and acceptance in open source communities
[8].

Quite a few researchers have looked at creating
taxonomies for bugs. Lu et al.[27] have presented a
comprehensive list of concurrency bugs in 4 open
source projects and constructed a taxonomy for the
same. Previous work on bug ontologies have an
exhaustive list that include categories like requirements,
design, implementation (structural, control flow,
sequencing), data etc. [1].

In [28], Chou et al. looked at operating system bugs that
were found mainly by a static analysis tool. They
further looked at turnaround time and error rates. These
dont include bugs that are reported through the mailing
lists. To our knowledge, no prior work has been done in
understanding the file system bugs in Linux kernel. We
plan to leverage some of the above techniques to extract
information from multiple mailing lists and understand
file system evolution.

10 Conclusions

This paper attempts to trace the file system
development process in the Linux kernel. To our best
knowledge, no prior work exists on providing an insight
in to file system development process. It is important to

note that we have just scratched the surface and more
detailed analysis is required to quantify our results. The
main contributions of this paper are three folds. First, a
tool to automatically mine information from source
code repositories and mailing lists. Second, insights into
the development process, common problem areas, and
stability of file systems. Third, identification of
common errors that happen across file systems we
studied.

In our study, we verified that like other software
systems, lines of code, code complexity, and bugs are
correlated in file systems. Even though many
developers work on a file system, they do not affect the
stability of the file system due to the strong code
control practice employed by the Linux kernel
community. From our bug analysis study, we found that
file system developers do not learn from each other
mistakes and end up repeating the same mistakes. Bug
tracking mechanisms are almost nonexistent in many
file systems. We believe adopting Bugzilla,
documenting design decisions, common errors,
implementation issues would help file system
developers to learn from each others mistake.

Acknowledgements

We would like to thank Prof. Ben Liblit for his
guidance and for his generous feedback at various
stages of our project. We would also like to thank Prof.
Remzi H. Arpaci-Dusseau for suggesting this
interesting idea and for his valuable suggestion for
improving the project. We thank all the file system
developers in Linux, without them there would be no
file systems for us to study. You guys are doing a
wonderful job and do continue the good work. Finally,
we would like to thank Sun Micro Systems for donating
Sun Ultra-20 workstation to ADSL group for their
research projects.

Reference

[1] B. Beizer and O. Vinter. Bug taxonomy and
statistics. Software Engineering Mentor, New York, NY,
USA, 2001.
[2] C. Bird, A. Gourley, and P. Devanbu. Detecting
patch submission and acceptance in oss projects. In
ICSEW ’07: Proceedings of the 29th International
Conference on Software Engineering Workshops, page
26,Washington, DC, USA, 2007. IEEE Computer
Society.

[3] M. Fischer, M. Pinzger, and H. Gall. Populating a
release history database from version control and bug
tracking systems. Software Maintenance, IEEE
International Conference on, 0:23, 2003.
[4] D. M. German. Mining CVS repositories, the
softchange experience. In Proceedings of the First
In ternat ionalWorkshop on Mining Sof tware
Repositories, pages 17–21, Edinburg, Scotland, UK,
2004.
[5] M. H. Halstead. Elements of Software Science
(Operating and programming systems series). Elsevier
Science Inc., New York, NY, USA, 1977.
[6] S. Henry and D. Kafura. Software structure metrics
based on information flow. IEEE Trans. Softw. Eng.,
7(5):510–518, 1981.
[7] J. Howison and K. Crowston. The perils and pitfalls
of mining sourceforge. In In Proceedings of the
International Workshop on Mining Software
Repositories (MSR 2004, pages 7–11, 2004.
[8] H. Kagdi, S. Yusuf, and J. I. Maletic. Mining
sequences of changed-files from version histories. In
MSR ’06: Proceedings of the 2006 international
workshop on Mining software repositories, pages 47–
53, New York, NY, USA, 2006. ACM.
[9] Kernel Bugzilla. http://bugzilla.kernel.org/.
[10] Kernel Git Repository. http://git.kernel.org/.
[11] Kernel Repository. http://pub.kernel.org/.
[12] S. Kim and J. E. James Whitehead. How long did it
take to fix bugs? In MSR ’06: Proceedings of the 2006
international workshop on Mining software
repositories, pages 173–174, New York, NY, USA,
2006. ACM.
[13] File systems in Linux. http://www.linux.org/
lessons/advanced/x1254.html.
[14] Linux kernel mailing list. http://lkml.org.
[15] Linux file system development mailing list. http://
marc.info/?l=linux-fsdevel.
[16] Reiserfs mailing list. http://marc.info/?
l=reiserfsdevel.
[17] A. SchrÃ˝uter, T. Zimmermann, R. Premraj, and A.
Zeller. If your bug database could talk... (short paper).
In Proceedings of the 5th International Symposium on
Empirical Software Engineering. Volume II: Short
Papers and Posters, pages 18–20, September 2006.
[18] Ext2 development mailing list. https://
lists.sourceforge.net/lists/listinfo/ext2-devel.
[19] Tim Littlefair. An investigation into the role of
Software Metrics in software quality improvement.
http://www.chs.ecu.edu.au/ tlittlef/.
[20] T. Zimmermann. Preprocessing CVS data for
finegrained analysis. In Proceedings of the First, pages
2–6, 2004.
[21] SGI Corporation. http://sgi.com
[22] IBM Corporation. http://ibm.com

http://ibm.com
http://bugzilla.kernel.org
http://bugzilla.kernel.org
http://git.kernel.org
http://git.kernel.org
http://pub.kernel.org
http://pub.kernel.org
http://www.linux.org/lessons/advanced/x1254.html
http://www.linux.org/lessons/advanced/x1254.html
http://www.linux.org/lessons/advanced/x1254.html
http://www.linux.org/lessons/advanced/x1254.html
http://lkml.org
http://lkml.org
http://marc.info/?l=linux-fsdevel
http://marc.info/?l=linux-fsdevel
http://marc.info/?l=linux-fsdevel
http://marc.info/?l=linux-fsdevel
http://marc.info/?l=reiserfsdevel
http://marc.info/?l=reiserfsdevel
http://marc.info/?l=reiserfsdevel
http://marc.info/?l=reiserfsdevel
https://lists.sourceforge.net/lists/listinfo/ext2-devel
https://lists.sourceforge.net/lists/listinfo/ext2-devel
https://lists.sourceforge.net/lists/listinfo/ext2-devel
https://lists.sourceforge.net/lists/listinfo/ext2-devel
http://www.chs.ecu.edu.au
http://www.chs.ecu.edu.au
http://sgi.com
http://sgi.com
http://ibm.com

[23] File System Primer http://wiki.novell.com/
index.php/File_System_Primer
[24] Thomas J McCabe. A Complexity Measure
IEEE Transcations on Software Engineering, Vol SE-2,
No 4. December 1976
[25] Reporting bugs for the Linux kernel. http://
www.kernel.org/pub/linux/docs/lkml/reporting-
bugs.html
[26] Benjamin Chelf , Dawson Engler , Seth Hallem,
How to write system-specific, static checkers in metal,
Proceedings of the 2002 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and
engineering, p.51-60, November 18-19, 2002,
Charleston, South Carolina, USA
[27] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan
Zhou. Learning from Mistakes --- A Comprehensive
Study on Real World Concurrency Bug Characteristics"
The Thirteenth International Conference on
Architectural Support for Programming Languages and
Operating Systems, March 2008.
[28] Andy Chou , Junfeng Yang , Benjamin Chelf , Seth
Hallem , Dawson Engler, An empirical study of
operating systems errors, Proceedings of the eighteenth
ACM symposium on Operating systems principles,
October 21-24, 2001, Banff, Alberta, Canada

http://www.kernel.org/pub/linux/docs/lkml/reporting-bugs.html%7D
http://wiki.novell.com/index.php/File_System_Primer%7D
http://wiki.novell.com/index.php/File_System_Primer%7D
http://wiki.novell.com/index.php/File_System_Primer%7D
http://wiki.novell.com/index.php/File_System_Primer%7D
http://www.kernel.org/pub/linux/docs/lkml/reporting-bugs.html%7D
http://www.kernel.org/pub/linux/docs/lkml/reporting-bugs.html%7D
http://www.kernel.org/pub/linux/docs/lkml/reporting-bugs.html%7D
http://www.kernel.org/pub/linux/docs/lkml/reporting-bugs.html%7D
http://www.kernel.org/pub/linux/docs/lkml/reporting-bugs.html%7D

