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Abstract

RECOVERY TECHNIQUES TO IMPROVE FILE SYSTEM RELIABILITY
Swaminathan Sundararaman

We implement selective restart and resource reservatiocofomodity file systems
to improve their reliability. Selective restart allows fégstems to quickly recover
from failures; resource reservation enables file systemmsvtid certain failures
altogether. Together they enable a new class of more rohdseéiable file systems
to be realized.

In the first part of this dissertation (on selective restavf develop Membrane,
a generic framework built inside the operating system tecsilely restart kernel-
level file systems. Membrane allows an operating systeml¢oaie a broad class
of file system failures and does so while remaining transgacerunning applica-
tions; upon failure, the file system restarts, its statestored, and pending applica-
tion requests are serviced as if no failure had occurred. [¥¢edevelop Re-FUSE,
a generic framework designed to restart user-level fileesgstupon failures. Re-
FUSE monitors the user-level file-system and on a crashrteske file system and
restores its state; the restart process is completelygeaant to applications. We
evaluate both Membrane and Re-FUSE, and show, throughimegation, that
both of these frameworks induce little performance and spaerhead and can
tolerate a wide range of crashes with minimal code change.

In the second part of the dissertation (on resource resematve develop An-
ticipatory Memory Allocation (AMA), a technique that usdatic analysis to sim-
plify recovery code dealing with memory-allocation faidst AMA determines the
memory requirements of a particular call into a file systend then pre-allocates
said amount immediately upon entry; subsequent allocaggnests are serviced
from the pre-allocated pool and thus guaranteed never lto\ié evaluate AMA
by transforming Linux ext2 file system into a memory-failuobust version of it-
self (called ext2-mfr). Experiments reveal that ext2-mfoids memory-allocation
failures successfully while incurring little space andeimverheads.
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Chapter 1

Introduction

“It's not the prevention of bugs but the recovery, the apilib grace-
fully exterminate them, that counts-"Victoria Livschitz

With the advent of low-cost disk drives, storage capackied disk utilization
have grown at rapid rates [58]. It is now possible for userstdoe terabytes of data
on a modern disk drive. As the amount of data increases, sitoedata is even
more critical, with data unavailability costing users na&ringuish and companies
millions of dollars per hour [38, 97, 131].

File systems are the commonly used software for managiryatatisk. Mod-
ern file systems are large code bases with tens of thousatide®bf code and they
support many features, protocols, and operations [23, Fiher, file systems are
still under active development, and new ones are introdugeig frequently. For
example, Linux has many established file systems, inclueitg [32], ext3 [183],
reiserfs [145], and still there is great interest in nextrg@tion file systems such as
Linux ext4 [113], btrfs [191], and ZFS [23]. Thus, file syste@re large, complex,
and under development — the perfect storm for numerous lougsse.

A great deal of recent activity in systems research has &t new tech-
niques for finding bugs in file systems [37, 49, 50, 74, 195]sdechers have built
tools that use static analysis [49, 74], model checking [107], symbolic execu-
tion [29, 196], machine learning [106], and other testirgdd techniques [11, 14,
138], all of which have uncovered hundreds of bugs in comgroskd file systems.

The majority of the software defects are founddcovery codgi.e., code that
is run in reaction to a failure. Although these failures, Wiee from hardware
(e.g., a disk) or software (e.g., a memory allocation), temdccur infrequently
in practice, the correctness of recovery code is neverdbatatical. For example,
Yang et al. found a large number of bugs in file-system regogede; when such



bugs were triggered, the results were often catastropéscilting in data corruption
or unmountable file systems [197]. Recovery code has thetywossible property:
itis rarely run, but must work absolutely correctly.

It is challenging to implement robust recovery code for thiofving reasons.
First, current file systems have poor failure models andcpsi[69]. The recovery
code is distributed across the file system and the succescafary depends on
the correctness of recovery code in each involved functldnfortunately, not all
functions in file systems and the kernel handle and propagyabes correctly [71,
138]. Even if file system developers are aware of the specitiblem, it is hard
for them to implement the correct recovery strategy due heiantly complex file
system designs [69].

Second, manual implementation of recovery code combindt thie large
number of error scenarios inhibits scalability of recoveogle. For example, there
are around 100 different error cases that can arise in theddaperating system and
currently, there is no single way of handling errors in a fitstem. A developer has
to manually write recovery code for every function in the 8iestem that correctly
handles the error code and propagates the error back to llee ¢a many cases,
the developer needs to implement different recovery girasefor different types
of errors [138]. Given the number of errors that one must kamdthe file system,
it is easy to miss an error scenario or implement an inconexvery strategy.

The implications of poor recovery code depend on the natfitheofault and
the state of the file system. In worst case scenarios, failca@ lead to file system
crashes. There are two primary reasons that such file sys@shes are harmful.
First, when a file system crashes, manual intervention snoféquired to repair
any damage and restart the file system; thus, crashed filensgsdtay down for
noticeable stretches of time and decrease availabilityndteally, requiring costly
human time to repair. Second, crashes give users the satsefite system “does
not work” and thus decrease the chances for adoption of newy#tems.

The fact that file systems do not have robust recovery codeabimed with
the existence of bugs in file system code, leaves us with afisgmt challenge:
How can we promise users that file systems work robustly ite sgitheir massive
software complexity and all the complex failures that caredd We propose that
the right approach is to accept the fact that failures areitagle in file systems;
we must learn to cope with failures rather than hoping todbem. To respond
to this challenging question in a manner that accepts ialehatfailures, we build
new recovery techniques on top of the increasingly compieklass reliable file
systems.

The goals of this thesis are two-fold: first, to develop teghas to improve
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availability of file systems in the event of failures; secptaddevelop techniques to
minimize the complexity of recovery code in file systems.

We address the goals of this thesis as follows. To improvdaditity, we
restart file systems on failures, and to simplify recovergiesove employ resource
reservation. First, we develop Membrane, an operatingesystamework that
restarts kernel-level file systems on failures [165, 1608]1&nd Re-FUSE, a frame-
work built inside the operating system and FUSE to restaet-levvel file systems
on crashes [167]. Second, we develop Anticipatory Memotgastor (AMA), a
technique that combines static analysis, dynamic analgeis file-system domain
knowledge to simplify and minimize the recovery code neebeldlandle memory
allocation failures in operating systems [168]. The folilogvsections elaborate on
each of these contributions of the thesis.

1.1 Reliability Through Restartability

Data availability can be improved by restarting file systeafier failure. Though
recent research work has developed techniques to tolerstak®s in the other
components with which file systems interact, these teclasictill cannot tolerate
failures inside the file system code [15, 69, 138]. Failure§ile systems can be
avoided through prevention techniques (such as deteatidmeamoval) or tolerated
through restart mechanisms. Unfortunately, the prevantazhniques that exist
today do not uncover all possible bugs in file system code148]. Hence, a
practical solution would be to selectively restart file gyss on failures.

In the past, many restart mechanisms have been proposedstartmg both
kernel-level and user-level components upon failure. Mifsthese techniques
work only for stateless components such as device drivegpplications that do
not have to maintain a persistent state on a disk [52, 790,171, 172, 200];
hence, these techniques are not applicable for file syst®ther restart techniques
that can handle persistent storage are heavyweight andregegide scale code
changes in the operating system, file system, or both [31,08,156]; the over-
heads and code changes make such techniques less attfactienmodity file
systems.

In the first part of the dissertation, we explore the pos$ybdf selective restart
of kernel-level and user-level file systems on failures.e Bystems deployed in-
side the operating system are known as kernel-level fileegystand file systems
deployed outside the operating system (i.e., user spaeejremwn as user-level
file systems. As mentioned earlier, the selective restauirfile systems tolerates
bugs in the file system code and hence improves data avéildhisystems. Also,
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instead of providing a customized solution for individud fsystems, we explore
the possibility of providing a generic framework that canlderaged by different
commodity file systems.

Kernel-level file systems

To tolerate kernel-level file-system failures, we develdpmbrane an operat-

ing system framework to support lightweight, stateful neery from file system

crashes [165]. During normal operation, Membrane logs fi&esn operations,
tracks file system objects, and periodically performs lbgkight checkpoints of
file system state. If a file system crash occurs, Membranesgakding requests,
cleans up existing state, restarts the file system from th&t necent checkpoint,
and replays the in-memory operation log to restore the sfate file system. Once
finished with recovery, Membrane allows the file system tames service to ap-
plication requests; applications are unaware of the crashrecover except for a
small performance blip during restart.

Membrane achieves its performance and robustness througg novel mech-
anisms. First, generic checkpointing mechanisgnables low-cost snapshots of
file system state that serve as recovery points after a cribhnvinimal support
from existing file systems. Secondpage stealingechnique greatly reduces the
logging overheads of write operations, which would othsenincrease time and
space overheads. Finally, an intricatep/trust unwind protocadk applied to care-
fully unwind in-kernel threads through both the crashed $¥stem and kernel
proper. This unwind protocol restores kernel state whilevpnting further file-
system-induced damage from taking place.

Membrane does not add new fault detection mechanismsamhsitdeverages
the existing fault-detection mechanisms in file systemke $istems already con-
tain many explicit error checks throughout their code. Witiggered, these checks
crash the operating system (e.g., by calling panic) aftéclwthe file system either
becomes unusable or unmodifiable. Membrane leveragesedRpbet error checks
and invokes recovery instead of crashing the file system. 8lleve that this ap-
proach will have the propaedeutic side-effect of encomgdjie system developers
to add a higher degree of integrity checking in order to failcly rather than run
the risk of further corrupting the system. If such faults@amsient (as many impor-
tant classes of bugs are [111]), crashing and quickly résgpis a sensible manner
in which to respond to them.

As performance is critical for file systems, Membrane onlgvides a light-
weight fault detection mechanism and does not place an ssldgace boundary
between the file system and the rest of the kernel. Hencepdasdsible that some
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types of crashese(g, wild writes [33]) will corrupt kernel data structures and
thus prohibit complete recovery, an inherent weakness abtane’s architec-
ture. Users willing to trade performance for reliabilityudd use Membrane on top
of stronger protection mechanism such as Nooks [171].

We demonstrate the benefits of Membrane by evaluating itree ithifferent file
systems: ext2, VFAT, and ext3. Through experimentation hosvsthat Membrane
enables file systems to recover through a wide range of fagharios. We also
show that Membrane incurs less than 5% performance overtmeacbmmonly
used benchmarks; furthermore only 5 lines of code needed thanged to enable
existing file systems to work with Membrane.

User-level file systems

User-level file systems are an alternative to kernel-levelsystems and are com-
monly run using a platform like File systems in USEr space $E)[141]. The
FUSE simplifies the development and deployment of usel-fdeesystem as file
systems run outside the operating system in a separatesadgppace. In the last
five years, around 200 different user-level file systems teen implemented us-
ing FUSE [192].

Faults in user-level file systems still impact their avaiigh Though faults in
user-level file systems do not impact the correctness oladitily of the operating
system, applications that depend on the file system arafftitted and, in almost
all cases, such applications are prematurely terminated.

To understand how user-level file systems work in the realdyere first look
at six representative user-level file systems: NTFS-3ifase, SSHFS, AVFS,
HTTPFS, and TagFS. Using these six file systems, we createramee model for
user-level file systems. From the reference model, we dédr&veommon properties
of this type of file system; we also find that by excluding theriamory file system
state, the rest of the state (including on-disk data) isquuesl during a user-level
file system crash.

We leverage the reference model to deveRepFUSE a framework built inside
the operating system and FUSE that restarts user-levey/itesis on crashes [167].
During normal operations, Re-FUSE tracks the progress-fiight file-system op-
erations and caches the results of the system calls exebutdte user-level file
systems. On a file-system failure, Re-FUSE automaticaliyarts the file system
and continues executing requests from their last execptoant using the informa-
tion recorded during normal operations. Similar to Memieethe application that
is using the user-level file system will not notice file-systilure, except perhaps
for a small drop in performance during the restart.



Re-FUSE implements three basic techniques to enable leghw restart of
user-level file systems. The firstigsquest taggingwhich differentiates activities
being performed on the behest of concurrent requests; tomdassystem-call log-
ging, which carefully tracks the system calls executed by a leset-file system
and caches their results; the thirdnen-interruptible system callsvhich ensure
atomicity of system-call execution by user-level file systdreads. We also add
page versioningand socket bufferingoptimizations to further reduce the perfor-
mance overheads.

We evaluate Re-FUSE with three popular file systems: NTESSFS, and
AVFS. Through evaluation, we show that Re-FUSE can stdyefestart the user-
level file system, while hiding crashes from applicationse 14t the file systems
with commonly used workloads and show that the space andrpasthce over-
heads associated with running user-level file systems oRUR&E are minimal.
Moreover, less than ten lines of code changes were requireddh of the three file
systems in order for them to work with Re-FUSE.

1.2 Reliability Through Reservation

Reservation is a popular technique that is used in manyragsten computer sys-
tems, reservation can be done for resources such as pree¢33) memory [186],
and network bandwidth [139]. The reservation of resourcglpshin improving
fairness, quality of service, and reliability. In the coritef reliability, the reserva-
tion of resources helps to simplify the recovery code, aefdthe needed resources
can be acquired at the beginning of an operation. In othedsydhrough resource
reservation, a system ensures that a resource-allocadituref can only happen
during the reservation phase, which can be handled easily.

File systems extensively use heap-allocated memory te Bianemory copies
of on-disk user data, on-disk metadata, as well as for o#maporary objects. Un-
fortunately, the memory-allocation calls in operatingteyss can fail; commodity
operating systems do not provide guarantees for the suot@semory allocation
calls. As a result, components (such as file systems) thameseory allocation
routines are forced to handle memory-allocation failuresagh calling site.

First, to understand the robustness of memory-allocaadare-handling code,
we perform fault injection during memory allocation callsdommaodity file sys-
tems. We test seven different Linux file systems: btrfs, e@i@3, ext4, jfs, reis-
erfs, and xfs. Interestingly, we found that all seven fileteys are not robust
to memory-allocation failure. In many cases, the memolyeation failure re-
sulted in an unusable or inconsistent file system. Moreaber,processes exe-



cuting file system requests are killed due to the inabilityilef systems to handle
allocation failures correctly. These results are in aligminwith previous work
that has also shown that memory allocation failures are aatlled properly in
file systems and can lead to catastrophic results (such adatast or data corrup-
tion) [50, 71, 120, 197].

Given that memory allocation failures are poorly handleccammodity file
systems, we develop a technique calledicipatory Memory Allocation (AMAD
simplify recovery code that is responsible for handling noeyrallocation failures.
The idea is simple: we move all the memory allocation calls$ogle function that
allocates all memory at the beginning of a request. If thegticzation succeeds,
AMA guarantees that no file-system allocation fails doweestn, as all subsequent
memory allocation are serviced using the pre-allocated. g@bcourse, allocation
requests can fail during the pre-allocation phase, bukargixisting systems, we
only need to perform shallow recovery wherein no state meatifon are done to
the existing systems.

Pre-allocation of memory is challenging in commodity opieasystems. File-
system requests pass through different layers of the opgrsgstem; one example
of this is through the virtual file system. In each layer, mémgctions can be
invoked and any of these functions have the ability to padéntcall a memory al-
location routine. Moreover, commodity operating systenshsas Linux allocates
memory in a variety of ways (e.gkmallog kmemcachealloc, andalloc_pages$.
Hence, to pre-allocate all objects, one needs to identiéypbtential allocation
sites, object types, object sizes, and the total number jetctdo Making this pro-
cess somewhat more difficult is the fact that the sizes arahpeters passed to the
memory-allocation calls also depend on the on-disk statihefile system, the
input parameters to the system call, and the cached stdte perating system.

To determine a conservative estimate of total memory dilocalemand, AMA
combines static analysis, dynamic analysis, and file-systemain knowledge.
Using AMA, a developer can augment the file system code tajpoeate all the
memory at the entry of a system call. At run time, AMA trangmdly returns
memory from the pre-allocated chunk for all memory-allematcalls. Thus, when
a memory allocation takes place deep in the heart of the keuiesystem, it is
guaranteed never to fail.

With AMA, kernel code is written naturally, with memory atlations inserted
wherever the developer requires them; however, with AMA&,developer need not
be concerned with downstream memory-allocation failured the scattered (and
often buggy) recovery code that would otherwise be requirBdrthermore, by
allocating memory in one large chunk upon entry, failurehaf anticipatory pre-



allocation is straightforward to handle. We also implemvid uniform failure-
handling polices (retry forever and fail fast) with littléfart.

To show the practicality of AMA, we apply it to the ext2 file $g= in Linux.
We transform ext2 to ext2-mfr, a memory-failure robust i@msof the ext2 file
system. Through experimentation, we show that ext2-mfolgist to memory al-
location failure; even for an allocation-failure probatyilof .99, ext2-mfr is able to
retry and eventually make progress, thus hiding failuresifapplication processes.
Moreover, we show that for many commonly-used benchmar&sptirformance
and space overheads of running ext2-mfr are less than 7%%nde8pectively.

1.3 Contributions
The contributions of this thesis are as follows:

e We implement Membrane, a framework inside operating systnrestart
kernel-level file systems on failures. To the best of our kieolge, this is the
first work that shows stateful restarts of file systems arsiptesin commod-
ity operating systems.

e We show that is possible to checkpoint the state of kernedtide systems in
a generic way that requires minimal changes to the file systge. In con-
trast, existing solutions such as journaling or snapstpttequire extensive
file-system code changes and need to be implemented on depgydtem
basis.

e We develop a new protocol (skip/trust unwind) to selectivaatoid recovery
code in kernel-level file systems on failures. This protaasb helps clean
up any residual state in the kernel and restores the kerc&ltbaa consistent
state. Though the protocol was developed in the contextejistems, it is
applicable to other operating-system components andlesselrprograms.

¢ We develop Re-FUSE, a framework inside the operating systednFUSE
to statefully restart user-level file systems on failureshisTiramework is
generic, lightweight, and is independent of the underlyisgr-level file sys-
tems. To the best of our knowledge, no other solutions eaist$tart user-
level file systems on failures.

e We describe a reference model for user-level file systemsr r€farence
model helps guide the development of new file systems andfitaiitbns to
existing file systems to work with Re-FUSE.



e We develop AMA to show that it is possible to have shallow wecy for
memory-allocation failures during file system requestsommodity operat-
ing systems. We also show that it is possible to combinecsaaialysis, dy-
namic analysis, and domain knowledge to estimate the hézgated mem-
ory required to satisfy requests in commodity operatindesys.

1.4 Outline
The rest of this thesis is organized as follows.

e Background: Chapter 2 provides background on different aspects of fde sy
tems: components, request handling, on-disk state, agensismechanisms,
and deployment types.

¢ Reliability through Restartability: To help understand the design choices

of our restartable systems, we first provide a taxonomy oh faadels, de-
scribe the restart process in file systems, and componerdsredtartable
framework in Chapter 3. We then begin presenting the firstrdmrtion of
this thesis, where we describe the design and implementafidMembrane

in Chapter 4; Membrane is a generic framework built inside diperating
system to restart kernel-level file systems on failures.nTieChapter 5, we
describe the design and implementation of Re-FUSE, a gefrarnework
built inside the operating system and FUSE to restart usatffile systems
on crashes.

¢ Reliability through Reservation: Chapter 6 presents the second major con-
tribution of this thesis, where we explore reservation aseglmnism to im-
prove file system reliability. In this chapter, we presert design and imple-
mentation of AMA, a solution that combines static analydisjamic analy-
sis, and domain knowledge to estimate and hence, prealtioatamount of
memory required to satisfy file system requests.

e Related Work: Chapter 7 summarizes research efforts related to building
restartable systems and systems that use reservation ashamsn to im-
prove their reliability.

e Conclusions and Future Work: Chapter 8 concludes the thesis, first sum-
marizing our work and highlighting the lessons learned, tieth discussing
various avenues for future work that arise from our research
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Chapter 2

File Systems

“There are two ways to write error-free programs; only thérdhworks.”
— Alan J. Perlis

This chapter provides a background on the various aspediie afystems that
are integral to this dissertation. It begins with an ovemvid the role of file systems
in managing user data on a disk, in Section 2.1. Next, Se2t®presents the com-
mon file-system components and their inter-componentdntEms. Section 2.3
describes how application requests are processed in fitersgs In Section 2.4,
important objects that constitute the on-disk state of filiteims and the need for
on-disk consistency are described, and Section 2.5 prevadeoverview of exist-
ing consistency mechanisms in file systems. Finally, Se&i6 presents user-level
and kernel-level file systems — the two common ways of deptpgommodity file
systems.

2.1 Overview

It is difficult for users to directly manage data on a disk. tds@e accustomed to
the notion of files and directories. Unfortunately, comntpdiisk systems do not
come with interfaces that can deal with files and directori@ather, commodity
disks have a simplified block-based interface, where a diskgnts stored data as
a sequence of fixed-sized blocks containing bytes of infiond55]. The disk
interface typically supports read and write operationg; dlguments to these op-
erations are a block number and a buffer, and the result & tamnsfer from the
buffer to the disk location or vice versa.

File systems are software modules that help users to og#imezr data on one
or more disks. File systems allow users to access data inrdmuigrity of files

11
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and directories and internally translate user requesteads and writes of disk
blocks. File systems internally maintain some metadata dp files to a list of
block locations on a disk. Figure 2.1 shows an example of héie @enoted by
the nameDocument Acould be stored on a disk by a file system. In addition to
the mapping information, file systems also maintain adagianformation about
directory contents, free blocks, and other relevant boegkey information.

The fundamental unit of data storage in file systems is a fildileAcan be a
regular file or a directory. A regular file contains user datd & represented by a
name assigned by the user along with a unique identifiershatarnally generated
by the file system. The unique identifiers help to locate fiféisiently on a disk.
A directory is a special file whose contents could be file oectiory names along
with their unique identifiers. Directories help in groupirgjated entities inside a
file system for easier access.

For efficient data organization, files are typically main&d in a hierarchical
structure within a file system. At the topmost level, there¢his main directory,
popularly known as theoot directory. The purpose of the root directory is to serve
as an origin from which the file system grows. Figure 2.2 shawgxample of a
file-system hierarchy. From the figure, we can see that afl &iled directories can
be reached from the root directory.

File systems need to support a variety of operations in cr@@&nable users
to effectively access their data on a disk. The operatioasfile systems need to
support are well-defined by the operating system and libfsugh as FUSE) de-
velopers for kernel-level and user-level file systems, eeipely. These operations
are required to manipulate file system contents by usersgictations. Table 2.1
shows some of the common operations that are supported lsydtems.

A file system caches frequently accessed data in the memdrpenodically
synchronizes file system updates to the disk to improve padoce. Disks are
a few orders magnitude slower than memory and have signifjclomger access
times. Because of this, frequent access to the disk significalows down the per-
formance of file systems. To improve performance, file systéon operating sys-
tems) typically maintain a cache of frequently accessed;detien data is read or
written to a disk, it is first cached in memory by the file systamthat subsequent
requests can be serviced from the memory instead of goirtgetdisk. Moreover,
the caching of frequent updates and lazy writes of dirty éatseneficial because
file accesses typically represent both spatial and tempmrality [16, 127, 148].

File systems are initialized and removed using mount andoumioperations,

respectively. The mount operation initializes and loadsftle system state after
reading the disk contents. The unmount operation is usedfedyspersist recent
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Figure 2.1: Mapping Files to Disk Blocks. This figure shows a user file being
internally mapped by a file system and stored in differenations on disk. The
user file shown here is Document A which contains three blotcéata (i.e., ABC,
DEF, and XYZ). These three blocks of data are internally reddyy the file system
to three different disk locations: 100, 200, and 150. Eadk dilock contains data
and is identified by a unique block humber.
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Figure 2.2: File System Hierarchy Example. The figure shows an example of
a simple file-system hierarchy. At the topmost level, we la&eoot directory.
Underneath the root directory, we have usr, home, and liedaories. Further
down, the lib directory has both directories (gview and gjind files (list.log and

Readme) in it.

Operation | Functionality Arguments Return Value
open opens a file path to a file fh
close closes a file fh status
read Reads data from a file | fh, offset, bytes data
write Writes data to a file fh, offset, buffer, bytes status
mkdir create a directory dir path status
rmdir deletes a directory dir path status
readdir return directory contents dir path entries
fsync flush dirty data of a file | th status
sync flush dirty data to disk | none none

Table 2.1: Common File-system Operations. The tables shows a few common
operations supported by file systems. The argument colunoietethe parameters
that must be passed with the file system operation. Varicubalg have been used
to condense the presentation: fh - file handle, entries cty entries, and dir
path - path to a directory.
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changes to the disk and to clean up the in-memory file systate. S¥lore specifi-
cally, on unmount, file systems write back all dirty data thed not yet been written
to the disk, free any cached data (or objects) in other operalystem components,
and destroy any in-memory objects allocated by file systems.

2.2 File System Components

File systems can contain a variety of components dependintpe features and
guarantees they provide. In general, the majority of fildews contain the fol-
lowing four components: namespace management, data nraeageconsistency
management, and recovery. Figure 2.3 shows these file systerponents along
with their inter-component interactions.

The namespace-management component handles all file syesiessts and is
responsible for mapping user-visible filenames to unigqeatifiers that are internal
to the file system. As mentioned earlier, other file system @uelating system
components do not understand filenames and require theaurdgntifiers in order
to process requests. The common operation that this comptraadles is path
traversal. In path traversal, a user sends in a list of dirgaiames that need to be
looked up in the file system hierarchy. Upon a path traveesgliest, the namespace
component checks the permission and validity of each enttiie directory name
list and returns the file handle to the caller if the requestsads.

The data management component is responsible for mandgmage space on
disks. The responsibilities of the data management commamelude locating and
reclaiming disk blocks used by the file system (i.e., freespaanagement), man-
aging file-system metadata and data locations, and persgtteage of file-system
metadata on the disk (see Section 2.4 for details). This coet is essential in
file systems, as disk systems are very simple and do not mang support for
high-level functionality such as freespace managemem][15

The consistency management component is responsiblectandiag stable file
system states to the disk. These stable states are used theimount operation
of file systems. To create such stable states, this compgmeeiadically groups
file-system updates and atomically writes the updates tdidle(see Section 2.5
for details).

The recovery component is responsible for cleaning up fiktesy states on
errors. An error arises for various reasons: a file systentakesor a bug [49, 195,
197], data corruption [12, 13, 154], or unexpected behafrimn the components
with which file systems interact [153, 173, 196]. Ideallyefdystems should be
able to handle or tolerate such errors and continue segvigquests. Hence, this
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Figure 2.3: Components of a File System. The figure shows the common
components of a file system and its inter-component inferesct The common
components are namespace management, data managemesistarmy man-
agement, and recovery. The namespace-management corhfaieeaicts with
the data-management component to retrieve directory atgiteThe consistency-
management component interacts with both namespace- aadntmagement
components to record file-system state on disk. The recaeenponent is spread
across all file-system components.

component is critical for ensuring file system availabiktyen in the presence of
errors. To the best of our knowledge, this component is newmpiemented as

a stand-alone component, and is always tightly integratitd @ther file-system

components [138].

2.3 Handling Application Requests
Applications interact with file systems through requests.mentioned earlier, file

systems support a variety of requests and these requestdebfferent function-
ality and guarantees depending on the type and parametsssdt it.
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File system requests go through multiple layers in the gostack when they
are executed. Figure 2.4 shows how requests are executdeinel-level file sys-
tem. From the figure, we can see that requests enter the imgesststem through
the system call (or syscall) layer, which checks the validit requests and then
forwards requests to a virtual file system or an equivaleygr§l00]. The virtual
file system layer acts as a switch and forwards the requelketodrresponding file
system. The file system then processes these requests lsgiagcis in-memory
contents, on-disk contents, or both. File systems miglut lads/e to interact with
other components in order to reserve resources (such as yeanaise their ser-
vices to complete its requests.

File system requests can be executed in either synchronoasyachronous
mode. In synchronous mode, modifications to user and fileegyslata are im-
mediately written to the disk. In asynchronous mode, madlifims to user and
file system data are first cached in memory; a worker threaddemon) periodi-
cally writes the modifications to the disk in the backgrouBg.default, file system
requests are executed in asynchronous mode, which helpsvefile system per-
formance [89, 125].

2.4 On-Disk State

The on-disk state of file systems consists of both file systetadata and user data.
File system metadata consists of data structures such dssnbitmaps, extents,
superblocks, etc. These metadata objects help locate aimlamauser data and
system metadata efficiently on disks. To improve their peménce, file systems
create in-memory copies of their on-disk objects and caebmtin memory.

The correctness of the on-disk state is critical to the properation of the file
system. As mentioned earlier, on-disk data is used to braptsite file system to its
initial state on a mount operation, and all further actiongdlwe file system depend
on this initial state. As a result, file systems constantlitervack their in-memory
changes to disk and also use additional mechanisms (sutieelsstims) to ensure
the correctness of file system objects on disk [23, 198].

The on-disk format of file system objects differs from one §ilstem to the
next. Despite these differences, the functionality andaisgich objects remain
the same across file systems. To give an overview of the dndtfipects of file
systems, we will briefly discuss the on-disk state of the /@xfife system.

Figure 2.5 shows the ext2/3 on-disk layout. In this on-diglaaization (based
loosely on FFS [114]), the disk space is split into a numbdilatk groups; within
each block group are bitmaps, an inode table, and data bldt&ksh block group
also contains a redundant copy of crucial file-system coimformation such as
the superblock and the group descriptors.
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Figure 2.4:Processing Requests in File System$he figure presents a simplified
version of a storage stack and shows how requests flows thidiffgrent layers in
the operating system to execute a file-system operation.eRexgenter through the
system call layer and after execution returns to appliaaiwith the response. The
dotted lines represent call(s) to the memory-managemempooent by different
layers while executing a file-system request.
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Figure 2.5:Ext2/3 Ondisk Layout. The figure shows the layout of an ext2/3 file
system. The disk address space is broken down into a seb&xckigroups (similar
to FFS cylinder groups), each of which is described by a gmegcriptor and has
bitmaps to track allocations and regions for inodes and daltacks. The lower
figure shows the organization of an inode. An ext2/3 inodesbase attributes and
twelve direct pointers to data blocks. If the file is largadirect pointers are used.
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The super block is the most important block and is used todh@qt the ext2/3
file system. The superblock contains important layout imfation such as inodes
count, blocks count, and how the block groups are laid outh®\t the informa-
tion in the superblock, the file system cannot be mountedgstp@nd would be
unusable.

Group descriptor blocks maintain the summary for the bloakug they rep-
resent. Each one contains information about the locatidhefnode table, block
bitmap, and inode bitmap for the corresponding group. Intexg each group
descriptor also keeps track of allocation information sashthe number of free
blocks, free inodes, and used directories in the group.

Inodes contain necessary information to locate file ancctiirg data on disk.
An inode table consists of an array of inodes, and it can spatipie blocks. An
inode can represent a user file, a directory, or other spéitaal (e.g., symbolic
link). An inode primarily stores file attributes (e.g., sizecess control list) and
pointers to its data blocks. An ext2/3 inode has 12 direatteos to its data blocks.
If more blocks are required (to hold a larger file), the inodd# use its indirect
pointer that points to an indirect block which contains peis to data blocks. If
the indirect block is not enough, the inode will use a douhfirect block which
contains pointers to indirect blocks. At most, an ext2/3mean use a triple indi-
rect block which contains pointers to double indirect bkck

A data block can contain user data or directory entries. linaale represents
a user file, its data blocks contain user data. If an inodeesgmts a directory, its
data blocks contain directory entries. Directory entriessraanaged as linked lists
of variable length entries. Each directory entry contalmsinode number, the entry
length, the file name and its length.

2.5 Consistency

A file system is said to be in a consistent state if the follgvdonditions are met.
First, all of its metadata must correctly point to their resfive metadata and data
blocks; for example, in the ext2/3 file system, an inode bkdubuld correctly point
to the indirect and direct blocks that belong to that paléictile. Second, the inter-
nal set of tables and bitmaps (i.e., file-system-specifiadst) that are used for
various pieces of bookkeeping information should matchctihunt or locations of
the allocated on-disk objects. For example, in the ext2é3sfjistem, the summary
information in the group descriptor should match the actudization and loca-
tions of the objects within that group. At a high level, a detent file-system state
ensures that the semantics of the file-system state is iteshechich also includes
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proper security and privacy attributes on users’ data.

The file system state can become inconsistent due to a vafiedasons. For
example, power failures can result in only partially updafiée-system state on a
disk [115], and incorrect behavior can in wrong updates [1880ther reason can
be hardware failures that lead to file-system updates bestg61, 173]. Finally,
bugs in file and operating-system code can also result inGmsistent state [49].

A consistent on-disk state is critical for the correct opieraof a file system.
File systems are stateful; they use their on-disk state tastrap the file system
during the mount operation and depend on this boot-straptsd to perform sub-
sequent operations. If the on-disk state is inconsistaetfite system will always
remain inconsistent, as the same state is observed achus®seln extreme cases,
file systems can perform incorrect operations, which haeepibtential to lead to
catastrophic results (e.g., data loss, data corruptionsalne file systems, or unre-
coverable file systems) [15, 70, 196, 197].

The file system state can be fixed using a consistency chestkar &s fsck) [19,
76,99, 115]. Consistency checkers are offline tools or nogrthat read the on-
disk file-system state, validate the contents, and fix angnsistencies that might
exist. Although the repair might lose some file-system upslahere is an attempt
to ensure that the fixed file system state is consistent [70fe Main drawback
of such consistency checkers is that they are very slow aaid $icanning and
repairing of the on-disk state of file systems can take houeven days [76—-78].

Modern file systems have different crash-consistency nmeshies to help avoid
file system inconsistencies due to power failures. The @wptiash-consistency
techniques that exist today are journaling [18, 113, 178] 48d snapshotting [82,
191, 198]. These crash-consistency mechanisms are orthbtfsck, where the
file system records additional information during regulpertions to help restore
it to a consistent state on reboots after power failures.

2.5.1 Journaling

In journaling file systems, extra information is recordedtloa disk in the form of
a write-ahead log or a journal [67]. The common approachrtadkejournaling
file systems is to group multiple file-system updates intonglei transaction and
atomically commit the updates to the journal. File systerdatips are typically
pinned in memory until the journal records are safely cortadito stable storage.
By forcing journal updates to disk before updating compléxgystem structures,
this write-ahead logging technique enables efficient crasbvery; a simple scan
of the journal and a redo of any incomplete committed opanatibring the file
system to a consistent state. During normal operation,dbmal is treated as a
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circular buffer; once the necessary information has beepagated to its fixed
location structures, journal space can be reclaimed.

Different modes of journaling exist in modern file systemfie3e modes pro-
vide different recovery guarantees to the stored file-systeetadata and data. In
some cases, a file system support multiple journaling modleste users have the
freedom to choose their journaling mode depending on tlegjuirements. The
common modes in journaling are writeback, ordered, and data

In writeback mode, only updates to file system metadata anmgded; data
blocks are written directly to their fixed location. The vefitack mode does not
enforce any ordering between the journal and fixed-locatlata writes, and as
a result, writeback mode has the weakest integrity and stargly semantics of
the three modes. File-system metadata and data could bd suho after crash
recovery. Although it guarantees integrity and consisgdncfile system metadata,
it does not provide any corresponding guarantees to thebliat&s.

In ordered journaling mode, again only metadata writes anengled; how-
ever, data writes to their fixed location are ordered befbee journal writes of
the metadata. Though the data blocks are not journaled,rteging attempts to
keep file-system metadata and data to in sync after recolreigontrast to write-
back mode, the ordered mode provides better integrity stosanhere a metadata
block is guaranteed not to point to a block that does not lgetorihe file.

In data journaling mode, the file system logs both metadatalata to the jour-
nal. In this mode, typically both metadata and data will bitem out to disk twice:
once to the journal, and then later to their fixed location.tt@fthree modes, data
journaling mode provides the strongest integrity and cgiracy guarantees. How-
ever, it has a different performance characteristics caetgp# the other nodes, and
the performance depends heavily on the workload [137].

2.5.2 Snapshotting

Snapshotting or Copy-On-Write (COW), is an alternativehteéque to journal-
ing that helps preserve consistent file-system state orhesasMany recently-
developed file systems have resorted to snapshots as thehiamiem for enforcing
file-system consistency during crash-recovery [23, 82].191

Snapshotting works on a simple principle: never overwriisteng metadata
or data contents on disk. All updates to file-system data estectiched in memory
and are periodically written to a separate location on diskn atomic fashion. The
idea behind this approach is that the original data contergsalways preserved,
and on recovery, the recent updates are visible to userslibaly if the snapshot
that they belong to are committed to disk.
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Snapshotting works well due to its copy-on-write approaBiince snapshot-
ting does not overwrite any existing data on disk, it alwagessprves file-system
consistency by writing updates to a new location. Once allatgs of a snapshot
are written to disk, the file system atomically switches t® tiew snapshot. In the
event of a failure, the file system simply discards (i.e.laiets) the partially writ-
ten blocks of any uncommitted snapshots and bootstrapsl¢hgyitem from the
last consistent (i.e., committed) snapshot on disk. It §y¢a see that the recovery
through snapshots could be lossy; recent updates that drefmn uncommitted
snapshot are simply discarded during recovery.

In summary, these crash-consistency approaches alwayredhat file system
can be restored to the most recent consistent state usirggfioeiated meta-data
maintained by them. The recovered file-system state is gtesd to be consistent
if there are no errors or bugs in the underlying storage sy$138]. The disadvan-
tages of these approaches are that they do not recover a@ygtem updates before
a crash, but only until the last committed checkpoint (onsection). Moreover,
crash-consistency mechanisms are specialized for a plartitle system and are
not generic enough to be applied to a variety of file systems.

2.6 Deployment Types

File systems can be deployed in two ways: inside the kernelsoa user-level
process. We will now discuss both types of deployments.

2.6.1 Kernel-level File Systems

File systems that are deployed and executed as part of aatgesystem are
knows as kernel-level file systems. Kernel-level file systeme widely deployed
and used in real systems [61, 83, 87]. Kernel-level file sgsteun in the same ad-
dress space as the operating system and directly managatthstdred on disks or
across the network. Examples of kernel-level file systera®at3 [183], xfs [170],
FAT32 [116], NTFS [158], and HFS [6].

Kernel-level file systems come with many advantages. Thayearage the
design and features of the operating system to the full éxgenthey are tightly
integrated with the operating system code. These file syst@am effectively con-
trol when data gets written to the disk or sent across the oritwas they have
direct access to operating system components, such as dhacketwork drivers.
Moreover, these file systems also have better control owec#thed in-memory
data. The combination of tight integration with the opergtsystem, direct access
to operating system components, and control over cachedheé#ts provide better
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performance in kernel-level file systems. Kernel-level $ifstems are also consid-
ered secure, as it is difficult for a malicious user to chargefile-system code or
manipulate its in-memory objects.

Though kernel-level file systems are widely used in realesyist they do have
a few limitations. First, it is hard to port kernel-level fégstems to other operating
systems. Second, kernel-level file systems have longetajanent cycles [199].
Third, a bug in the kernel-level file system code has the piateto easily bring
down the entire operating system, as kernel- level file systeun in the same ad-
dress space as the operating system. Fourth, one needsl ghiigrammers with
in-depth operating-system knowledge to design and devbkxge file systems. Fi-
nally, it is difficult to add all user-desired features togbdkernel-level file systems.

2.6.2 User-level File Systems

File systems that are deployed and executed in user spaka@&m as user-level
file systems. User-level file systems provide better fleitjbih terms of the fea-
tures that they offer. Moreover, these file systems are cetalyl isolated from the
operating system and are run as regular processes with o@bkpavileges. Ex-
amples of user-level file systems are SSHFS [163], NTFS-8][IAVFS [159],

and HTTPFS [161].

User-level file systems have many advantages. They arévedjagasy to de-
velop and deploy, as most of them are only a few thousand tihesde. They can
easily be ported to other operating systems with little t@ffort. They can provide
specialized functionality on top of existing kernel-lefi& systems. These file sys-
tems can be developed by a regular programmer and do noteeghighly skilled
developer with a deep understanding of operating systenpoosnts. User-level
file-system failures no longer impact the availability, re@tness, and consistency
of the entire operating system, as user-level file systemscampletely isolated
from the operating system.

Though user-level file systems are simpler than kerneltlideesystems, they
are not widely deployed for the following reasons. Firseytlare less secure than
kernel-level file systems, as they run in user space. Setbagerformance over-
heads are higher than kernel-level file systems due to thd@ua copying of data
across the file-system-kernel boundary and context swstahéhe operating sys-
tem [141]. Finally, they do not have control over the quamit dirty data that gets
written to the disk, nor do they have control over when dirgadgets written to the
disk; hence, they cannot provide good crash-consistenayagtees.
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2.7 Summary

In this chapter, we provided a brief background on how fild@mys manage user
data on a disk. We then gave an overview of namespace managjefaga man-
agement, consistency management, and recovery in filensgstitong with their
interactions to persist file-system changes to disk. We tleseribed the different
on-disk objects in file systems along with the need for caesisy of the on-disk
state. We concluded the chapter by giving an overview of deevel and user-
level file systems. In the following chapters we will explaliéferent solutions to
tolerate failures in file systems.
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Chapter 3

Reliability through Restartability

“Failure is not falling down but refusing to get up.”’
— Chinese Proverb

It is difficult for a file system to recover from a failure, asfdystems maintain
a significant amount of in-memory state, on-disk state, aBds@te. Upon a file
system failure, the common recovery solution is to crashrastirt the affected file
system. Such crash-restart recovery mechanisms may eeguientire operating
system reboot, manual restart of the file system followed byrasistency check
(fsck) of the file system, or both. This process of recoveffirmgn a file-system
failure through an explicit restart is slow and applicaiaran no longer use the
crashed file system and hence are forcefully killed.

A popular way to improve reliability is to restart systemsfaitures [31, 174],
with the goal being to selectively restart a particular comgnt (or a sub-component)
on failures. Such selective restarts can potentially hédie file-system failures
from applications and other operating system componentereter, selective
restarts allow for applications to survive file system cessh

Recent research, such as EROS and CuriOS, has proposeadrsotottolerat-
ing file system bugs through stateful restart mechanismslB&. Unfortunately,
these solutions have required complete redesign and eefritoth OS and file sys-
tem code. Moreover, solutions that require extensive cediucturing are not vi-
able for commodity operating systems and file systems, &nsxie code changes
take a long time to become adopted in the mainline kernek iBhattributed to the
fact that extensive changes tend to reduce the stabilityd-hance the reliability —
of the system.

In this chapter, we explore the possibility of creating gen&ameworks in
order to restart both kernel- and user-level file systemse iftuition behind our
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approach is that we do not want to customize the restart psacesuit a particular
file system. Instead, our intention is to create a generi@mremechanism that is
suited for most file systems. We believe that because thisdyoare likely require
a one-time change to the operating system code, it couldydasileveraged by
those file systems that run on it.

The rest of this chapter is organized as follows. First, iotidea 3.1, we explain
the fault space and failure model in file systems. Sectiorg®&s an overview of
the restart process in file systems. Finally, in Section &8,lo0k at the three
important components of a restartable framework for fildeys: detection, antic-
ipation, and recovery.

3.1 Failure Model

File systems can fail in a variety of ways [90, 138, 173]. &a&lin a file system
impacts its availability. A failure may be caused by develomistakes, an incom-
plete implementation (such as missing or improper errodhiag), or a variety of
other issues. When a failure occurs, a file system becomeailadale until it is
restarted. Itis important to understand how systems fdietp determine the trade-
offs between performance and reliability in the framewoesidned for restartable
file systems.

Before we present the failure model, we first define the comtaoms used in
this research and provide a taxonomy of faults. We then ptese system model,
behavior of systems on failures, failure occurrence pattand operating system
response to a failure. Finally, we present our approach tullirey file system
failure.

3.1.1 Definitions

e System: An entity that interacts with other entities. Entity mayaeto
hardware, software, a human, etc.

e System Boundary: The common frontier between the system and its envi-
ronment.

e Fault: A faultis a flaw in the software or hardware.

e Error: In a system, any deviation from the system'’s correct statiefimed
as an error. The correct state of a system is defined as tkdlsstis achieved
when the system’s functionality is implemented correcfiiternatively, we
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can define error as a condition that occurs when a fault iswegdoor acti-
vated and the system state is corrupted.

¢ Failure: We define failure as an event that occurs when the observatgeto
of a system deviates from its correct state. Alternativalfailure is said to
have happened if the error causes the system to behavedaaottarr

3.1.2 Taxonomy of Faults

All faults that can affect a system when activated are diaskinto eight fundamen-
tal types, which are shown in Figure 3.1. Faults need notsseciy be restricted
within these eight classes; combinations of faults frorfedént categories are also
possible.

Most relevant to file and storage systems are the followindtdacategories:
system boundary, dimension, persistence, capabilityoandrrence phase [12, 49,
95,128,138,173,176].

3.1.3 System Model

In the context of our research, the system is a file system. syaEm boundary
is the file system interface that file systems use to interdtt @ther components.
Our goal is not to attempt to handle failures outside the fitesms, but rather, to
improve the fault-tolerance of file systems and therefori$oon failures inside
file systems. Faults occur either within or outside of the $istem, but in this
research, we assume that the consequence of a fault resalfga-system failure.

Figure 3.2 shows a system model in user-level and kernel-i@e systems.
For kernel-level file systems, we assume that only the filéesysstate is affected
by the fault, and that the failure is isolated within the filstem; we trust that
the data that is available in the other operating system coets (such as mem-
ory management, virtual file system, block layer, etc.) Wwélable to recover the
crashed file system. For user-level file systems, we assuatdaihlt results in a
file-system failure and affects the file system state; alldatier components (i.e.,
the operating system, FUSE, and any remote host) work dortafter a user-level
file system failure.

3.1.4 Behavior of Systems on Failures

The failure behavior of a component determines how a systertams and detects
faults. For example, the operating system detects usel-féde system crashes
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Natural Faults

Phenomenological Cause-] [Caused by natural phenomenon]

Human-Made Faults
[Caused due to human actions]

Development Faults )
Phase of Occurrence —]| [Occur during development and testing]
—— Operational Faults

[Occur during execution in the real world]

Internal Faults

System Boundary [Originate inside the system boundary]

External Faults
[Originate outside the system boundary]

Permanent Faults

Persistence [Assumed to be continuous in time]

Transient Faults
Faults — [Assumed to be bounded in time]

Accidental Faults

—— Capability [Introduced inadvertently]

Incompetence Faults
[Results due to lack of professional competence]

Hardware Faults

Di . [Originate in, or affect hardware]
—— Dimension

Software Faults

[Affect the data or program]

Deliberate Faults

Intent [Result due to a conscious decision]

Non-Deliberate Faults
[Introduced without awareness]

—— Malicious Faults
[Caused harm to the system]

L—— Objective

Non-Malicious Faults
[Introduced without awareness]

Figure 3.1:Basic Fault Classes.The figure shows the elementary fault classes in
systems. The first level in the hierarchy shows the basediasses and the second
level shows further classification within the base classes.
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Figure 3.2: System Model. The figure shows the deployment of user-level and
kernel-level file systems. The system consists of the ampgatstem and the file
system. In our model, we assume that faults could occurmwithbutside the file
system but failures only happen inside file systems.

through process termination. Failures are categorizawfingé different groupings
based on failure behavior [41]:

e Omission Failures: which occur when a system fails to produce an expected
output.

e Crash Failures: which occur when the system stops producing any output.

e Arbitrary Failures: which occur when some or all of the system users per-
ceive incorrect service (or output).

e Response Failureswhich occur when a system outputs an incorrect value;
and

e Timing Failures: which occur when a system violates timing constraints.
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Each failure category could require its own detection aothieon mechanism,
with such mechanisms also requiring additional supporeims of software and
hardware implementation.

3.1.5 Occurrence Pattern

The activation of a fault that causes a failure determinesptbssible strategy for
tolerating that failure. A failure caused by a fault that &iated by a regularly
occurring event is defined asdgterministicfailure. Since failures are determin-
istic, the recovery strategy should ensure that the triggeevent does not occur
again on recovery. In the context of file systems, deterriinfailures can occur
due to a variety of reasons: hardware failures [12, 138]rugarfile-systems, or
operating-system state [13, 14].

A failure caused by an irregularly occurring fault is defirelatransient fail-
ure. Transient failures are usually triggered by a combinatdmnputs, such as
request interleaving or rarely-occurring environmentditons [66]. In the con-
text of file systems, transient failures may be caused byye&CSI back plane,
cables, or Ethernet cables [173]. These faults typicallyakoccur on subsequent
requests or retries. Empirical evidence also suggestsrithay failures are transient
in nature [65].

3.1.6 Operating System Response to a Failure

When a file system (or a component) failure occurs, the ojpgratystem may
translate the failure from one category to another. Thestedion of failure also
depends on the failure policy described in the file systemr example, Linux
either crashes or remounts the file system as read-only wiirects file-system
failures. Moreover, a file system could first attempt to fix fagure by itself.
For example, ZFS attempts to fix disk corruption by using retfunt copies of the
data stored in other disks. Failure translation also heipamplifying the failure
handling policy. A higher-level system — such as an opegagiystem — must only
handle a single category of component failure rather thanage the variety of
component failures that may occur.

Many fault-tolerant systems, such as Phoenix and Hivepparfailure trans-
lation in order to simplify recovery [33,54]. These systers detection of a
failure in a component, halt the component as a means of piegefurther cor-
ruption. In order to halt a component (i.e., translate toilestap failure), a system
must meet the following three conditions that are definedhénfail-stop processor
model [193]:
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e Halt on failure: the system halts the component before performing an erro-
neous state transformation.

e Failure status: the failure of a component can be detected.

e Stable storage:the component state can be separated into volatile storage,

which is lost after a failure, and stable storage, which esprved and unaf-
fected by the failure.

The fail-stop model of handling failure simplifies the desigf reliable sys-
tems. The system and its components deal only with correbirmorrect states and
not with other failure modes. In other words, the simpliditydesign is achieved
through the ability to differentiate between correct antbimect states, and to par-
tition memory into correct and corrupted storage.

The drawback of the fail-stop model is that it is difficult ttchéeve in commod-
ity operating systems. Commodity operating systems tylgican their compo-
nents in the operating system address space, allowing amnoto spread their
state throughout the operating system. To transform comapoiailures into fail-
stop faults, the operating system might require additieog@lport, such as address-
space isolation [171].

3.1.7 Our Approach

In designing our restartable systems, we make several g$suns about file sys-
tem failures. First, we assume that most file system failarescrash failures and
response failures. Furthermore, we assume that theseckituie fail-stop and can
be detected and stopped before the kernel or other compoaentorrupted. When
possible, we also add mechanisms that can transform detectés in file systems
in order to fail-stop failures.

Second, we also assume that most file system failures argidrdn Thus, a
possible recovery solution would be to restart the file spstad to retry requests
in progress at the time of failure, as the failure is unlikédyoccur again. We
believe that this is a reasonable solution as most of theréslin the real world.
Including storage system failures, are transient in naee173]. Although we
assume transient failures, we attempt to handle deteniaifidslures if they occur
in the context of a file system request.

Our goal is not to handle malicious faults, natural faultsmian-made faults,
development faults, incompetence faults, and delibeeatisi. For example, avoid-
ing development faults (such as logic errors) is criticaltfee correct operation of
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the file system; we believe that such bugs should (and likdly me detected and
eliminated during development and testing.

3.2 Restarting a file system

Restarting a crashed file system is not straightforwarde $yistems have a great
deal of state spread across memory and on disk. Moreovdicalgns also have
some in-memory state (such as file descriptors) that areiassd with a particular
file system. Additional care must be taken to restore all stiate after a file-system
restart.

In this section, we first describe the goals of restartalden&works designed
for user- and kernel-level file systems. We then describeestassociated with a
running file system. Finally, we describe the different waf/sestarting a crashed
file system.

3.2.1 Goals

We believe there are five major goals for a system that suppedtartable file
systems.

e Fault Tolerant: A large range of faults can occur in file systems. Failures
can be caused by faulty hardware and buggy software, canrbepent or
transient, and can corrupt data arbitrarily or be fail-stdpeideal restartable
file system recovers from all possible faults.

e Lightweight: Performance is important to most users and most file systems
have had their performance tuned over many years. Thusygddinificant
overhead is not a viable alternative: a restartable fileesystill only be used
if it has comparable performance to existing file systems.

e Transparent:. We do not expect application developers to be willing to
rewrite or recompile applications for this environment. A&sume that it
is difficult for most applications to handle unexpecteduiak in the file sys-
tem. Therefore, the restartable environment should be tiglp transparent
to applications; applications should not be able to distleat a file system
has crashed.

e Generic: A large number of commaodity file systems exist and each has its
own strengths and weaknesses. Ideally, the infrastrustupeld enable any
file system to be made restartable with little or no changes.
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e Maintain File-System Consistency: File systems provide different crash
consistency guarantees and users typically choose thegyitem depend-
ing on their requirements. Therefore, the restartablerenment should not
change the existing crash consistency guarantees.

Many of these goals are at odds with one another. For exarhigleer levels
of fault resilience can be achieved with heavier-weighttfdatection mechanisms.
Thus in designing restartable file systems, we explicithkentne choice to favor
performance, transparency, and generality over the pldibandle a wider range
of faults.

In this thesis, we investigate the following questions:

Is it possible to implement a generic framework to restagt$ifstems?

Whether a light-weight solution is sufficient?

How transparent is the restart process to applications?

How many modifications are required to transform commodlgy diystems
to work with a framework that support restartability?

Can a restartable framework respect file-system-consigtgnarantees?

3.2.2 State Associated with File Systems

File systems have a great deal of state spread across diffesenponents. The
number of components depend on the file system deploymdatsystems running
inside the operating system (i.e., kernel-level file syslehave their state spread
across other operating system components, and also they leasame address
space as the operating system. File systems running in paee $ave most of
their state spread across their own address space and sahwradtate is spread
in the underlying FUSE and storage systems (such as diskstworks).

The state that needs to be restored on a file system restadpatieation-
specific state, in-memory file-system system, on-disk filesn state, and operating-
system state. Restoring all of the above-mentioned stdtes afailure makes
restarting file systems challenging. We now discuss thesfitem-associated
states in detail.
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Application-specific state

An application (or a process) using the file system has statde the operating sys-
tem that is specific to the file or directory it is using. Theetgpically associated
with an application are file handles, file positions, file lscknd callbacks. All of
the above mentioned state are typically maintained by thealifile system or an
equivalent layer inside the operating system [100]. A filadia, as the name sug-
gests, serves as a unique identifier to access a file that bagbeviously opened
by the application. A file position is an index to a file’s datalas updated at the
end of a read or write operation. A file lock is used to proviteacity for updated
by user-level processes. Finally, a callback (such asfindtelps utilities (such as
desktop search) to easily identify modified or updated filedirectories [112]. All
such state needs to be tracked and restored after a restart.

Operating-system state

File systems leverage operating system components (sunhrasry management,
network, block layer, and virtual file system) to execute-fystem requests to
completion. For example, during the execution of a file-systequest, in-memory
objects in the operating system could be created or updateajock could have
been acquired or released. In the event of a file-systenrdaiune needs to ensure
that changes done in the operating system by partially ceteglrequests are prop-
erly cleaned up. The cleanup will help ensure that the ojmgratystem is restored
to an consistent state, which would allow it to service sghsat requests.

In-memory File-system State

The in-memory state of the file system mainly consist of tlm@mponents. First,

application-specific file-system state gets created in thegss of executing appli-
cation requests. A good example of such a state is a file olgecond, file systems
cache recently accessed data from the disk to improve dyedbrmance. Such

cached in-memory state need not be restored as they wouttheated again dur-
ing subsequent access. In other words, since read-onlydd&ts not affect the

correctness of the file-system state, it is not necessargstone all of the cached
in-memory state. Finally, file systems also maintain th@&inonetadata (such as
bitmaps, extents, etc.) in memory. Only the dirty metadas have not yet writ-

ten back to the disk need to be restored, as in-memory copieei@adata are also
persistently stored on disks.
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On-Disk File-system State

Changes to the file-system state need to be persistentlifemwitiv the disk. The
persistent writes help ensure that the modified or updatéal g survive across
operating system reboots. The on-disk state of file systemsists of meta-data
specific to the file system (described in Section 2.4) and watten by applica-

tions. The file-system specific meta-data needs to be censigh disk to prevent
further damage to the stored data [13, 15, 138].

3.2.3 Different Ways to Restart a File System

File systems can be restarted in different ways dependinthemniser's needs and
requirements. We characterize the restart process in&e thifferent categories
depending on the recovered state. The recovered stateexlile system (both
in-memory and on-disk), application, and the operatingteay state.

Primitive Restart

Primitive restart is the currently used restart mechaniseommodity file systems.
The goal of primitive restart is to restore the file system tmasistent state after
a crash. This “consistent” state need not be the state tigtee>at the time of the
crash. In other words, some of the updates to the file systentpra crash could
be lost during the restart process.

Upon a fault in file systems, the operating system is restdetpplicable only to
kernel-level file systems) and then file-system state i®redtby using the recently
recorded file-system state on disk. The recorded file-systate could be created
using any of the crash-consistency mechanisms (see S&chpnin the event that
a file system does not have any crash consistency mechanfimsgstem utility
(such as fsck) is run to repair and recover the file systere.stat

The advantage of primitive restart is that is does not regainy explicit support
from the operating system or the file system. The drawbackkisfapproach are
that it is lossy, manual, and slow. The application-statess and applications
have to be manually restarted to use the file systems. Mone forekernel-level
file systems, the operating-system state is also lost andttadr applications or
processes are also killed and have to be manually restarted.

Stateless Restart

We define stateless restart as an automatic restart andrestwashed file systems
but not applications or the underlying operating systematedss restart can be
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achieved if the faults or failures are isolated within the ystem. In other words,
the other components that the file system interacts withldhmat be affected by
the fault. One can restore the file-system to a consistet# lsyasimply leveraging
a crash-consistency mechanism, an offline checker, or both.

Stateless restart is better than primitive restart for tileding reasons. First,
application or processes that are not using the file systemmatr affected by the
file system restart. Second, the entire operating systemh meiebe restarted (i.e.,
smaller down time). Third, no manual intervention is reqdito restart a crashed
file system.

The drawback of stateless restart is that applicationipetate is not restored
after a file-system restart. The disconnected applicatiate €.g, file position
pointing to a non-existent file location) forces develogerfiandle incorrect file-
system behavior inside applications. Also, like primitrestart, some of the recent
file-system updates could be lost. The magnitude of lossrdispen the time of the
crash and the parameters defined inside the crash congisteahanism.

Stateless restart is difficult to implement for kernel-lefike systems and is
easier for user-level file systems. Implementing statelestrt is a bit tricky for
kernel-level file systems, as they have state that is spre@adsoperating system
components. Moreover, we still require sophisticated negles to isolate failures
within file systems to correctly restart and restore backtigéde without corrupting
the underlying operating-system state. Stateless rastarbe easily achieved in
the case of user-level file systems as they do not have aniciexgbate inside the
operating system.

Stateful Restart

Stateful restart, as the name indicates, restarts andesdtte state associated with
applications, file systems, and the operating system on-ayfdeem failure. The
restored state is closer (or equivalent) to the state thstaskprior to the file-system
crash. The idea behind stateful restart is to recover thesyitem in a way that
applications and other operating system components ardg@ld to file system
failures and restarts. Also, after a restart, file systenmsccatinue servicing both
pending and new requests.

There are many advantages of stateful restart. First, ggijns can be made
oblivious to file-system failures. Second, the servicesimg inside the operating
system, including those that depend on file systems, camoenio work correctly.
Third, the downtime on faults could be minimized to a largeeak Fourth, no user
intervention is required to restart the application or fifstems after a failure.

The major drawback of stateful restart is that one needsatiktmany updates
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(or states) across file systems and the operating systerden tar correctly restore
the file system to the state it was in before the crash. Moreovne also needs to
ensure that the side effects of all in-flight requests areectly undone; this undo
process allows in-flight requests to be re-executed again.

Our goal while designing restartable frameworks is to supptateful restart
of file systems. As mentioned earlier, stateful restartblenapplications, file sys-
tems, and the operating system to gracefully tolerate a wadiety of file-system
failures. In most cases, when we have perfect recoveryjcgdioins can continue
to use file systems even after a crash. In other cases, filensysin continue to
service new request that arrive after the crash. Either filaysystem reliability is
significantly improved in comparison with the existing coorlity file systems.

3.3 Components of a Restartable Framework

A framework that provides restartability for stateful ssts needs to first iden-
tify faults when they occur, continually record system etat preparation for a
failure, and recover systems when faults happen. Thud,datgction, fault antici-
pation, and fault recovery are the three fundamental compisrof a framework for
restartable file systems. Functionality of the three comneptgare common across
kernel- and user-level file systems but their implementatioould significantly
differ depending on the system (or subsystem) that theyaaotevith.

3.3.1 Fault Detection

The fault-detection component is responsible for idemgyoccurrences of faults
within file systems. As seen before, faults can be detectied arfbitrary periods
of time. Without timely fault detection (i.e., absence of-f&op faults), the file
system or the operating system could become corrupted amrigeunrecoverable
after a failure. Hence, the goal of fault detection is to ltine time delay between
the occurrence and detection of faults. The detection dffaan be implemented
inside (such as assertions) and outside (such as hardwecksjtof a file system.
Fault detection can be implemented at different granuégtitin terms of granu-
larity, a file system developer can detect faults at the lefiglstructions, functions,
requests, or modules. Atinstruction-level, a file systenetiger can check if syn-
tax and semantics of the operations are respected. Hardewsslechecks such as
segment-violation checks are a good example of instrudtieel fault detection.
At function-level, a file system developer can add simpleckbgsuch as asser-
tions) in one or more statements or can add a higher-leveastomcheck at the
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beginning or at the end of a function. At the request-levdiijeasystem devel-

oper can add syntactic and semantic checks at various éxequints. Finally, at

module-level, a file system developer detect faults by nooinig its liveliness and

responses. For a flexible fault-detection mechanism, aydeem developer can
also use a combination of checks at different granularities

Fault detection can also be implemented at different baueglaBoundaries act
as a natural divide between two entities. An entity could th@atruction, a func-
tion, or a module. At the instruction-level boundary, a fijstem developer can
check the input parameters for the next instruction. At threction-level boundary,
a file system developer can check the input and the returresdlatween function
calls. Atthe module-level boundary, we can add checks ®irthut and the output
values. It is important to note that the above-mentionedkheould also include
checks for verifying or validating the state of differentjeits before or after a
boundary crossing.

One can further improve fault-detection techniques by rgidieavyweight
mechanisms. A good example of a heavyweight mechanism isngirspecialized
file system checks after a few operations that verify botrdita and the semantics
of the operations. Another example is to add address-spatecgon [171]. Un-
fortunately, such checks come at a very high performance and hence, are not
in alignment with our goals.

We must use checks for fault detection with caution. On oeeme, too many
checks could significantly slow down the system. On the o#xéreme, too few
checks might not be able to catch many faults. There is allagdrade-off be-
tween performance and reliability. Since our focus is maneaaticipation and
recovery, we leave the choice of implementing such checKideteystem devel-
opers, who can make an informed decision based on usersilicaons) needs.
Ideally, we envision many lightweight checks that would e fault detection
and not impact the overall performance of the system.

3.3.2 Fault Anticipation

Anticipation in the context of file systems involves recoglifile-system state,
along with application- and OS-specific associated statgiciévation is pure over-
head, paid even when the system is behaving well; it shoulshibenized to the
greatest extent possible while retaining the ability taoke.

Anticipation can be implemented at different layers andhgtarities depend-
ing on how much of the state needs to be restored after a faslbbhcurred. In
terms of implementation location (i.e., layer), anticipatcan be performed at the
system call layer [171, 172], the file system layer [5, 82,183, 191, 198], the
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block driver layer [130, 132], and virtual file system or amusglent layer [15, 94].
In the context of granularities, we can implement anti¢gratat the instruction
level [152, 188], the file-system request level [5, 82], aralépoch levelife., gran-
ularity of time) [132].

The correct layer and granularity of anticipation depemishe design and de-
ployment of the file system of interest. It is important to fxée mind that with any
system that improves reliability, there is a performance space cost to enabling
recovery when a fault occurs.

3.3.3 Fault Recovery

Fault recovery is likely the most complex component of aadable framework.

Correct recovery is critical for proper operation of applions, file systems, and
the OS after a fault. For stateful recovery, we need to restioe system to the
state it was just before the fault. The fault recovery congmtris responsible for
cleaning residual state, restarting file systems and riegttneir state, and restoring
application-specific state. We now discuss the respoitabibf the fault recovery

component in detail.

Cleanup of Residual State

Cleanup of residual state is critical for correct recovedpon a failure, the file
system, the operating system, or both could be in an indems$ior corrupt) state.
As a result, one must first perform a cleanup before any répaittempted on the
failed system.

The goal of the cleanup process is to eliminate any residast sand restore
the operating system to a consistent state. The residualistereated by in-flight
requests, which could generate dirty data, create or maakigting OS objects,
acquire locks, and modify on-disk contents. If requestpasmaturely terminated,
the corresponding cleanup actions are never run and thud lsave the system in
an inconsistent or a corrupt state.

Cleanup of residual state includes the following actiongstFundo any ac-
tions (or effects) of in-flights requests that were exeautih the time of the fault.
Second, free up any in-memory objects of the file system; piesrof such objects
are bitmaps, extents, and inodes. Finally, cleanup anwgyi¢em objects that are
stored in operating system components; examples of suattslgre files, direc-
tory entries, and locks.
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Restore and Restart Failed File System

After a fault, a file system typically becomes inconsistentjsable, or both. Cleanup
typically discards all file-system state and undoes thelvegistate in the OS or
other components (if any). For stateful recovery, we must fiestore this lost
State.

It is difficult to recreate the lost state in file systems. Theallty is caused by
the fact that the file-system state is spread across manyaments and needs to
be consistent in memory and on disk (see Section 3.2.2). Feate the lost file-
system state, we could leverage the state recorded by theafgticipation com-
ponent along with the state maintained in other componédrasthe file system
interacts with.

One must then restart the file system to service pending andemguests. A
file-system restart mainly consists of reinitializationtioé failed file system. Typi-
cally, this reinitialization would be a mount (or an equivail) operation along with
some repair of operating-system state.

Restore Application-specific State

The connection between the application-specific statéd(aadile descriptors) and
the actual file-system state is lost on a file-system restéu. cleanup and restore
process discards and recreates file system objects, blitamms still have point-
ers to the old file-system objects, which could result in vgréor faulty) behavior.

To restore the application-specific state, the recoverypmmant should reat-
tach the application-specific metadata in the OS with thdynhexeated file-system
objects. The application-specific state typically inclsidee open files (i.e., file
descriptors), file positions, locks, and handles regist@righ notification daemons
(such as inotify and dnotify).

3.4 Summary

In this chapter, we first discussed the fault space, and ibesicour failure model.
Then, we described the restart process in file systems, gdatsir restartable
framework, and different ways to restart a file system. Hynale described the
three components of a restartable framework: fault detectiault anticipation,
and fault recovery.



Chapter 4

Restartable Kernel-level File
Systems

“The best performance improvement is the transition from th
nonworking state to the working state:’"John Osterhout

File systems have traditionally been built inside the OSdbta operating sys-
tems support a variety of file systems. For example, Linupsug 30 or so differ-
ent block-based file systems. These file systems differ frach ®ther in terms of
the features, performance, and reliability guaranteeg pinevide.

Kernel-level file systems come with both advantages andldssdages. The
primary advantage of using a kernel-level file system is ithaeliminates the addi-
tional data copying and context switching costs that areaated with user-level
file systems. The main drawback with kernel-level file systésrnthat they spread
their state across other OS components and run in the samesadspace as the
Os.

The design of kernel-level file systems makes recovery diffio implement.
When a fault occurs inside a file system, it is hard to isolatefault within the
file system, and restore the OS to a consistent state by updloénactions of the
file system. As a result, the recovery solution that existlayois to simply crash
the entire OS and hope that the problem goes away on a rebdwiLigh this is
practical, we believe it is not acceptable as applicatiors@her services running
in the OS are forcefully killed, making them unavailable &ets.

In this chapter, we explore the possibility of implementiagyeneric frame-
work inside OS to restart kernel-level file systems. Suchreege framework helps
eliminate the need for an entire OS reboot and a tailoredisalto restart individ-
ual file systems on crashes. Moreover, as performance isattior file systems,
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we also explore the possibility of minimizing the reliabjlitradeoffs while still
maintaining similar performance characteristics of arfile systems.

Our solution to restarting file systemaveembrangan operating system frame-
work to support lightweight, stateful recovery from file s1® crashes. During nor-
mal operation, Membrane logs file system operations, trétksystem objects,
and periodically performs lightweight checkpoints of filgsstem state. If a file
system crash occurs, Membrane parks pending requestasalgeexisting state,
restarts the file system from the most recent checkpointyepldys the in-memory
operation log to restore the state of the file system. Oncshia with recovery,
Membrane begins to service application requests agairicapjpns are unaware
of the crash and restart except for a small performance hlijing recovery.

The rest of this chapter is organized as follows. Sectiohsa#d 4.2 present
the design and implementation, respectively, of MembraBection 4.3 discuss
the consequence of having Membrane in the operating sy$ieatly, we evaluate
Membrane in Section 4.4.

4.1 Design

Membrane is designed to transparently restart the affdaatkel-level file system
upon a crash, while applications and the rest of the OS comtin operate nor-
mally. A primary challenge in restarting file systems is toreotly manage the
state associated with the file systeex, file descriptors, locks in the kernel, and
in-memory inodes and directories).

In this section, we first give an overview of our solution. Wer present the
three major pieces of the Membrane system: fault detedtautt, anticipation, and
recovery.

4.1.1 Overview

The main design challenge for Membrane is to recover filéesgstate in a light-
weight, transparent fashion. At a high level, Membrane aats this goal as fol-
lows.

Once a fault has been detected in the file system, Membrasdeak the state
of the file system to a point in the past that it trusts: thistied point is a consistent
file-system image that was checkpointed to disk. This cheickserves to divide
file-system operations into distinct epochs; no file-systgmration spans multiple
epochs.

To bring the file system up to date, Membrane replays the yibtesn operations
that occurred after the checkpoint. In order to correctlglipret some operations,
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4 ) Retry (w2)
| Crash!
|
success / success / success! *
1
open(“file") wO: write(4K) w1:write(4K) : w2:write(4K)
- |
FD3 FD3 5| FD3 ' FD3
File position 0 File position 4K S File position 8K | File pogition ??
; :
=
O|(8) Replay (w1) —
2 ) Rollback

Figure 4.1:Membrane Overview. The figure shows a file being created and writ-
ten to on top of a restartable file system. Halfway throughp¥dene creates
a checkpoint. After the checkpoint, the application cargmto write to the file;
the first succeeds (and returns success to the applicatiod)tlze program issues
another write, which leads to a file system crash. Steps 1 tenbteéd by gray
circles indicate the sequence of operation that Membraméopas to restart the
file system after a crash.

Membrane must also remember small amounts of applicaigible state from
before the checkpoint, such as file descriptors. Since thgoge of this replay is
only to update file-system state, non-updating operatiank as reads do not need
to be replayed.

Finally, to clean up the parts of the kernel that the buggysijigem interacted
with in the past, Membrane releases the kernel locks and freemory the file
system allocated. All of these steps are transparent tocapiphs and require no
changes to file-system code. Applications and the rest ofDiBeare unaffected
by the fault. Figure 4.1 gives an example of how Membrane waiking normal
file-system operation and upon a file system crash.

From the figure, we can see that Membrane creates a checlgftginthe open
and the first write operation (w0) on the file system. After dheckpoint, the
second write operation (wl) also successful completes.tli&uhext write opera-
tion (w2) causes the file system to crash. Upon a crash, for ia@ne to operate
correctly, it must (1) unwind the currently-executing weriand park the calling
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thread, (2) clean up file system objects (not shown), restiate from the previous
checkpoint, and (3) replay the activity from the current@pé.e., write wl). Once
file-system state is restored from the checkpoint and sessite is restored, Mem-
brane can (4) unpark the unwound calling thread and letssted the write, which
(hopefully) will succeed this time. The application shotiis remain unaware,
only perhaps noticing the timing of the third writeeZ) was a little slow.

Thus, there are three major pieces in the Membrane desigst, fault de-
tection machinery enables Membrane to detect faults quickly. Skdawlt an-
ticipation mechanisms record information about current file-systegratpons and
partition operations into distinct epochs. Finally, faalt recoverysubsystem exe-
cutes the recovery protocol to clean up and restart thedfdile system.

4.1.2 Fault Detection

The main aim of fault detection within Membrane is to be lighight while catch-

ing as many faults as possible. Membrane uses both hardwedrsadtware tech-

niques to catch faults. The hardware support is simple: puilhiters, divide-by-

zero, and many other exceptions are caught by the hardwdmated to the Mem-

brane recovery subsystem. More expensive hardware maghsueh as address-
space-based isolation, is not used.

The software techniques leverage the many checks thatgledst in file sys-
tem code. For example, file systems contain assertions dasvells tgpani c()
and similar functions. We take advantage of such interrtalgiity checking and
transform calls that would crash the system into calls intorecovery engine. An
approach such as that developed by SafeDrive [200] couldée 10 automatically
place out-of-bounds pointer and other checks in the fileesystode.

Membrane provides further software-based protection lyradextensive pa-
rameter checking on any call from the file system into the &keproper. These
lightweight boundary wrapperprotect the calls between the file system and the
kernel and help ensure such routines are called with progemaents, thus pre-
venting file system from corrupting kernel objects througid larguments. Sophis-
ticated tools €.g, Ballista[102]) could be used to generate many of these peap
automatically.

4.1.3 Fault Anticipation

In Membrane, there are two components of fault anticipatiétirst, thecheck-
pointing subsystem partitions file system operations into diffeegrgichqor trans-
actiong and ensures that the checkpointed image on disk repreaariasistent
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state. Second, updates to data structures and other stateeked with a set of
in-memory logsand parallel stacks The recovery subsystem (described below)
utilizes these pieces in tandem to restart the file systeen ffifure.

Fault anticipation is difficult due to the complex interacts between the file
system and the core kernel services. File system operatismsnany core kernel
services €.g, locks, memory allocation), are heavily intertwined wittajor ker-
nel subsystemse(g, the page cache), and have application-visible sttg file
descriptors). In order to selectively restart the crashiedsfistem and restore the
operating-system state, careful checkpointing and statding are thus required.
We now discuss our checkpointing and state-tracking mashrenin detail.

Checkpointing

Checkpointing is critical because a checkpoint represamisint in time to which

Membrane can safely roll back and initiate recovery. We defircheckpoint as
a consistent boundary between epochs where no operatios spaltiple epochs.
By this definition, file-system state at a checkpoint is cstesit as no file system
operations are in flight.

We require such checkpoints for the following reason: filstesm state is con-
stantly modified by operations such as writes and deletedindystems lazily
write back the modified state to improve performance. As alteat any point in
time, file system state is comprised of (i) dirty pages (in mgm (ii) in-memory
copies of its meta-data objects (that have not been copiés ti-disk pages),
and (iii) data on the disk. Thus, the file system is in an inigtest state until all
dirty pages and meta-data objects are quiesced to the dislcofrect operation,
one needs to ensure that the file system is consistent at givenbey of the mount
process (or the recovery process in the case of Membrane).

Modern file systems take a number of different approachekseaonsistency
management problem: some group updates into transactasns (ournaling file
systems [73, 145, 170, 179]); others define clear consigteriervals and create
shapshots (as in shadow-paging file systems [23, 82, 149]su8h mechanisms
periodically create checkpoints of the file system in apttibn of a power failure
or OS crash. Older file systems do not impose any ordering datep at all (as
in Linux ext2 [178] and many simpler file systems). In all @ddembrane must
operate correctly and efficiently.

The main challenge with checkpointing is to accomplish i&itightweight
and non-intrusive manner. For modern file systems, Memlrandeverage the in-
built journaling (or snapshotting) mechanism to periotiycaheckpoint file system
state; as these mechanisms atomically write back data raddifithin a check-
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point to the disk. To track file-system level checkpoints,nMeane only requires
that these file systems explicitly notify the beginning amdl ef the file-system

transaction (or snapshot) to it so that it can throw away tigerécords before the
checkpoint. Upon a file system crash, Membrane uses the Blersis recovery

mechanism to go back to the last known checkpoint and iaitia¢ recovery pro-

cess. Note that the recovery process uses on-disk data aschdodepend on the
in-memory state of the file system.

For file systems that do not support any consistent-managteseheme (e.g.,
ext2), Membrane provides a generic checkpointing mechawisthe VFS layer.
Membrane’s checkpointing mechanism groups several fiéegy operations into
a single transaction and commits it atomically to the diskiraksaction is cre-
ated by temporarily preventing new operations from entgiitio the file system
for a small duration in which dirty meta-data objects areied@ack to their on-
disk pages and all dirty pages are marked copy-on-write odin copy-on-write
support for file-system pages, Membrane improves perfoc@dny allowing file
system operations to run concurrently with the checkpofrthe previousepoch.
Membrane associates each page with a checkpoint (or epoaider to prevent
pages dirtied in the current epoch from reaching the disks itnportant to note
that the checkpointing mechanism in Membrane is implenteatehe VFS layer;
as a result, it can be leveraged by all file system with litl@@ modification.

Tracking State with Logs and Stacks

Membrane must track changes to file system state that traedspiter the last
checkpoint. This tracking is accomplished with five differéypes of logs or stacks
to track: file system operations, application-visible g#ss memory allocations,
locks, and execution state.

First, an in-memonrypperation log (op-logyecords all state-modifying file sys-
tem operations (such as open) that have taken place dusngpibch or are cur-
rently in progress. The op-log records enough informatiooud requests to enable
full recovery from a given checkpoint.

Membrane also requires a smsdission log (s-log)The s-log tracks which files
are open at the beginning of an epoch and the current posifitime file pointer.
The op-log is not sufficient for this task, as a file may havenbmgened in a previ-
ous epoch; thus, by reading the op-log alone, one can ongredseads and writes
to various file descriptors without the knowledge of whickdisuch operations re-
fer to.

Third, an in-memorymalloc table (m-table}racks heap-allocated memory.
Upon failure, the m-table can be consulted to determine kvblocks should be
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freed. If failure is infrequent, an implementation coulshage memory left allo-
cated by a failed file system; memory may leak slowly enoudghaionpact overall
system reliability.

Fourth, lock acquires and releases are tracked biothestack (I-stack)When
a lock is acquired by a thread executing a file system operaitibormation about
said lock is pushed onto a per-thread I|-stack; when the lBckleased, the infor-
mation is popped off. Unlike memory allocation, the exaatesrof lock acquires
and releases is critical; by maintaining the lock acquisgiin LIFO order, recov-
ery can release them in the proper order as required. Alsathat only locks that
are global kernel locks (and hence survive file system cesteed to be tracked
in such a manner; private locks internal to a file system walickeaned up during
recovery and therefore require no such tracking.

Finally, anunwind stack (u-stackijs used to track the execution of code in
the file system and kernel. By pushing register state ontgénreghread u-stack
when the file system is first called on kernel-to-file-systetsc Membrane records
sufficient information to unwind threads after a failure f@®n detected in order
to enable restart.

Note that the m-table, I-stack, and u-stack epenpensatory189]; they are
used to compensate for actions that have already taken gtatenust be undone
before proceeding with restart. On the other hand, both thog and s-log are
restorativein nature; they are used by recovery to restore the in-merst@te of
the file system before continuing execution after restart.

4.1.4 Fault Recovery

The fault recoverysubsystem is the largest subsystem within Membrane. Once a
fault is detected, control is transferred to the recovellysgatem, which executes
the recovery protocol. This protocol has the following s

e Halt execution and park threads: Membrane first halts the execution of
threads within the file system. Such “in-flight” threads arevented from
further execution within the file system in order to both metfurther dam-
age as well as to enable recovery. Late-arriving threads those that try to
enter the file system after the crash takes place) are paskeela

e Unwind in-flight threads: Crashed and any other in-flight thread are un-
wound and brought back to the point where they are about tr & file
system; Membrane uses the u-stack to restore registersiagfere each call
into the file system code. During the unwind, any held globeks recorded
on |-stack are released.
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4.2

Commit dirty pages from previous epoch to stable storage:Membrane
moves the system to a clean starting point at the beginnira &poch; all
dirty pages from the previous epoch are forcefully comrditie disk. This
action leaves the on-disk file system in a consistent statée that this step is
not needed for file systems that have their own crash consist@echanism.

“Unmount” the file system: Membrane consults the m-table and frees all in-
memory objects allocated by the the file system. The itemisariite system
buffer cache (e.g., inodes and directory entries) are a¢salf Conceptually,
the pages from this file system in the page cache are alsseeleaimicking

an unmount operation.

“Remount” the file system: In this phase, Membrane reads the super block
of the file system from stable storage and performs all oteeessary work
to reattach the FS to the running system.

Roll forward: Membrane uses the s-log to restore the sessions of active
processes to the state they were at the last checkpointeritpgtocesses the
op-log, replays previous operations as needed and restwesxtive state of

the file system before the crash. Note that Membrane use&dgiudar VFS
interface to restore sessions and to replay logs. Hence,lviera does not
require any explicit support from file systems.

Restart execution: Finally, Membrane wakes all parked threads. Those that
were in-flight at the time of the crash begin execution as éythhad not
entered the file system; those that arrived after the crashlbwed to enter
the file system for the first time, both remaining obliviougtod crash.

Implementation

We now present the implementation of Membrane. We first ptesach of the
main components of Membrane, and then describe the opgrsystem (Linux)
changes. Much of the functionality of Membrane is encapedlavithin two com-
ponents: theheckpoint manager (CPMNd therecovery manager (RMJEach of
these subsystems is implemented as a background thread aedded during an-
ticipation (CPM) and recovery (RM). Beyond these threadspidrane also makes
heavy use ofnterpositionto track the state of various in-memory objects and to
provide the rest of its functionality. We ran Membrane wigi2ze VFAT, and ext3
file systems.
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In implementing the functionality described above, Memier&mploys three
key techniques to reduce overheads and make lightweigtarted a stateful file
systems feasible. The techniques arep@pe stealing for low-cost operation
logging, (ii) COW-based checkpointindor fast in-memory partitioning of pages
across epochs using copy-on-write techniques for file systihat do not support
transactions, and (iiizontrol-flow captureand skip/trust unwind protocelto halt
in-flight threads and properly unwind in-flight execution.

4.2.1 Fault Detection

There are numerous fault detectors within Membrane, eackhath, when trig-
gered, immediately begins the recovery protocol. We dbedtie detectors Mem-
brane currently uses; because they are lightweight, weimeagore will be added
over time, particularly as file-system developers learmusttthe restart infrastruc-
ture.

Hardware-based Detectors

The hardware provides the first line of fault detection. Im moplementation in-
side Linux on x86 (64-bit) architecture, we track the follagyruntime exceptions:
null-pointer exception, invalid operation, general poien fault, alignment fault,
divide error (divide by zero), segment not present, andkssagment fault. These
exception conditions are detected by the processor; sitfaalt handlers, when
run, inspect system state to determine whether the faultewased by code execut-
ing in the file system modula.¢., by examining the faulting instruction pointer).
Note that the kernel already tracks these runtime exceptidrich are considered
kernel errors and triggers panic as it doesn’'t know how todl@them. We only
check if these exceptions were generated in the contexeotitartable file system
to initiate recovery, thus preventing kernel panic.

Software-based Detectors

A large number of explicit error checks are extant within file system code
base; we interpose on these macros and procedures to ddiemhder class of
semantically-meaningful faults. Specifically, we redefinacros such aBUZ ) ,
BUG.ON( ), pani c(),andassert () so that the file system calls our version of
said routines.

These routines are commonly used by kernel programmers athi@e unex-
pected event occurs and the code cannot properly handlextept®on. For ex-



52

File System | assert() BUE) panic()

xfs 2119 18 43
ubifs 369 36 2
ocfs2 261 531 8
gfs2 156 60 0
jbd 120 0 0
jbd2 119 0 0
afs 106 38 0
jfs 91 15 6
extd 42 182 12
ext3 16 0 11
reiserfs 1 109 93
jffs2 1 86 0
ext2 1 10 6
ntfs 0 288 2
nfs 0 54 0
fat 0 10 16

Table 4.1: Software-based Fault Detectors. The table depicts how many calls
each file system makesdssert (),BUJ ), andpani c() routines. The data
was gathered simply by searching for various strings in @& code. A range
of file systems and the ext3 journaling devices (jbd and jlagd@)included in the
micro-study. The study was performed on the latest stablgxlrelease (2.6.26.7).

ample, Linux ext2 code that searches through directoriesnafallsBUE ) if di-
rectory contents are not as expected; sge2_add_l i nk() where a failed scan
through the directory leads to such a call. Other file systesmsh as reiserfs, rou-
tinely call pani c() when an unanticipated /O subsystem failure occurs [138].
Table 4.1 presents a summary of calls present in existingx{iile systems.

In addition to those checks within file systems, we have addset of checks
across the file-system/kernel boundary to help prevent faopagation into the
kernel proper. Overall, we have added roughly 100 checlssaararious key points
in the generic file system and memory management moduleslkasie twenty or
so header files. As these checks are low-cost and relatiasly to add, we believe
that operating system developers will continue to “hardin@ file-system/kernel
interface when Membrane gets integrated inside commogityating systems.

4.2.2 Fault Anticipation

We now describe the fault anticipation support within therent Membrane imple-
mentation. Anticipation consists of the following techmég: page stealing, state
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op-log (naive) op-log (with page stealing)

rite(A) to blk 0 rite(A) to blk 0 (not needed)
e wrte® Tttt Page Cache

------------- ite(C) to blk 0 bedeeom
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write(C) to blk 0 B

Figure 4.2: Page Stealing. The figure depicts the op-log both with and without
page stealing. Without page stealing (left side of the figurser data quickly fills
the log, thus exacting harsh penalties in both time and spaeeheads. With page
stealing (right), only a reference to the in-memory pagehess recorded with each
write; further, only the latest such entry is needed to rgple op-log successfully.

tracking, and COW-based checkpointing. We begin by présgmaur approach to
reducing the cost of operation logging via a technique werref agpage stealing

Low-Cost Op-Logging via Page Stealing

Membrane interposes at the VFS layer in order to record thessary information
to the op-log about file-system operations during an epobls;Ifor any restartable
file system that is mounted, the VFS layer records an entrgdgh operation that
updates the file system state in some way.

One key challenge of logging is to minimize the amount of dagged in order
to keep interpositioning costs low. A naive implementatfomrtiuding our first at-
tempt) might log all state-updating operations and theiapeeters; unfortunately,
this approach has a high cost due to the overhead of loggiitg @perations. For
each write to the file system, Membrane has to not only reduat & write took
place but also log thdatato the op-log, an expensive operation both in time and
space.

Membrane avoids the need to log this data through a mmage stealingnech-
anism. Because dirty pages are held in memory before chetkpn Membrane
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is assured that the most recent copy of the data is alreadgmary (in the page
cache). Thus, when Membrane needs to replay the write gilsstiee page from the
cache (before it is removed from the cache by recovery) amgswhe stolen page
to disk. In this way, Membrane avoids the costly logging afnugata. Figure 4.2
shows how page stealing helps in reducing the size of op-log.

When two writes to the same block have taken place, note thigittbe last
write needs to be replayed. Earlier writes simply updatefitegoosition correctly.
This strategy works because reads are not replayed (intlesdhave already com-
pleted); hence, only the current state of the file systemepesented by the last
checkpoint and current op-log and s-log, must be recortsituc

Other Logging and State Tracking

Membrane also interposes at the VFS layer to track all nacgs®ssion state in
the s-log. There is little information to track here: simphich files are open (with
their pathnames) and the current file position of each file.

Membrane also needs to track memory allocations perfornyeal festartable
file system. We add a new allocation flag;P_RESTARTABLE and provide a new
header file to include in file-system code to app&#eP_RESTARTABLE to all
memory allocation call in Membrane. This enables the meratiogation module
in the kernel to transparently record the necessary pesyitem information into
the m-table and thus prepare for recovery.

Tracking lock acquisitions is also straightforward. As wentioned earlier,
locks that are private to the file system will be ignored dgimacovery, and hence
need not be tracked; only global locks need to be monitorédis,Twhen a thread
is running in the file system, the instrumented lock funcBames the lock informa-
tion in the thread’s private I-stack for the following lockihe global kernel lock,
super-block lock, and the inode lock.

Finally, Membrane must track register state across cet@aife boundaries to
unwind threads properly. To do so, Membrane wraps all cadisifthe kernel into
the file system; these wrappers push and pop register séditen raddresses, and
return values onto and off of the u-stack.

COW-based Checkpointing

Our goal of checkpointing was to find a solution that is lighight and works cor-
rectly despite the lack of transactional machinery in filsteyns such as Linux ext2,
many UFS implementations, and various FAT file systemsgtfikssystems do not
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Figure 4.3:COW-based Checkpointing.The picture shows what happens during
COW-based checkpointing. Attime=0, an application writelslock 0 of a file and
fills it with the contents “A”. At time=1, Membrane performscheckpoint, which
simply marks the block copy-on-write. Thus, Epoch 0 is ovel @ new epoch
begins. Attime=2, block 0 is over-written with the new coige'B”; the system
catches this overwrite with the COW machinery and makes amewemory page
for it. At time=3, Membrane decides to flush the previous bjsodirty pages to
disk, and thus commits block 0 (with “A” in it) to disk.

include journaling or shadow paging to naturally partitfida system updates into
transactions.

One could implement a checkpoint using the following stramnprotocol.
First, during an epoch, prevent dirty pages from being fldsteedisk. Second,
at the end of an epoch, checkpoint file-system state by filghgdile system ac-
tivity and then forcing all dirty pages to disk. At this paitihe on-disk state would
be consistent. If a file-system failure occurred during tegtrepoch, Membrane
could rollback the file system to the beginning of the epoeblay logged opera-
tions, and thus recover the file system.

The obvious problem with the strawman is performance: fgy@ages to disk
during checkpointing makes checkpointing slow, which sl@applications. Fur-
ther, update traffic is bunched together and must happemgltine checkpoint,
instead of being spread out over time; as is well known, faygages to disk can
reduce 1/O performance [117].
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Our lightweight checkpointing solution instead takes adage of the page-
table support provided by modern hardware to partition pagi different epochs.
Specifically, by using the protection features providedli®y page table, the CPM
implements @opy-on-write-based checkpototpartition pages into different epochs.
This COW-based checkpoint is simply a lightweight way forrnvieane to parti-
tion updates to disk into different epochs. Figure 4.3 shaw&xample on how
COW-based checkpointing works.

We now present the details of the checkpoint implementatibirst, at the
time of a checkpoint, the checkpoint manager (CPM) threakewand indicates
to thesession managd6M) that it intends to checkpoint. The SM parks new VFS
operations and waits for in-flight operations to completdiew finished, the SM
wakes the CPM so that it can proceed.

The CPM then walks the lists of dirty objects in the file syststarting at the
superblock, and finds the dirty pages of the file system. Th# GRarks these
kernel pagesopy-on-write further updates to such a page will induce a copy-
on-write fault and thus direct subsequent writes to a newy afghe page. Note
that the copy-on-write machinery is present in many systemsupport (among
other things) fast address-space copying during procesation. This machin-
ery is either implemented within a particular subsystery.(dile systems such as
ext3cow [133], WAFL [82] manually create and track their C@&ges) or built in
the kernel for application pages. To our knowledge, copywoite machinery is not
available for kernel pages. Hence, we explicitly added etpior copy-on-write
machinery for kernel pages in Membrane; thereby avoidingresive changes to
file systems to support COW machinery.

The CPM then allows these pages to be written to disk (by imgck checkpoint
number associated with the page), and the background l/@alaé¢df | ush)is
free to write COW pages to disk at its leisure during the nexiol. Checkpointing
thus groups the dirty pages from the previous epoch and altwy said modifi-
cations to be written to disk during the next epoch; newlyiglir pages are held in
memory until the complete flush of the previous epoch’s didges.

There are a number of different policies that can be used ¢adevhen to
checkpoint. An ideal policy would likely consider a numbérfactors, including
the time since last checkpoint (to minimize recovery timtbg number of dirty
blocks (to keep memory pressure low), and current levelsRif@nd 1/O utiliza-
tion (to perform checkpointing during relatively-idle t@w). Our current policy is
simpler, and just uses time (5 secs) and a dirty-block tlules@0OMB) to decide
when to checkpoint. Checkpoints are also initiated wherpgfiGation forces data
to disk.
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4.2.3 Fault Recovery

We now describe the last piece of our implementation whiafopms fault recov-
ery. Most of the protocol is implemented by the recovery nggngRM), which
runs as a separate thread. The most intricate part of recavdrow Membrane
gains control of threads after a fault occurs in the file gyséad the unwind pro-
tocol that takes place as a result. We describe this compaoneacovery first.

Gaining Control with Control-Flow Capture

The first problem encountered by recovery is how to gain cbofrthreads already
executing within the file system. The fault that occurredgigiven thread) may
have left the file system in a corrupt or unusable state; thasyould like to stop
all other threads executing in the file system as quickly asipte to avoid any
further execution within the now-untrusted file system.

Membrane, through the RM, achieves this goal by immediatedyking all
code pages of the file system as non-executable and thusriagsather threads
with a technique that we refer @ontrol-flow capture When a thread that is al-
ready within the file system next executes an instructiong@ais generated by the
hardware; Membrane handles the trap and then takes apgpiition to unwind
the execution of the thread so that recovery can proceedadfthese threads have
been unwound. File systems in Membrane are inserted addleekiernel modules,
this ensures that the file system code is in a 4KB page and rtatfmlarge kernel
page which could potentially be shared among differentédemmodules. Hence, it
is straightforward to transparently identify code page§ilefsystems.

Intertwined Execution and The Skip/Trust Unwind Protocol

Unwinding a thread is challenging, as the file system intsradth the kernel in a
tightly-coupled fashion. Thus, it is not uncommon for the &l/stem to call into the
kernel, which in turn calls into the file system, and so foki¥e call such execution
pathsintertwined

Intertwined code puts Membrane into a difficult positionedtly, Membrane
would like to unwind the execution of the thread to the bemigrof the first kernel-
to-file-system call as described above. However, the faat thon-file-system)
kernel code has run complicates the unwinding; kernel stdtenot be cleaned up
during recovery, and thus any state changes made by thel kaust be undone
before restart.

For example, assume that the file system code is executigg i(i function
f 1() ) and calls into the kernel (functiokl() ); the kernel then updates kernel-
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state in some way (e.g., allocates memory or grabs locks}rardcalls back into
the file system (functior 2() ); finally, f 2() returns tok1() which returns to
f 1() which completes. The tricky case arises whiéx( ) crashes; if we simply
unwound execution naively, the state modifications madéavitnthe kernel would
be left intact, and the kernel could quickly become unusable

To overcome this challenge, Membrane employs a camig/trust unwind
protocol The protocolskipsover file system code butuststhe kernel code to
behave reasonable in response to a failure and thus manage Keate correctly.
Membrane coerces such behavior by carefully arranging eéh@m value on the
stack, mimicking an error return from the failed file-systemutine to the kernel,
the kernel code is then allowed to run and clean up as it sea§difound that the
Linux kernel did a good job of checking return values from filteesystem function
and in handling error conditions. In places where it did A& $uch instances), we
explicitly added code to do the required check.

In the example above, when the fault is detecteddfl) , Membrane places an
error code in the appropriate location on the stack andmstoontrol immediately
tok1() . This trusted kernel code is then allowed to execute, hdigdfeeing any
resources that it no longer needs (e.g., memory, locks)&e&iurning control to
f 1() . When the return té 1( ) is attempted, the control-flow capture machinery
again kicks into place and enables Membrane to unwind thairetar of the stack.
A real example from Linux is shown in Figure 4.4.

Throughout this process, the u-stack is used to capturedbessary state to
enable Membrane to unwind properly. Thus, both when the Jistesn is first
entered as well as any time the kernel calls into the file systerapper functions
push register state onto the u-stack; the values are sulrsigyopped off on
return, or used to skip back through the stack during unwind.

Correctness of Recovery

We now discuss the correctness of our recovery mechanisnmbvéme throws
away the corrupted in-memory state of the file system imntelyiafter the crash.
Since faults are fail-stop in Membrane, the control-flow toa@ mechanism in
Membrane ensures that the on-disk data is never corruptedaafault. Membrane
also prevent any new operation from being issued to the fdegy while recovery
is being performed. The file-system state is then reverteddadast known check-
point (which is guaranteed to be consistent). Next, sufadssompleted op-logs
are replayed to restore the file-system state to the crash #imally, the unwound
processes are allowed to execute again.
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1 do_sys_open() cleanup
release fd

2 open_namei() cleanup
release namei data

block_prepare_write() cleanup
sys_open() ¢ clear buffer
do_sys_open() 31 zer0 page
T mark not dirty
filp_open()

open_namei()
vfs_create() <«—
ext2_create()
ext2_addlink()

ext2_prepare_write() > fault - membrane

block_prepare_write()%l3

|
ext2_get_block() —— fault - membrane

Figure 4.4: The Skip/Trust Unwind Protocol. The figure depicts the call path
from theopen() system call through the ext2 file system. The first sequence
of calls (throughvf s_cr eat e()) are in the generic (trusted) kernel; then the
(untrusted) ext2 routines are called; then ext2 calls batb ithe kernel to pre-
pare to write a page, which in turn may call back into ext2 td geblock to
write to. Assume a fault occurs at this last level in the stéWdkmbrane catches
the fault, and skips back to the last trusted kernel routimémicking a failed
call to ext 2_get _bl ock() ; this routine then runs its normal failure recovery
(marked by the circled “3” in the diagram), and then tries teturn again. Mem-
brane’s control-flow capture machinery catches this anchtbkips back all the
way to the last trusted kernel codef(s_cr eat €), thus mimicking a failed call
toext 2_creat e() . The rest of the code unwinds with Membrane’s interference,
executing various cleanup code along the way (as indicaygtidcircled 2 and 1).

Non-determinism could arise while replaying the completpdrations. The
order recorded in op-logs need not be the same as the ordartegeby the sched-
uler. This new execution order could potentially pose a [ewbwhile replaying
completed write operations as applications could havergbdehe modified state
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Components | No Checkpoint With Checkpoint
Added | Modified | Added | Modified
FS 1929 30 2979 64
MM 779 5 867 15
Arch 0 0 733 4
Headers 522 6 552 6
Module 238 0 238 0
Total 3468 41 5369 89

Table 4.2:Implementation Complexity. The table presents the code changes re-
quired to tranform vanilla Linux 2.6.15 x864 kernel to support restartable file
systems. Most of the modified lines indicate places wherflav&ernel did not
check/handle errors propagated by the file system. As oungdg®wmwere non-
intrusive in nature, none of existing code was removed flurkernel.

(via read) before the crash. On the other hand, operations that malakffile-
system state (such as create, unlink, etc.) would not be lagmoas conflicting
operations are resolved by the file system through locking.

Membrane avoids non-deterministic replay of completedenperations through
page stealing. While replaying completed operations, Mamd reads the final
version of the page from the page cache and re-executes tteeaperation by
copying the data from it. As a result, write operations wliuéng replayed will
end up with the same final version no matter what order thegseeuted. Lastly,
as the in-flight operations have not returned back to theiegimn, Membrane
allows the scheduler to execute them in arbitrary order.

4.2.4 Implementation Statistics

Our prototype is implemented in Linux 2.6.15 kernel. Tabl2 ghows the code
changes required to transform a vanilla 2.6.15 kernel intoerating system that
implements Membrane. We now briefly describe the code cleimgdifferent OS
components to support Membrane.

The FS changes include support for op-logging, COW-basedkgointing,
and skip/trust unwind protocol. The op-logging support mhaiconsists of log-
ging input arguments, return values, and lock acquisitmmeleases of file-system
requests. The COW-based checkpointing changes mainlysterms support for
parking (or releasing) threads executing file-system djmers during (or after)
checkpoint and maintaining the count of requests that amemtly executing in-
side the file system of interest. The skip/trust unwind supponsist of calls to
macros that records the current operating-system stat@ebaf request makes a
transition from the OS into the file system.
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The MM changes include support for COW-based checkpoinéing page
stealing mechanisms. The COW-based checkpoint changasstoh support to
manage attributes of COW pages in the operating system. age stealing sup-
port consist of tracking and freeing pages that belong tdfithesystem before a
crash.

Finally, the arch code changes correspond to COW suppolteiorel pages,
and the module changes include support to locate file-systelm pages and meth-
ods to change the page protection bits.

4.3 Discussion

The major negative of the Membrane approach is that, witaddtess-space-based
protection, file system faults may corrupt other componefitse system. If the file
system corrupts other kernel data or code or data that iesidalisk, Membrane
will not be able to recover the system. Thus, an importantiofac Membrane’s
success will be minimizing the latency between when a fazdtics and when it is
detected.

An assumption we make is that kernel code is trusted to waokenty, even
when the file system code fails and returns an error. We fohatlthis is true in
most of the cases across the kernel proper code. But in twangg places, we
found that the kernel proper did not check the return valamfthe file system and
additional code was added to clean up the kernel state apagate the error back
to the callee.

A potential limitation of our implementation is that, in serscenarios, a file
system restart can be visible to applications. For instamben a file is created, the
file system assigns it a specific inode number, which an agfic may query€.g,

r sync and similar tools may use this low-level number for backug archival
purposes). If a crash occurs before the end of the epoch, keralwill replay the
file create; during replay, the file system may assign a difftmode number to the
file (based on in-memory state). In this case, the applicatiould possess what it
thinks is the inode number of the file, but what may be in fatttexiunallocated or
allocated to a different file. Thus, to guarantee that the-usgéle inode number
is valid, an application must sync the file system state #fieeicreate operation.

On the brighter side, we believe Membrane will encourage pasitive fault-
detection behaviors among file-system developers. Fiestyelieve that quick-fix
bug patchingwill become more prevalent. Imagine a scenario where an itapb
customer has a workload that is causing the file system tesaally corrupt data,
thus reducing the reliability of the system. After some diagjs, the development
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team discovers the location of the bug in the code, but wnfately there is no easy
fix. With the Membrane infrastructure, the developers maybke to transform
the corruption into a fail-stop crash. By installing a quigatich that crashes the
code instead of allowing further corruption to continues tfeployment can operate
correctly while a longer-term fix is developed. Even moresiastingly, if such
problems can be detected, but would require extensive cegteucturing to fix,
then a patch may be the best possible permanent solutionoisWest said: not
all problems worth solving are worth solving well [98].

Second, with Membrane, file-system developers will seeifsignt benefits to
putting integrity checks into their code. Some of thesetighight checks could be
automated (as was nicely done by SafeDrive [200]), but wievlthat develop-
ers will be able to place much richer checks as they have akle@pledge about
expectations at various locations. For example, devetopaderstand the exact
meaning of a directory entry and can signal a problem if oredane awry; au-
tomating such a check is a great deal more complicated [4Bg riotivation to
check for violations is low in current file systems since éiarlittle recourse when
a problem is detected. The ability to recover from the probie Membrane gives
greater motivation.

4.4 Evaluation

We now evaluate Membrane in the following three categoriemsparency, per-
formance, and generality. All experiments were performadaanachine with a
2.2 GHz Opteron processor, two 80GB WDC disks, and 2GB of nmgmmning
Linux 2.6.15. We evaluated Membrane using ext2, VFAT, arnt@.eXhe ext3 file
system was mounted in data journaling mode in all experiment

4.4.1 Generality

We chose ext2, VFAT, and ext3 to evaluate the generality oBpproach. In other
words, we want to understand the effort involved in portixgstng file systems
to work with Membrane. ext2 and VFAT file systems were chosmritieir lack
of crash consistency machinery and for their completelfedéht on-disk layout.
The ext3 file system was selected for its journaling maclitieat provides better
crash consistency guarantees than ext2. Table 4.3 showsdlkeechanges required
in each file system.

From the table, we can see that the file system specific chaegeised to work
with Membrane are minimal. For ext3, we also added 4 linesoolecto JBD to
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File System | Added | Modified | Deleted
ext2 4 0 0
VFAT 5 0 0
ext3 1 0 0
JBD 4 0 0

Table 4.3:File system code changed.he table presents the code changes required
to transform a ext2, VFAT, and ext3 file systems in Linux 3.8etnel into their
restartable counterparts.

notify the beginning and the end of transactions to the gbeick manager, which
could then discard the operation logs of the committed &efisns. All of the
additions were straightforward, including adding a newdezdile to propagate the
GFP_RESTARTABLE flag and code to write back the free block/inode/cluster toun
when thewr i t e_.super method of the file system was called. No modification
(or deletion) of existing code were required in any of the $ijstems.

In summary, Membrane represents a generic approach tovacfiie system
restartability; existing file systems can work with Memleamith minimal changes
of adding a few lines of code.

4.4.2 Transparency

We employ fault injection to analyze the transparency effeby Membrane in
hiding file system crashes from applications. The goal ofe¢hexperiments is to
show the inability of current systems in hiding faults frompécation and how
using Membrane can avoid them.

Our injection study is quite targeted; we identify placestlie file system
code where faults may cause trouble, and inject faults treerd observe the re-
sult. These faults represent transient errors from thréerdnt components: vir-
tual memory (e.g., kmap, dlloc anon), disks (e.g., writéull_page, sbbread), and
kernel-proper (e.g., cleanode, iget). In all, we injected 47 faults in different code
paths in three file systems. We believe that many more faalitdde injected to
highlight the same issue.

We use four different metrics to understand the impact ohdaalt injection
experiment. The metrics used in our experiments are: hoectkd, application,
FS:consistent, and FS:usable. How detected denotes hafa{ail) the fault was
detected, and the reaction of the operating system to thkt fgpplication denotes
the state of the application (or process) that is executiegfile system request.
FS:consistent denotes whether the file system was cortsidtenthe injected fault.
FS:usable denotes whether the file system was able to ssuis2quent requests
after the injected fault.
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Tables 4.4, 4.5, and 4.6 present the results of our study.cipgon explains
how to interpret the data in the table. In all experiments,dperating system was
always usable after fault injection (not shown in the tabMJje now discuss our
observations and conclusions.

Vanilla OS and File Systems

First, we analyzed the vanilla versions of the file systemstandard Linux ker-
nel as our base case. The results are shown in the leftmadt cedumn in Ta-
bles 4.4, 4.5, and 4.6.

For ext2, 85% of faults triggered a kernel “oops”. An oopsic¢gtly indicates
that something seriously went wrong within the file systenhe Dther 15% of
faults resulted in general protection error inside the Oli& file system was only
consistent for 55% of the fault injection experiments. |semwhere the file system
was consistent, the operation triggering the fault did ntgmally modify any file-
system state to cause an inconsistency. Finally, the fitesysas unusable in 80%
of the fault injection experiments. In the remaining 20% wpe&riments, the file
system was unmountable 75% of the time, even though it Wwassdble.

For VFAT, all of the injected faults triggered an oops and dipglication (i.e.,
process executing the file system request) was killed dftefault was triggered
in the file system. Only in a few experiments (around 38%) vigsfile system
consistent after a fault injection. Finally, the file systavas usable after fault
injection in 54% of experiments. In cases where the file systas usable, it was
not unmountable, indicating that file-system state wasupbed and did not get
correctly cleaned up after the fault-injection experiment

For ext3, 93% of the fault-injection experiments result ikesnel oops. After
every fault-injection experiment, the application wadedl as the file system or
the OS was unable to recover from the fault correctly. Thedjstem was left
in a consistent state only in 43% of experiements and was bsdble and not
unmountable in 7% of experiments.

Overall, we observed that Linux does a poor job in recovefiiom the injected
faults; most faults (around 91%) triggered a kernel “oop®l ¢he application (i.e.,
the process performing the file system operation that trigyehe fault) was always
killed. Moreover, in one-third of the cases, the file systeas\Weft unusable, thus
requiring a reboot and repaifs¢k.
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Table 4.4:Fault Study of ext2. The table shows the results of fault injections on
the behavior of Linux ext2. Each row presents the results siigle experiment,
and the columns show (in left-to-right order): which rowithe fault was injected
into, the nature of the fault, how/if it was detected, howffiéeted the application,
whether the file system was consistent after the fault, aretheh the file system
was usable. Various symbols are used to condense the m#eant-or detection,
“0”: kernel oops; “G”: general protection fault; “i”: inval id opcode; “d”: fault
detected, say by an assertion. For application behaviar,:"application killed by
the OS; “,/": application continued operation correctly; “s”: operaon failed but
application ran successfully (silent failure); “e”: applation ran and returned an
error. Footnotes:¢- file system usable, but un-unmountadle;late oops or fault,
e.g., after an error code was returned.
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writepage blkwrite_fullpage] 0 x x v/*| d s x *| dv vV
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lookup dfind_alias oxy x| dey V| dv/V
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removeentries markbuffer_dirty | o x x /| d s x /| dy/ v/
write_.inode  markbufferdirty | o x x/*| d s/ V| dvV/VV
cleatinode  isbadinode oxX X/ dsyv V| dvvyv
getdentry dalloc_anon 0x X/ o xx x| dyvV
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Table 4.5:Fault Study of VFAT. The table shows the results of fault injections on
the behavior of Linux VFAT. Each row presents the results sihgle experiment,
and the columns show (in left-to-right order): which rowithe fault was injected
into, the nature of the fault, how/if it was detected, howffiteted the application,
whether the file system was consistent after the fault, aretheh the file system
was usable. Various symbols are used to condense the m@eant-or detection,
0": kernel oops; “G”": general protection fault; “i": inval id opcode; “d": fault
detected, say by an assertion. For application behavier,:"application killed by
the OS; “,/": application continued operation correctly; “s”: operaon failed but
application ran successfully (silent failure); “e”; applation ran and returned an
error. Footnotes:“- file system usable, but un-unmountaBle;late oops or fault,
e.g., after an error code was returned.
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getblk_handle bhresult
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preparewrite blk_preparewrite
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Table 4.6:Fault Study of ext3. The table shows the results of fault injections on
the behavior of Linux ext3. Each row presents the results ©hgle experiment,
and the columns show (in left-to-right order): which rowithe fault was injected
into, the nature of the fault, how/if it was detected, howffiéeted the application,
whether the file system was consistent after the fault, aretheh the file system
was usable. Various symbols are used to condense the m#eant-or detection,
“0”: kernel oops; “G”: general protection fault; “i”: inval id opcode; “d”: fault
detected, say by an assertion. For application behavier;:"application killed by
the OS; “,/": application continued operation correctly; “s”: operaon failed but
application ran successfully (silent failure); “e”; applation ran and returned an
error. Footnotes:“- file system usable, but un-unmountable;late oops or fault,
e.g., after an error code was returned.
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Hardening Through Parameter Checks

Second, we analyzed the usefulness of fault detection wfittecovery by hard-
ening the kernel and file-system boundary through parancéescks. The goal of
this experiment is to understand if we really need Membrartgandle file system
crashes or could hardening the kernel and the file-systemdaoy suffice. The
second result column (denoted by +boundary) of Tables 454 afhd 4.6 shows the
results.

For ext2, faults were correctly detected in 25% of the fanjkction experi-
ments. In 35% of experiments, the injected fault went urcdeteand later triggered
an oops when the corrupted data was subsequently acceseezbvdr, in 5% and
10% of cases, the injected fault resulted in an invalid ajparaand triggered a pro-
tection fault, respectively. An error was correctly retedrto the application in 10%
of the fault-injection experiments. In 15% of cases, ermese silently discarded
by the operating system and application was falsely notitied the request was
successfully completed. The consistency percentageddmystems in the hard-
ened kernel were the same as that of the vanilla OS. Finakyfile system was
usable in 30% of cases; a slight improvement compared toghilar OS. In 50%
of cases, where the file system was usable, it was unmountable

For VFAT, in 46% of the fault-injection experiments, fault®re successfully
detected inside the OS. Only in 8% of cases, the faults liyitieent undetected, but
later resulted in an oops. In 38% of cases, a failure was iiactly propagated as a
successful operation to the application. Only in one expent (i.e., 8% of cases),
an error was correctly returned back to the applicatione Bilstem consistency
improved to 54% compared to 38% for the vanilla OS. Finallpuad 70% of
cases, the file system was usable after a fault. In 44% of expents where the
file system was usable, it was not unmountable after the ifgelttion.

For ext3, around 36% of cases, faults were correctly dafectehe OS. In
21% of the cases, an injected fault was incorrectly deteaseah invalid opcode in
the OS. In terms of application state, only in 21% of casesrasr was correctly
returned back to the application. In 14% of cases, error Wwastdgnored inside
the OS and a success was incorrectly propagated to the ajp@hc The file system
was consistent in 86% of cases, which was much more than fttla¢ @anilla OS
running ext3 (around 43%). Finally, in 57% of cases, the filstam was usable
after the fault-injection experiment. Amongst the 57% df tisable file-system
states, the file system was not unmountable for 50% of exjesitsn

Overall, although assertions detect the bad argument ghéstiee kernel proper
function, in the majority of the cases, the returned erradecavas not handled
properly (or propagated) by the file system. The applicatias always killed and
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ext2 ext2+ o/h| VFAT VFAT+ o/h ext3 ext3+ o/h
Benchmark Membrane % Membrane % Membrane %

Seq. read 17.8 17.8 0| 17.7 17.7 0| 17.8 17.8 0
Seq. write 255 25,7 0.8] 185 194 49| 56.3 56.3 0
Rand. read | 163.2 163.5 0.2 163.5 163.6 0| 163.2 163.2 0
Rand. write | 20.3 20.5 1| 18.9 18.9 0| 65.5 65.5 0
create 34.1 34.1 0 324 340 4.9 33.9 343 1.2
delete 20.0 20.1 0.5 20.8 21.0 0.9 186 18.7 0.5

Table 4.7: Microbenchmarks. This table compares the execution time (in sec-
onds) for various benchmarks for restartable versions ti,eXFAT, and ext3 (on
Membrane) against their regular versions on the unmodifiethéd. Sequential
read/writes are 4 KB at a time to a 1-GB file. Random reads/arée 4 KB at
a time to 100 MB of a 1-GB file. Create/delete copies/remo@€® files each of

size 1MB to/from the file system respectively. All worklaagisa cold file-system
cache.

the file system was left inconsistent, unusable, or both.

Recovery Using Membrane

Finally, we focused on file systems surrounded by Membrare r&sults of the
experiments are shown in the rightmost column of Tables 4.8, and 4.6. In all
cases, for all file systems, faults were handled, applinataid not notice faults,
and the file system remained in a consistent and usable state.

In summary, even in a limited and controlled set of fauleatjon experiments,
we can easily realize the usefulness of Membrane in reaoydrom file system
crashes. In a standard or hardened environment, a file sgsésinis almost always
visible to the user and the process performing the operasidéilled. Membrane,
on detecting a file system crash, transparently restartl¢hgystem and leaves it
in a consistent and usable state.

4.4.3 Performance

To evaluate the performance of Membrane, we run a seriesofberobenchmark
and macrobenchmark workloads where ext2, VFAT, and ext3uarén a standard
environment and within the Membrane framework. The goalwflenchmarks is
to understand the overheads of running the above-mentifileexystems on top of

Membrane during regular operations (i.e., measuring gtiion costs) and during
crash recovery.
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ext2 ext2+ o/h| VFAT VFAT+ o/h ext3 ext3+ o/h
Benchmark Membrane % Membrane % Membrane %
Sort 142.2 142.6 0.3 146.5 146.8 0.2 152.1 1525 0.3
OpenSSH 28.5 289 14| 301 30.8 23| 287 29.1 14
PostMark 46.9 47.2 0.6| 43.1 43.8 1.6| 478.2 484.1 1.2

Table 4.8:Macrobenchmarks. The table presents the performance (in seconds)
of different benchmarks running on both standard and réakde versions of ext2,
VFAT, and ext3. The sort benchmark (CPU intensive) sortghtyul00MB of
text using the command-line sort utility. For the OpenSShtchmark (CPU+I/O
intensive), we measure the time to copy, untar, configure,raake the OpenSSH
4.51 source code. PostMark (I/O intensive) parameters a/@00 files (sizes 4KB
to 4MB), 60,000 transactions, and 50/50 read/append andterdelete biases.

Regular Operations

Micro-benchmarks help analyze file-system performancérémuently performed
operations in isolation. We use sequential read/writedoam read/write, create,
and delete operations as our micro benchmarks. These mperaikercise the most
frequently accessed code paths in file systems. The captidakile 4.7 describes
our micro-benchmark configuration in more detail.

We also use commonly-used macro-benchmarks to help anéilgzgystem
performance. Specifically, we use the sort utility, Posti@8], and OpenSSH [162].
The sort benchmark represents data-manipulation worklo@dstmark represents
I/O-intensive workloads, and OpenSSH represents usétajesvorkloads. Ta-
ble 4.8 show the results of our macrobenchmark experiments.

From the tables, one can see that the performance overhéads prototype
for both micro- and macro-benchmarks are quite minimal; lircases, the over-
heads were between 0% and 5%.

Recovery Time

Beyond baseline performance under no crashes, we weresigerin studying the
performance of Membrane during recovery. Specifically, Homg does it take
Membrane to recover from a fault? This metric is importantigé recovery times
may be noticed by applications.

The recovery time in Membrane depends on the amount of daty, dpen ses-
sions (or file handles), and log records (i.e., completedaijmns after last check-
point). Dirty data denotes the number of dirty pages of receeckpoint that has
not yet been written to the disk. Open sessions denote thdewaf file handles
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Data| Recovery| Open | Recovery| Log | Recovery
(MB) | time (ms) Sessions time (ms) Recordsg time (ms)
0 8.6 0 8.6 0 8.6
10 12.9 200 114 1K 15.3
20 13.2 400 14.6 10K 16.8
40 16.1 800 22.0 100K 25.2

(@) (b) (©

Table 4.9:Recovery Time. Tables a, b, and ¢ show recovery time as a function
of dirty pages (at checkpoint), s-log, and op-log respedyivor ext2 file system.
Dirty pages are created by copying new files. Open sessianeraated by getting
handles to files. Log records are generated by reading anHisgdo arbitrary
data inside multiple files. The recovery time was 8.6ms whehrae states were
empty.

that need to be opened and re-attached to the file descraiiter of applications
after a restart. Log records denote the number of file syséemeasts logged in the
op-log that need to be re-executed from the VFS layer dugicgvery.

We measured the recovery time in a controlled environmentvdyying the
amount of state kept by Membrane. To vary the amount of digtya,dwe execute
a write-intensive workload and forcefully create a checkpafter the required
amount of data is written to the file system. To vary the nundf@pen sessions,
we simply open files in application (i.e., through the syisteler) and crash the
file system when required number of file handles have beenettedo vary the
amount of log records, we run the postmark benchmark and ¢hesfile system
after the required number of log records were created. Iexgkeriments, the two
other parameters were maintained at 0.

Table 4.9 shows the result of varying the amount of dirty gaigem the pre-
vious checkpoint, open sessions (i.e., s-log), and coexpligle system operations
which are not yet part of a checkpoint (i.e., op-log) for efit2 system. From the
table, we can see that the recovery time is less than 17 msawemthe amount of
dirty data was varied between 0 to 40 MB. This gives the uppent on the time
that would be needed to write back dirty data. It is importamiote that in our cur-
rent prototype, 40MB is the upper watermark before Membfansefully create a
new checkpoint to limit the amount of dirty data in memoryislalso important to
note that the dirty pages are not synchronously written batke disk and hence
does not incur a large overhead.

For session logs, the recovery time did not significantlywaith the number of
open file handles. Recovering open file handles include peifig a path lookup,
creating a new file object, and associating the file objedh #ie entry in the file
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Figure 4.5:Recovery Overhead.The figure shows the overhead of restarting ext2
while running random-read microbenchmark. The x axis repnés the overall
elapsed time of the microbenchmark in seconds. The primarisycontains the
execution time per read operation as observed by the agjditan milliseconds.

A file-system crash was triggered at 34s, as a result the éddplsed time increased
from 66.5s to 67.1s. The secondary y axis contains the nuofbedirect blocks
read by the ext2 file system from the disk per second.

descriptor table of an application. Even when the numberpahofile handles
were varied between 0 and 800, the recovery time was stilhénarder of a few
milliseconds.

For log records, we can see that the recovery time does nidse linearly
with increase in the number of records. Log records usediisréxperiment con-
sisted of lookups, reads, creates, deletes, and a few wride® might observe
larger recovery times depending on the type and number aEogrds that need to
be replayed.

In summary, from these experiments, we found that the regaime grows
sub-linearly with the amount of state. Moreover, the recpiame is only a few
milliseconds in all the cases. Hence, application need ectssarily see any sig-
nificant performance drop that would be caused by the regguercess.

Figure 4.5 shows the results for performing recovery dutimg random-read
microbenchmark for the ext2 file system. From the figure, we s2e that Mem-
brane restarts the file system within 10 ms from the point akler Subsequent
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read operations are slower than the regular case becauseditert blocks, that
were cached by the file system, are thrown away at recoveny itinour current
prototype and have to be read back again after recovery (agnsim the graph).

In summary, both micro and macrobenchmarks show that thedaticipation
in Membrane almost comes for free. Even in the event of a filtesy crash,
Membrane restarts the file system within a few milliseconds.

4.5 Summary

File systems fail. With Membrane, failure is transformednfr a show-stopping
event into a small performance issue. The benefits are maeynkivene enables
file-system developers to ship file systems sooner, as smgl will not cause
massive user headaches. Membrane similarly enables oerstaminstall new file
systems, knowing that it won't bring down their entire ogigna.

Membrane further encourages developers to harden thegranodi catch bugs as
soon as possible. This fringe benefit will likely lead to mbreys being triggered
in the field (and handled by Membrane, hopefully); if so, diagtic information
could be captured and shipped back to the developer, furtigoving file system
robustness.

We live in an age of imperfection, and software imperfecseems a fact of life
rather than a temporary state of affairs. With Membrane, arelearn to embrace
that imperfection, instead of fearing it. Bugs will still miinue to arise, but those
that are rare and hard to reproduce will remain where thegrizgglautomatically
“fixed” by a system that can tolerate them.
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Chapter 5

Restartable User-level File
Systems

“Retrofitting reliability to an existing design is very diftitt.”
— Butler Lampson

File System in USEr Space (FUSE) was designed to simplifyddwelopment
and deployment of file systems [192]. FUSE provides faullaisaon by moving
file systems out of the kernel and running them in a separateeasl space. FUSE
also simplifies the file-system interface and minimizes teraction with the op-
erating system components. Nearly 200 FUSE file systemsdies@&dy been im-
plemented [160, 192], indicating that the move towards-ise file systems is
significant.

Unfortunately, support for recovery in file systems usingdBJdoes not exist
today. The current solution is to crash the user-level filsteay on a fault, and
wait for the user (or administrator) to manually repair aestart the file system; in
the meantime, FUSE returns an error to applications if thegngpt to access the
crashed file system. This solution is not useful when apiitina and users depend
on these file systems to access their data.

In this chapter, we explore the possibility of implementiagyeneric frame-
work inside the operating system and FUSE to restart usel-fide systems. Such
a generic framework helps eliminate the need for any tall@elution to restart
individual user-level file systems on crashes. We also comwith a user-level
file-system model that represents some of the popular asel-file systems. We
believe this will help current and future file-system deyelis to modify and design
their file systems to work with Re-FUSE.
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Our solution to a generic framework is Restartable FUSEFRR&E), a restartable
file system layer built as an extension to the Linux FUSE Ieset file system in-
frastructure [159]. In our solution, we add a transparestan framework around
FUSE which hides many file-system crashes from users; ReERil8ply restarts
the file system and user applications continue unharmed.

The rest of the chapter is organized as follows. Section tedgmts the FUSE
framework. Section 5.2 discusses the essentials of a ta@s@ruser-level file
system framework. Section 5.3 presents the design and mgpigation of Re-
FUSE.Section 5.4 evaluates the robustness and perfornofiee FUSE.

5.1 FUSE

FUSE is a framework that enables users to create and rundweirfile systems
as user-level processes [177]. In this section, we dishessationale for such a
framework and present its basic architecture.

5.1.1 Rationale

FUSE was implemented to bridge the gap between featuresuusieas want in a
file system and those offered in kernel-level file systemsertJgvant simple yet
useful features on top of their favorite kernel-level filstgms. Examples of such
features are encryption, de-duplication, and accessieg ifiiside archives. Users
also want simplified file-system interfaces to access systd databases, web
servers, and new web services such as Amazon S3. The simdiifesystem
interface obviates the need to learn new tools and languagescess data. Such
features and interfaces are lacking in many popular kdevel-file systems.
Kernel-level file-system developers may not be open to the af adding all of
the features users want in file systems for two reasons., Buiging a new feature
requires a significant amount of development and debugdfog §199]. Second,
adding a new feature in a tightly coupled system (such as ayfitem) increases
the complexity of the already-large code base. As a resalteldpers are likely
only willing to include functionality that will be useful tthe majority of users.
FUSE enables file systems to be developed and deployed deuekand thus
simplifies the task of creating a new file system in a number &fsw First, pro-
grammers no longer need to have an in-depth understanditkgroél internals
(e.g., memory management, VFS, and block devices). Sepoogrammers need
not understand how these kernel modules interact with sitf¥rird, programmers
can easily debug user-level file systems using standardgdeim tools such as
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gdb [63] and valgrind [123]. All of these improvements con#to allow develop-
ers to focus on the features they want in a particular filessyst

In addition to Linux, FUSE has been developed for FreeBSIp @0laris [126],
and OS X [64] operating systems. Though most of our discnggi@olves around
the Linux version of FUSE, the issues faced herein are likglylicable to FUSE
within other systems.

5.1.2 Architecture

FUSE consists of two main components: ternel File-system Modul&KFM)
and a user-space libralipfuse (see Figure 5.1). The KFM acts as a pseudo file
system and queuepplication requestthat arrive through the VFS layer. The lib-
fuse layer exports a simplified file-system interface thahasser-level file system
must implement and acts as a liaison between user-level/gterms and the KFM.

A typical application request is processed as follows. tFilge application is-
sues a system call, which is routed through VFS to the KFM.RTRBI queues this
application request (e.g., to read a block from a file) and the calling thread to
sleep. The user-level file system, through the libfuse fatey, retrieves the request
off of the queue and begins to process it; in doing so, the-laset file system
may issue a number of system calls itself, for example to mFadrite the local
disk, or to communicate with a remote machine via the netwdrken the request
processing is complete, the user-level file system passesetult back through
libfuse, which places it within a queue, where the KFM caneet it. Finally, the
KFM copies the result into the page cache, wakes the applichtocked on the
request, and returns the desired data to it. Subsequergsasctd the same block
will be retrieved from the page cache, without involving #ISE file system.

Unlike kernel file systems, where the calling thread exextite bulk of the
work, FUSE has aecoupledexecution model, in which the KFM queues appli-
cation requests and a separate user-level file system pgrbeaslles them. As we
will see in subsequent sections, this decoupled model &ilusethe design of
Re-FUSE. In addition, FUSE uses multi-threading to impromecurrency in user-
level file systems. Specifically, the libfuse layer allowgmievel file-systems to
create worker threads to concurrently process file-systmests; as we will see
in subsequent sections, such concurrency will complicatd&RSE.

The caching architecture of FUSE is also of interest. Bezdlie KFM pre-
tends to be a kernel file system, it must create in-memoryctdbjer each user-level
file system object accessed by the application. Doing sodugsr performance
greatly, as in the common case, cached requests can bessewiibout consulting
the user-level file system.
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Figure 5.1: FUSE Framework. The figure presents the FUSE framework. The
user-level file system (in solid white box) is a server predéat uses libfuse to
communicate with the Kernel-level FUSE Module (KFM). Thentlprocess is the
application process invoking operations on the file systéiihe-system requests
are processed in the following way: (1) the application seadequest through the
KFM via the VFS layer; (2) the request gets tagged and is psitlanthe request
qgueue; (3) the user-level file-system worker thread deqiéhe request; (4) the
worker services the request and returns the response; €Yydbponse is added
back to the queue; (6) finally, the KFM copies the data intopthge cache before
returning it to the application.
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5.2 User-level File Systems

In this section, we discuss the essentials of a restartaklelevel file system frame-
work. We discuss both our assumptions of the fault model dsase@assumptions
we make about typical FUSE file systems. We conclude by disngsome chal-
lenges a restartable system must overcome.

5.2.1 The User-level File-System Model

To design a restartable framework for FUSE, we must first tstdad how user-
level file systems are commonly implemented; we refer todlassumptions as our
reference modedf a user-level file system.

It is infeasible to examine all FUSE file systems to obtain ‘{herfect” ref-
erence model. Thus, to derive a reference model, we instealgzz six diverse
and popular file systems. Table 5.1 presents details on ddhbk gix file systems
we chose to study. NTFS-3g (2009.4.4) and ext2fuse (0.&d) are kernel-like
file systems “ported” to user space. AVFS (0.9.8) allows paots to look inside
archives (such as tar and gzip) and TagFS (0.1) allows userganize documents
using tags inside existing file systems. Finally, SSHFS) (@l HTTPFS (2.06)
allow users to mount remote file systems or websites throbglSSH and HTTP
protocols, respectively. We now discuss the propertieb®féference file-system
model.

e Simple Threading Model: A single worker thread is responsible for pro-
cessing a file-system request from start to finish, and onksvon a single
request at any given time. Amongst the reference-model yggems, only
NTFS-3g is single-threaded (i.e., a worker thread to seraitrequests) by
default; the rest all operate in multi-threaded mode (neultiple worker
threads to concurrently process file system requests). efdrence-model
file systems adhere to the simple threading model.

e Request Splitting: Each request to a user-level file system is eventually
translated into one or more system calls. For example, alicatipn-level
write request to a NTFS-3g file-system is translated to aemecpiof block
reads and writes where NTFS-3g reads in the meta-data aadbiaks of
the file and writes them back after updating them.

e Access Through System Calls:Any external calls that the user-level file
system needs to make are issued through the system-cafboge These
requests are serviced by either the local system (e.g.,ith¢ oF a remote



80

File System Category LOC Downloads

NTFS-3g block-based 32K n/a
ext2fuse block-based 19K 40K
AVFS pass-through 39K 70K
TagFS pass-through 2K 400
SSHFS network-based 4K 93K
HTTPFS network-based 1K 8K

Table 5.1:Reference Model File SystemsThe table shows different aspects of the
reference-model file systems. Category column indicagestiderlying communi-
cation mechanisms used by user-level file systems to pdegst LOC column
indicates the lines of code in each of the file system. Dowdslgalumn indicates
the download count for the user-level file system mentiondtié user-level file
system websites as of September 1st, 2010. Various definiteve been used to
compress the description. Block-based denotes that fiteragsuse the raw block-
device interface to store data; pass-through denotes that-level file system is
running on top of a kernel-level file system and stores dataenkernel-level file
system. Network-based denotes that the user-level filemsystes sockets to com-
municate with the underlying data access mechanism to dtiee

server (e.g., a web server); in either case, system callsiade by the user-
level file system in order to access such services.

e Output Determinism: For a given request, the user-level file system always
performs the same sequence of operations. Thus, on replaypafticular
request, the user-level file system outputs the same vakidéiseaoriginal
invocation [2].

e Synchronous Writes: Both dirty data and meta-data generated while serv-
ing a request are immediately written back to the underlgystem. Unlike
kernel-level file systems, a user-level file system does nffebwrites in
memory; doing so makes a user-level file system statelesspany adhered
to by many user-level file systems in order to afford a simpigslementa-
tion.

Our reference model clearly does not describe all possase-lievel file-system
behaviors. The FUSE framework does not impose any rulesstniggons on how
one should implement a file system; as a result, it is easywviatgefrom our refer-
ence model, if one desires. We discuss this issue furthbeatrid of Section 5.3.
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5.2.2 Challenges

FUSE in its current form does not tolerate any file-systemtakiss. On a user-
level file system crash, the kernel cleans up the resourctedilled file-system
process, which forces FUSE to abort all new and in-flight esti of the user-level
file system and return an error (a “connection abort”) to thpligation process.
The application is thus left responsible for handling fegkifrom the user-level file
system. FUSE also prevents any subsequent operations creiteed file system
until a user manually restarts it. As a result, the file systemains unavailable
to applications during this process. Three main challemyést in restarting user-
level file systems; we now discuss each in detail.

Generic Recovery Mechanism

Currently there are hundreds of user-level file systems aw&t of them do not have
in-built crash-consistency mechanisms. Crash consigtemechanisms such as
journaling or snapshotting could help restore file-systeatesafter a crash. Adding
such mechanisms would require significant implementatitborte not only for
user-level file-systems but also to the underlying dataagament system. Thus,
any recovery mechanism should not depend upon the uséifilevey/stem itself in
order to perform recovery.

Synchronized State

Even if a user-level file system has some in-built crash-eterscy mechanism,
leveraging such a mechanism could still lead to a disconbesteen application

perceived file-system state and the state of the recoveeeslyfitem. This discrep-
ancy arises because crash-consistency mechanisms gretgysiem operations
into a single transaction and periodically commit them te thisk; they are de-

signed only for power failures and not for soft crashes. Hen restart, a crash-
consistency mechanism only ensures that the file systeratmreel back to the last
known consistent state, which results in a loss of updatgtttcurred between the
last checkpoint and the crash. As applications are notdkitle a user-level file-

system crash, the file-system state recovered after a cragmaot be the same as
that perceived by applications. Thus, any recovery meshamust ensure that the
file system and application eventually realize the same wifile system state.
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Figure 5.2: SSHFS Create Operation. The figure shows a simplified version of
SSHFS processing a create request. The number within theayae indicates
the sequence of steps SSHFS performs to complete the operatie FUSE, ap-
plication process, and network components of the OS arehwotis for simplicity.

Kernel

Residual State

The non-idempotent nature of system calls in user-levet§items can leavesid-
ual stateon a crash. This residual state prevents file systems froneatog the
state of partially-completed operations. Both undo or refipartially completed
operations through the user-level file system thus may nokwocertain situa-
tions. The create operation in SSHFS is a good example of anabperation.
Figure 5.2 shows the sequence of steps performed by SSHH® ducreate re-
quest. SSHFS can crash either before file create (Step 4)farebié returns the
result to the FUSE module (Step 5). Undo would incorrectliettea file if it was
already present at the remote host if the crash happenedelgtep 4; redo would
incorrectly return an error to the application if it crashaefore Step 5. Thus, any
recovery mechanism for user-level file systems must prgpenhdle residual state.

5.3 Re-FUSE: Design and Implementation

Re-FUSE is designed to transparently restart the affected-lavel file system
upon a crash, while applications and the rest of the opgratystem continue to
operate normally. In this section, we first present an oesnof our approach. We
then discuss how Re-FUSE anticipates, detects, and recfrear faults. We con-
clude with a discussion of how Re-FUSE leverages many agistspects of FUSE
to make recovery simpler, and some limitations of our apghoa
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5.3.1 Overview

The main challenge for Re-FUSE is to restart the user-lel@lsfistem without
losing any updates, while also ensuring the restart agtisiboth lightweight and
transparent. File systems atateful and as a result, both in-memory and on-disk
state needs to be carefully restored after a crash.

Unlike existing solutions, Re-FUSE takes a different apptoto restoring the
consistency of a user-level file system after a file-systeamltrAfter a crash, most
existing systems rollback their state to a previous cheicit@md attempt to restore
the state by re-executing operations from the beginning1aQ@, 165]. In contrast,
Re-FUSE does not attempt to rollback to a consistent staterather continues
forward from the inconsistent state towards a new condistiette. Re-FUSE does
so by allowing partially-completed requests to continuecexing from where they
were stopped at the time of the crash. This action has the s#few as taking a
snapshot of the user-level file system (including on-goipgrations) just before
the crash and resuming from the snapshot during the recovery

Most of the complexity and novelty in Re-FUSE comes in thdtfaaticipa-
tion component of the system. We now discuss this piece iatgreletail, before
presenting the more standard detection and recovery mistotour system.

5.3.2 Fault Anticipation

In anticipation of faults, Re-FUSE must perform a number dfvities in order
to ensure it can properly recover once the said fault ariSpgcifically, Re-FUSE
must track the progress of application-level file-systequests in order to continue
executing them from their last state once a crash occursintoasistency in file-
system state is caused by partially-completed operatibtiseaime of the crash;
fault anticipation must do enough work during normal operain order to help
the file system move to a consistent state during recovery.

To create light-weight continuous snapshots of a usel-liéesystem, Re-
FUSE fault anticipation uses three different techniquesjuest tagging, system-
call logging, and uninterruptible system calls. Re-FUS#aptimizes its perfor-
mance through page versioning.

Request Tagging

Tracking the progress of each file-system request is diffiouthe current FUSE
implementation. The decoupled execution model of FUSE doedowith request
splitting at the user-level file system makes it hard for REE to correlate an
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application request with the system calls performed by alesel file system to
service said application request (see Sections 5.1.2 ahd for details).

Request taggingnables Re-FUSE to correlate application requests with the
system calls that each user-level file system makes on befthlé request. As the
name suggests, request tagging transparently adds a réQueshe task structure
of the file-system process (i.e., worker thread) that sesvit

Re-FUSE instruments the libfuse layer to automaticallytisetD of the appli-
cation request in the task structure of the file-system thmelaenever it receives a
request from the KFM. Re-FUSE adds an additional attriboitiaé task structure
to store the request ID. Any system call that the thread ssmnebehalf of the re-
guest thus has the ID in its task structure. On a system calFBSE inspects the
tagged request ID in the task structure of the process teletber the system call
with the original application request. Re-FUSE also usegdlyged request ID in
the task structure of the file-system process to differeatsgstem calls made by
the user-level file system from other processes in the dpgraystem. Figure 5.3
presents these steps in more detalil.

System-Call Logging

Re-FUSE checkpoints the progress of individual applicatiequests inside the
user-level file system by logging the system calls that trer-level file system
makes in the context of the request. On a restart, when theestds re-executed
by the user-level file system, Re-FUSE returns the resutts frecorded state to
mimic its execution.

The logged state contains the type, input arguments, anceiponse (return
value and data), along with a request ID, and is stored in h tedde called the
syscall request-response tabiehis hash table is indexed by the ID of the applica-
tion request. Figure 5.3 shows how system-call loggingdaitace during regular
operations.

Re-FUSE maintains the number of system calls that a fileesyprocess makes
to differentiate between user-level file-system requestkd same system call with
identical parameters. For example, on a create requestSMNBeads the same
meta-data block multiple times between other read and wptrations. Without
a sequence number, it would be difficult to identify its cepending entry in the
syscall request-response table. Additionally, the secri@mimber also serves as a
sanity check to verify that the system calls happen in theesamter during replay.
Re-FUSE removes the entries of the application request fhanihash table when
the user-level file system returns the response to the KFM.



85

@ | System call Interface |

<

<

| 1
Pseudo File System '
(KFM) _»i R x |—>| R.. |_>| R1 |

Kernel

K-FUSE

Request Queue

Req ID Seq # Type Params Return

@ [R1 [ 1 [ s
@

R1 2 So

Syscall Request - Response Table

Figure 5.3:Request Tagging and System-call Loggindlhe figure shows how Re-
FUSE tracks the progress of individual file-system requééten KFM queues the
application request&enoted by R with a subscript). Re-FUSE tracks the progress
of the request in the following way: (1) the request identifetransparently at-
tached to the task structure of the worker thread at the $ibflayer; (2) the user-
level file system worker thread issues one or more systes(cahoted by S with
a subscript) while processing the request; (3 and 4) Re-FUBkhg system call
interface) identifies these calls through the request IDhadaller’s task structure
and logs the input parameters along with the return valué;tf® KFM, upon re-
ceiving the response from the user-level file system for @eslg deletes its entries
from the log.
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Non-interruptible System Calls

The threading model in Linux prevents this basic loggingrapph from working
correctly. Specifically, the threading model in Linux foscal threads of a process
to be killed when one of the thread terminates (or crashes}aa bug. Moreover,
the other threads are killed independent of whether theyereeuting in user or
kernel mode. Our logging approach only works if the systelrigaued by the user-
level file system finishes completely, as a partially-corrgalesystem call could
leave some residual state inside the kernel, thus prewgotirect replay of in-
flight requests (see Section 3.3.3 for details).

To remedy this problem, Re-FUSE introduces the notionaf-interruptible
system callsSuch a system call provides the guarantee that if a systérstads
executing a request, it continues until its completion. @drse, the system call
can still complete by returning an error, but the worker #trexecuting the system
call cannot be killed prematurely when one of its siblingetiats is killed within
the user-level file-system. In other words, by using noefmiptible system calls,
Re-FUSE allows a user-level file-system thread to continwexécute a system call
to completion even when another user-level file-systermathre terminated due to
a crash.

Re-FUSE implements non-interruptible system calls by ghanthe default
termination behavior of a thread group in Linux. SpecifigaRe-FUSE modifies
the termination behavior in the following way: when a threduuptly terminates,
Re-FUSE allows other threads in the group to complete wkaystem call they
are processing until they are about to return the status date) to the user. Re-
FUSE then terminates said threads after logging their resgm(including the data)
to the syscall request-response table.

Re-FUSE eagerly copies input parameters to ensure thatraéisber process
does not infect the kernel. Lazy copying of input parametera system call in
Linux could potentially corrupt the kernel state as noreiniptible system calls
allow other threads to continue accessing the process Rat&USE prevents ac-
cess to corrupt input arguments by eagerly copying in parmmdrom the user
buffer into the kernel and also by skippimgpPY_FROM_USERaNdCOPY_.TO_USER
functions after a crash. Itis important to note that the psscstate is never accessed
within a system call except for copying arguments from ther ts the kernel at the
beginning. Moreover, non-interruptible system calls anforced only for user-
level file system processes (i.e., enforced only for praze#isat have a FUSE re-
quest ID set in their task structure). As a result, otheriappbn processes remain
unaffected by non-interruptible system calls.
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Performance Optimizations

Logging responses of read operations has high overheadsis of both time and
space as we also need to log the data returned with each mgaeiste To reduce
these overheads, instead of storing the data as part of gheetwrds, Re-FUSE
implementspage versioningwhich can greatly improve performance. Re-FUSE
first tracks the pages accessed (and also returned) duchgead request and then
marks them as copy-on-write. The operating system autoaibticreates a new
version whenever a subsequent request modifies the préwimasked page. The
copy-on-write flag on the marked pages is removed when thmnse is returned
back from the user-level file system to the KFM layer. Oncedisponse is returned
back, the file-system request is removed from the requesteqaethe KFM layer
and need not be replayed back after a crash.

Page versioning does not work for network-based file systamish use socket
buffers to send and receive data. To reduce the overheadg@hb read opera-
tions, Re-FUSE also caches the socket buffers of the filegysequests until the
request completes.

5.3.3 Fault Detection

Re-FUSE detects faults in a user-level file-system througksfistem crashes. As
discussed earlier, Re-FUSE only handles faults that afetbersient and fail-stop.
Unlike kernel-level file systems, detection of faults in &mkevel file system is
simple; Re-FUSE inspects the return value and the signattegt to the killed
file-system process to differentiate between regular teation and a crash.

Re-FUSE currently only implements a lightweight faultetgton mechanism.
Fault detection can be further hardened in user-level fiséesys by applying tech-
niques used in other systems [39, 121, 200]. Such technzpreselp to automat-
ically add checks (by code or binary instrumentation) tcshréile systems more
quickly when certain types of bugs are encountered (e.g-pBbounds memory
accesses).

5.3.4 Fault Recovery

The recovery subsystem is responsible for restarting astniag the state of the
crashed user-level file system. To restore the in-memotg sfathe crashed user-
level file system, Re-FUSE leverages the information abloatfile-system state
available through the KFM. Recovery after a crash mainlysisia of the follow-

ing steps: cleanup, re-initialize, restore the in-memdaagesof the user-level file
system, and re-execute the in-flight file-system requestseatime of the crash
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(see Section 3.3.3 for details). The decoupled executiodemio the FUSE pre-
serves application state on a crash. Hence, applicatioe isé&d not be restored.
We now explain the steps in the recovery process in detalil.

The operating system automatically cleans up the resowsed by a user-
level file system on a crash. The file system is run as a nornogleps with no
special privileges by the FUSE. On a crash, like other kilisér-level processes,
the operating system cleans up the resources of the filersystaviating the need
for explicit state clean up.

Re-FUSE holds an extra reference on the FUSE device file bbyeced by
the crashed process. This file object is the gateway to theest@ueue that was
being handled by the crashed process and KFM’s view of theydéem. Instead
of doing a new mount operation, the file-system process senelstart message to
the KFM to attach itself to the old instance of the file systenKFM. This action
also informs the KFM to initiate the recovery process forplaticular file system.

The in-memory file-system state required to execute filéesysequests is re-
stored using the state cached inside the kernel (i.e., ti®ls¥er). Re-FUSE then
exploits the following property: an access on a user-leleldystem object through
the KFM layer recreates it. Re-FUSE performs a lookup foheaicthe object
cached in the VFS layer, which recreates the correspondieglavel file-system
object in memory. Re-FUSE also uses the information retimneach call to point
the cached VFS objects to the newly created file-system bhieis important to
note that lookups do not recreate all file-system objecthlyt those required to
re-execute both in-flight and new requests. To speed up eegoRe-FUSE looks
up file-system objects lazily.

Finally, Re-FUSE restores the on-disk consistency of tlee-level file-system
by re-executing in-flight requests. To re-execute the addhe-system requests,
a copy of each request that is available in the KFM layer ishadk on the re-
quest queue for the restarted file system. For each replaauekst, the FUSE
request ID, sequence number of the external call, and ingubzents are matched
with the entry in the syscall request-response table arfweif tnatch correctly, the
cached results are returned to the user-level file systethelpreviously encoun-
tered fault is transient, the user-level file system sudabgexecutes the request
to completion and returns the results to the waiting appboa

On an error during recovery, Re-FUSE falls back to the défaUISE behavior,
which is to crash the user-level file system and wait for ther ts manually restart
the file system. An error could be due to a non-transient fadt mismatch in one
or more input arguments in the replayed system call (i.elating our assumptions
about the reference file-system model). Before giving up emovering the file
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system, Re-FUSE dumps useful debugging information alv@utror for the file-
system developer.

5.3.5 Leveraging FUSE

The design of FUSE simplifies the recovery process in a esel-file system for
the following four reasons. First, in FUSE, the file-systesmun as a stand-alone
user-level process. On a file-system crash, only the fileesyprocess is killed and
other components such as FUSE, the operating system, ltecayftem, and even
a remote host are not corrupted and continue to work normally

Second, the decoupled execution model blocks the applic&suing the file-
system request at the kernel level (i.e., inside KFM) andparsge file-system
process executes the request on behalf of the applicatiom. dbash, the decoupled
execution model preserves application state and alsoges\a copy of file-system
requests that are being serviced by the user-level file syste

Third, requests from applications to a user-level file syste routed through
the VFS layer. As a result, the VFS layer creates an equivalepy of the in-
memory state of the file system inside the kernel. Any accassh(as a lookup)
to the user-level file system using the in-kernel copy rdesethe corresponding
in-memory object.

Finally, application requests propagated from KFM to a 4eeel file system
are always idempotent (i.e., this idempotency is enforgethb FUSE interface).
The KFM layer ensures idempotency of operations by changihgelative argu-
ments from the application to absolute arguments beforedating it to the user-
level file system. The idempotent requests from the KFM alteguests to be
re-executed without any side effects. For example, the sgatem call does not
take the file offset as an argument and uses the current fietasf the requesting
process; the KFM converts this relative offset to an absotftset (i.e., an offset
from beginning of the file) during a read request.

5.3.6 Limitations

Our approach is obviously not without limitations. Firsteoof the assumptions
that Re-FUSE makes for handling non-idempotency is thatatipes execute in
the same sequence every time during replay. If file systerme bame internal
non-determinism, additional support would be requiredrfrine remote (or host)
system to undo the partially-completed operations of tleesfjistem. For example,
consider block allocation inside a file system. The blockaation process is de-
terministic in most file systems today; however, if the filsteyn randomly picked
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a block during allocation, the arguments to the subsequegiay operations (i.e.,
the block number of the bitmap block) would change and thugdcpotentially
leave the file system in an inconsistent state.

Re-FUSE does not currently support all 1/O interfaces. B@ngple, file sys-
tems cannot use mmap to write back data to the underlyingrsyas updates to
mapped files are not immediately visible through the systathinterface. Sim-
ilarly, page versioning does not work in direct-1/O mode;-RéSE requires the
data to be cached within the page cache.

Multi-threading can also limit the applicability of Re-FEBSFor example, multi-
threading in block-based file systems could lead to raceitiond during replay
of in-flight requests and hence data loss after recoveryei@int threading models
could also involve multiple threads to handle a single refju€or such systems, the
FUSE request ID needs to be explicitly transferred betwherfworker) threads so
that the operating system can identify the FUSE request Owvfach the corre-
sponding system call is issued.

The file systems in our reference model do not cache data inspsee, but
user-level file systems certainly could do so to improvegrengnce (e.g., to reduce
the disk or network traffic). For such systems, the assumpatimut the completion
of requests (by the time the response is written back) woaltiloken and result
in lost updates after a restart. One solution to handle #isisd is to add a commit
protocol to the request-handling logic, where in additionsending a response
message back, the user-level file system should also issoimmit message after
the write request is completed. Requests in the KFM couldabaysthrown away
from the request queue only after a commit message is retémen the user-
level file system. In the event of a crash, all cached requestshich the commit
message has not been received will be replayed to restorsyitem state. For
multi-threaded file systems, Re-FUSE would also need to taiairthe execution
order of requests to ensure correct replay. Moreover, if &x-level file system
internally maintains a special cache (for some reason)cdorect recovery, the
file system would need to to explicitly synchronize the catgeof the cache with
Re-FUSE.

5.3.7 Implementation Statistics

Our Re-FUSE prototype is implemented in Linux 2.6.18 and EQS .4. Table 5.2
shows the code changes done in both FUSE and the kernel pfameRe-FUSE,
around 3300 and 1000 lines of code were added to the Linuxekemd FUSE,
respectively. The code changes in libfuse include reqaegfing, fault detection,
and state restoration; changes in KFM center around suf@orecovery. The
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Component Original Added Modified

libfuse 9K 250 8
KFM 4K 750 10
Total 13K 1K 18
FUSE Changes

Component Original Added Modified
VFS 37K 3K 0
MM 28K 250 1
NET 16K 60 0
Total 81K 3.3K 1

Kernel Changes

Table 5.2:Implementation Effort. The table presents the code changes required
to transform FUSE and Linux 2.6.18 into their restartableicterparts.

code changes in the VFS layer correspond to the support &tesycall logging,
and modifications in the MM and NET modules correspond to pagsioning and
socket-buffer caching respectively.

5.4 Evaluation

We now evaluate Re-FUSE in the following three categoriesiegality, robustness,
and performance. Generality helps to demonstrate thata@uti@n can be easily
applied to other file systems with little or no change. Robes$ helps show the
correctness of Re-FUSE. Performance results help us anddgzoverheads during
regular operations and during a crash to see if they are taigep

All experiments were performed on a machine with a 2.2 GHze@@pt pro-
cessor, two 80GB WDC disks, and 2GB of memory running LinukIB. We
evaluated Re-FUSE with FUSE (2.7.4) using NTFS-3g (208%.4AVFS (0.9.8),
and SSHFS (2.2) file systems. For SSHFS, we use public-kéyemtitation to
avoid typing the password on restart.

5.4.1 Generality

To show Re-FUSE can be used by many user-level file systemshose NTFS-
30, AVFS, and SSHFS. These file systems are different in tnderlying data
access mechanism, reliability guarantees, features, sagku Table 5.3 shows the
code changes required in each of these file systems to wankReitFUSE.

From the table, we can see that file-system specific changeged to work
with Re-FUSE are minimal. To each user-level file system, aechadded less
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File System Original Added Modified

NTFS-3g 32K 10 1
AVFS 39K 4 1
SSHFS 4K 3 2

Table 5.3:Implementation Complexity. The table presents the code changes re-
quired to transform NTFS-3g, AVFS and SSHFS into their resdide counterparts.

than 10 lines of code, and modified a few more. Some of thess livere added
to daemonize the file system and to restart the process inviére ef a crash. A
few further lines were added or modified to make recovery vwwdperly. We now
discuss the changes in individual file systems.

NTFS-3g: NTFS-3g reads a few key metadata pages into memory durihglini
ization, just after the creation of the file system, and ubesd cached pages to
handle subsequent requests. However, any changes to tesedtadata pages
are immediately written back to disk while processing rexgsie On a restart of
the file-system process, NTFS-3g would again perform theedaitialization pro-
cess. However, if we allow the process to read the curresiomiof the metadata
pages, it could potentially access inconsistent data andtinus fail. To avoid this
situation, we return the oldest version of the metadata fagethrough page ver-
sioning) on restart, as the oldest version points to theimerthat existed before
the handling of a particular request (note that NTFS-3g wanksingle-threaded
mode).

AVFS: AVFS caches file handles from open requests to help speethspauent
accesses in the underlying file systems. On a restart, theeddide handles are
thrown away, this prevent requests from being properly etext through AVFS.
To make AVFS work with Re-FUSE, we simply increment the refee count of
open files and cache the file descriptor so that we can retersame file handle
when it is reopened again after a restart.

SSHFS: SSHFS internally generates its own request IDs to matcha$gonses
from the remote host with waiting requests. The request Iigsstored inside
SSHFS and are lost on a crash. After restart, on replay of dlight request,

SSHFS generates new request IDs which could be differentttieaold ones. The
mismatch in request IDs would prevent system-call loggimgnf operating cor-
rectly, as all parameters need to be exactly matched for S3Hprocess the re-
sponse. To make SSHFS work correctly with Re-FUSE, we madeEURRE uses
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the FUSE request ID tagged in the worker thread along wittsdmgience number
to match new request IDs with the old ones. Once requests aiched, Re-FUSE
correctly returns the cached response. Also, to mask theFSStiash from the
remote server, Re-FUSE holds an extra reference count ametivrk socket, and
re-attaches it to the new process that is created. Withaaiattion, upon a restart,
SSHFS would start a new session, and the cached file handld wottbe valid in
the new session.

In summary, Re-FUSE represents a generic approach to achgsr-level file
system restartability; existing file systems can work witglRJUSE with minimal
changes of adding a few lines of code.

5.4.2 Robustness

To analyze the robustness of Re-FUSE, we use fault injectita employ both
controlled and random fault-injection to show the inapilif current file systems
to tolerate faults and how Re-FUSE helps them.

The injected faults are fail-stop and transient. Thesedawy to mimic some
of the possible crash scenarios in user-level file systenesfiidt run the fault in-
jection experiments on a vanilla user-level file system mgmover FUSE and then
compare the results by repeating them over the adaptedaystifile system run-
ning over Re-FUSE both with and without kernel modificatiolbe experiments
without the kernel modifications are denoted Rgstartand those with the ker-
nel changes are denoted Bg-FUSE We include the restart column to show that,
without the kernel support, simple restart and replay oflight operations does
not work well for FUSE.

Controlled Fault Injection

We employ controlled fault injection to understand how tisgel file systems react
to failures. In these experiments, we exercise differeatdilstem code paths (e.qg.,
create(),nkdir (), etc.) and crash the file system by injecting transient $ault
(such as a null-pointer dereference) in these code pathspérflermed a total of
60 fault-injection experiments for all three file system® present the user-visible
results.

User-visible results help analyze the impact of a fault lztine application and
the file-system level. We choosgplication statefile-system consistencgndfile-
system statas the user-visible metrics of interest. Application staticates how
a fault affects the execution of the application that usesuger-level file system.
File-system consistency indicates if a potential datadossgd occur as a result of a
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fault. File-system state indicates if a file system can comtiservicing subsequent
requests after a fault.

Tables 5.4, 5.5, and 5.6 summarizes the results of our ifajelttion experi-
ments. The caption explains how to interpret the data ingdhket We now discuss
the major observations and the conclusions of our faudteiinpn experiments.

Re(gular Restart | Re-Fuse
< < <
o~ ~ O o~
98 o O [ &D o
Sn 0| S oS o
2235 |825|22 3
ks o wn O [@ 7] ks o w
507|507 80 0
Operation NTFSfn |<L W | <L WL | <L W
create fusecreate x X X e X \/ vV \/ \/
mkdir fusecreate | x X X | e X v/ | vV
symlink fusecreate | x X X | e X /| vV
link link x X X | ex | vy
rename link x X X | exX | vy
open fuseopen xv X | VVAVIVY AV
read fuseread xyv X | VvV VYV AV
readdir fusereaddir | x v/ X | vV V| VvV V
readlink fusereadlink | x v/ X | Vv V| VvV V
write fusewrite x X X | VX V| VYV
unlink delete x X X | ex VIV V
rmdir inodesync x X X | eXx | VvV
truncate fusdruncate| x X X | X /| vV
utime inodesync xyv X | VvV VYV AV

Table 5.4: NTFS-3g Fault Study. The table shows the affect of fault injections
on the behavior of NTFS-3g. Each row presents the resultsofgle experiment,
and the columns show (in left-to-right order) the intendpédmation, the file system
function that was fault injected, how it affected the apgtiimn, whether the file
system was consistent after the fault, and whether the Slesywas usable for
other operations. Various symbols are used to condense rdsemation. For
application behavior, /”: application observed successful completion of the ofierg “ x”:
application received the error “software caused connettabort”; “e”: application incorrectly
received an error.
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Re(gular Restart | Re-Fuse
4 . o

eSS cbales
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203 505|855
Operation SSHFSfn | <CW W | <L W | <L W
create opercommon| x / X | e/ V| vV V
mkdir mkdir xy X levv|vy Vv
symlink symlink xyv Xl evVvy vV
rename rename xy X levv|vvy VvV
open opercommon| x / X | v/ V| VvV V
read synaead xv X | VVAI VY Y
readdir getdir xv X | VVAI VYV
readlink readlink vV X | VVAVI VYV
write write xv X | VVAI VY Y
unlink unlink xyv Xl evVivy vV
rmdir rmdir xy X levv|lvvy VvV
truncate truncate xv X | VVAVIVV AV
chmod chmod xv X | VVAI VYV Y
stat getattr xv X | VVAVI VYV

Table 5.5:SSHFS Fault Study. The table shows the affect of fault injections on
the behavior of SSHFS. Each row presents the results of éesaxgeriment, and
the columns show (in left-to-right order) the intended @ben, the file system
function that was fault injected, how it affected the apatiien, whether the file
system was consistent after the fault, and whether the filiesywas usable for
other operations. Various symbols are used to condense rdsemation. For
application behavior, /”: application observed successful completion of the ofierg “ x”:
application received the error “software caused connettabort”; “e”: application incorrectly
received an error.
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Operation AVFSfn | <L WL | <L W | <L W
create mknod x X X | ex | vV
mkdir mkdir x X X | ex V|V
symlink symlink x X X | exX | VvV
link link x X X | exX | vV
rename rename x X X | ex V|V
open open xyv X | VVALI VY Y
read read xvV. X | VVAVIVY Y
readdir readdir xv X | VVAI VY Y
readlink readlink | x v/ X | v/ V| VvV V
write write x X X | VX V|V A
unlink unlink x X X | ex | vV
rmdir rmdir x X X | ex V|V
truncate truncate | x X X | v X /| VvV V
chmod chmod xvV. X | VVAVI VY Y
stat getattr xv X | VVAVI VYV

Table 5.6: AVFS Fault Study. The table shows the affect of fault injections on
the behavior of AVFS. Each row presents the results of aeiagberiment, and
the columns show (in left-to-right order) the intended @ben, the file system
function that was fault injected, how it affected the apatiien, whether the file
system was consistent after the fault, and whether the filiesywas usable for
other operations. Various symbols are used to condense rdsemtation.
application behavior, /”: application observed successful completion of the ofierg “ x”:
application received the error “software caused connettabort”; “e”: application incorrectly

received an error.
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Vanilla OS, FUSE, and File Systems

First, we analyze the vanilla versions of the file systemsinm on vanilla
FUSE and a vanilla Linux kernel. The results are shown in #famost result
columns in Tables 5.4, 5.5, and 5.6.

For NTFS-3g, in all experiments, the application alwaysiead a connection
abort error after the fault injection and was killed as it kkbnot handle the error
from the file system. In all experiments, the file system wassable after a fault
injection. Finally, the file system was only consistent f6#@of the fault-injection
experiments. The inconsistency was caused due to partiaihypleted operations
inside the file system (see request splitting in Sectiorlgd. details).

For SSHFS, in all experiments, the application receivednaeoction abort error
and the file system was unusable after a fault injection. KenNTFS-3g, the file
system was always consistent after fault injection. ByglesESHFS atomically
updates the changes to the remote host. The remote hosffisated by the fault,
as faults are localized within the user-level file systene Sectior?? for details).

For AVFS, in all experiments, application received a comioecabort error
and the file system was unusable after a fault injection. Thesfistem was only
consistent in 40% of the experiments. This is because uSI&EIFS, not all file
system requests are atomic. Hence, some of the partiallypleded file system
requests resulted in the underlying system being incardist

Overall, we observe that the vanilla versions of user-ldilel systems and
FUSE do a poor job in hiding failures from applications. Ih&{periments, the
user-level file system is unusable after the fault; as a teapplications have to
prematurely terminate their requests after receiving aord€a “software-caused
connection abort”) from FUSE. Moreover, in 40% of the casgashes lead to
inconsistent file system state.

Simple Restart

Second, we analyze the usefulness of fault-detection anplsirestart at the
KFM without any explicit support from the operating system. The seceasdlt
columns (denoted by Restart) of Tables 5.4, 5.5, and 5.6 skimevresult.

For NTFS-3g, in 50% of the fault injection experiments, aroewas incor-
rectly returned to the application on a request retry afterstart. The file system
was consistent in 38% of the experiments; the percentagensistent file-system
state is the same as that of the vanilla NTFS-3g file systemallli unlike the
vanilla file systems, the restart versions of the file systearewvusable after all fault
injection experiments.
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For SSHFS, in 43% of the experiments, an error was incoyreetlrned to the
application on a request retry after a restart. In all experits, the file system was
consistent and usable after a fault injection. The simpdéare mechanism added
to FUSE was sufficient to restart the crashed file system aabled it to service
subsequent requests.

For AVFS, in 47% of the experiments, an error was incorreatlyirned to the
application on a requet retry after a restart. The file sysier® always usable after
the fault injection experiments. But, in 40% of the faulteiciion experiments, the
file system was left in an inconsistent state.

Overall, we observe that a simple restart of the user-lelesfistem and replay
of in-flight requests at the KFM layer ensures that the apptio completes the
failed operation in the majority of the cases (around 60%®till cannot, however,
re-execute a significant amount (around 40%) of partiadijapleted operations
due to the non-idempotent nature of the particular file sysiperation. Moreover,
an error is wrongly returned to the application and the aeadbave the file system
in an inconsistent state.

Restart Using Re-FUSE

Finally, we analyze the usefulness of Re-FUSE that inclugstarting the
crashed user-level file system, replaying in-flight regsieahd has support from
the operating system for re-executing non-idempotentaijoers (i.e., all the sup-
port described in Section 5.3). The results of the experimmane shown in the
rightmost columns of Tables 5.4, 5.5, 5.6. From the tablecaresee that all faults
are handled properly, applications successfully compleeperation, and the file
system is always left in a consistent state.

Random Fault Injection

In order to stress the robustness of our system, we use rafaldinmjection. In the
random fault-injection experiments, we arbitrarily crabkl user-level file system
during different workloads and observe the user-visibfailts. The sort, Postmark,
and OpenSSH macro-benchmarks are used as workloads fer éxpgriments;
each is described further below. We perform the experimemtie vanilla versions
of the user-level file systems, FUSE and Linux kernel, ancheratdapted versions
of the user-level file systems that run with Re-FUSE.

We use three commonly-used macro-benchmarks to help anélgzsystem
robustness (and later, performance). Specifically, wézatihe sort utility, Post-
mark [96], and OpenSSH [162]. The sort benchmark represiaits manipulation
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File System Injected Faults Sort OpenSSH  Postmark

+ FUSE (Survived) (Survived) (Survived)
NTFS-3g 100 0 0 0
SSHFS 100 0 0 0
AVFS 100 0 0 0

Table 5.7:Random Fault Injection in FUSE. The table shows the affect of ran-
domly injected crashes on the three file systems running oc8B-Uhe second
column refers to the total number of random (in terms of theslerpoint in the
code) crashes injected into the file system during the spdimefit is serving a
macro-benchmark. The crashes are injected by sendingghelsSIGSEGYV to the
file system process periodically. The right-most threeroolsiindicate the number
of survived crashes by the reinforced file systems during gecro-benchmark.

File System Injected Faults Sort OpenSSH  Postmark

+ Re-FUSE (Survived) (Survived) (Survived)
NTFS-3g 100 100 100 100
SSHFS 100 100 100 100
AVFS 100 100 100 100

Table 5.8: Random Fault Injection in Re-FUSE. The table shows the affect of
randomly injected crashes on the three file systems sugpwith Re-FUSE. The
details of the fault injection and data interpretation areTiable 5.7.

workloads, Postmark represents I/O-intensive workloadd, OpenSSH represents
user-desktop workloads.

Tables 5.7 and 5.8 present the result of our study. From TaBlewve see that
Re-FUSE ensures that the application continues execuitinggh the failures, thus
making progress. We also found that a vanilla user-levesfifgem with no support
for fault handling cannot tolerate crashes (shown in thdeTaly).

In summary, both from controlled and random fault injectexperiments, we
see the usefulness of Re-FUSE in recovering from user-fdgedystem crashes. In
a standard environment, a user-level file system is unusdtdethe crash and ap-
plications using the user-level file system are killed. Mmer, in many cases, the
file system is left in an inconsistent state. In contrastARESE, upon detecting a
user-level file system crash, transparently restarts thehed user-level file system
and restores it to a consistent and usable state. It is impord understand that
even though Re-FUSE recovers cleanly from both controlled random faults,
it is still limited in its applicability (i.e., Re-FUSE onlworks for faults that are
both fail-stop and transient and for file systems that $yrimtihere to the reference
file-system model)
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5.4.3 Performance

Though fault-tolerance is our primary goal, we also evauhe performance of

Re-FUSE in the context of regular operations and recovene.ti Performance

evaluation enables us to understand the overhead of rutiméngystem in the ab-

sence and presence of faults. Specifically, we measure trbead of our system

during regular operations and also during user-level fikteay crashes to see if a
user-level file system running on Re-FUSE has acceptabidheads.

Regular Operations

We use both micro- and macro-benchmarks to evaluate théneads during reg-
ular operation. Micro-benchmarks help analyze file-sysparformance for fre-
guently executed operations in isolation. We use sequemia/write, random
read/write, create, and delete operations as our microhmearks. These opera-
tions exercise the most frequently accessed code paths gyfitems. The caption
in Table 5.9 describes our micro-benchmark configuratiomare detail. We also
use the previously-described macro-benchmarks sorti2okf and OpenSSH; the
caption in Table 5.10 describes the configuration paraméberour experiments.

Tables 5.9 and 5.10 show the results of micro- and macroHmearks, respec-
tively. From the tables, we can see that for both micro- androvbenchmarks,
Re-FUSE has minimal overhead, often less than 3%. The ocadshare small
due to in-memory logging and our optimization through pagesioning (or socket
buffer caching in the context of SSHFS). The overheads afing\NTFS-3g on
Re-FUSE are noticeable in some of the write-intensive rmiimochmark exper-
iments due to page versioning. These results show that thidcadhl reliability
Re-FUSE achieves comes with negligible overhead for comfifesystem work-
loads, thus removing one important barrier of adoption ferFRJSE.
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ntfs ntfs+ o/H sshfs sshfs+ o/H avfs avfs+ o/h
Benchmark Re-FUSE % Re-FUSE % Re-FUSE %

Sequential read 9.2 9.2 0.0 918 919 0.1 171 17.2 0.6
Sequential write | 13.1 142 8.4 519.7 5198 0.p 17.9 17.9 0.0
Random read 150.5 1505 0.0 58.6 595 151544 1544 0.0
Random write 11.3 124 9.7 904 90.8 0.4 53.2 53.7 09
Create 20.6 23.2 1216 485.7 4858 0p 17.1 17.2 0.6
Delete 14 1.4 0.d 29 3.0 3. 1.6 16 0.0

Table 5.9: Microbenchmarks. This table compares the execution time (in sec-
onds) for various benchmarks for restartable versions t-8¢, sshfs, avfs (on
Re-FUSE) against their regular versions on the unmodifiechdder Sequential
reads/writes are 4 KB at a time to a 1-GB file. Random readstardre 4 KB

at atime to 100 MB of a 1-GB file. Create/delete copies/rema@®0 files each of
size 1MB to/from the file system respectively. All worklaagisa cold file-system
cache.

ntfs ntfs+ o/ sshfs sshfs+ o/} avfs avfs+ o/h
Benchmark Re-FUSE %1 Re-FUSE %1 Re-FUSE %

Sort 133.5 134.2 0/5145.0 145.2 041129.0 130.3 1.0
OpenSSH| 325 325 00 558 564 10 289 293 14
PostMark | 112.0 113.0 0/95683 5689 0/1141.0 143.0 1.4

Table 5.10:Macrobenchmarks. The table presents the performance (in seconds)
of different benchmarks running on both standard and reéabde versions of ntfs-
39, sshfs, and avfs. The sort benchmark (CPU intensive$ saughly 100MB of
text using the command-line sort utility. For the OpenSShtchmark (CPU+I/O
intensive), we measure the time to copy, untar, configure,raake the OpenSSH
4.51 source code. PostMark (I/O intensive) parameters 8680 files (sizes 4KB
to 4MB), 60000 transactions, and 50/50 read/append andtefdalete biases.
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Vanilla Re-FUSE
Total Total Restart
File System Time(s) Time(s) Time (ms)
NTFS-3g 1335 134.45 65.54
SSHFS 145.0 145.4 255.8
AVFS 129.0 130.7 6.0

Table 5.11:Restart Time in Re-FUSE.The table shows the impact of a single
restart on the restartable versions of the file systems. Bmetmark used is sort
and the restart is triggered approximately mid-way throuigé benchmark.

Recovery Time

We now measure the overhead of recovery time in Re-FUSE.\Regdime is
the time Re-FUSE takes to restart and restore the state afrtished user-level
file system. To measure the recovery-time overhead, we msdht benchmark
ten times and crashed the file system half-way through eath $ort is a good
benchmark for testing recovery as it makes many 1/O systdls, @nd reads and
updates in-memory file-system state.

Table 5.11 shows the elapsed time and the average time R&Bpént in
restoring the crashed user-level file system state. Theregsin process includes
restart of the file-system process and restoring its in-nmrgrsiate. From the table,
we can see that the restart time is on the order of a few nullisds. The appli-
cation also does not see any observable increase in itstexedime due to the
file-system crash.

In summary, both micro- and macro-benchmark results shawttie perfor-
mance overheads during regular operations are minimal.n livéhe event of a
file system crash, Re-FUSE restarts the user-level file systghin a few hundred
milliseconds.

5.5 Summary

Software imperfections are common and are a fact of life @afig for code that
has not been well tested. Even though user-level file systeashes are isolated
from the operating system by FUSE, the reliability of indval file systems has
not necessarily improved. File systems still remain urlats$e to applications after
a crash. Re-FUSE embraces the fact that failures sometiooes and provides a
framework to transparently restart crashed file systems.
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We develop a number of new techniques to enable efficient arréat user-
level file system restartability. In particular, requesigeng allows Re-FUSE to
differentiate between concurrently-serviced requeststesn-call logging enables
Re-FUSE to track (and eventually, replay) the sequence efabippns performed
by a user-level file system; non-interruptible system calisure that user-level
file-system threads move to a reasonable state before filensyecovery begins.
Through experiments, we demonstrate that our techniqueseasonable in their
performance overheads and effective at detection and eegérom a certain class
of faults.

It is unlikely developers will ever build the “perfect” fileystem; Re-FUSE
presents one way to tolerate these imperfections.
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Chapter 6

Reliability through Reservation

“Act as if it were impossible to fail.”
— Dorothea Brande

Memory is one of the important resources that is widely usétimvthe file
system and also across other operating-system comporidotgover, in a com-
plex system such as Linux, memory allocations can happenvariaty of ways
(e.g, kmal | oc, kmemcache_al | oc, etc.). Previous studies have shown that
memory-allocation failure can lead to catastrophic resintfile systems [50, 71,
120, 197].

In this chapter, we explore the possibility of improving teéability of file sys-
tems through resource reservation. We take a new approadiviog the problem
presented by memory-allocation failures by following a gienmantra:the most
robust recovery code is recovery code that never runs atlallother words, our
goal is to eliminate the recovery code that deals with meradigcation failures to
the largest possible extent.

There are a few challenges in doing it this way. First, we reeatechanism to
identify all possible memory allocation calls during eagitem call. Second, we
need to know the type and parameters of the objects that adsedailocated. Third,
seamlessly pre-allocate and return the correspondingisigd runtime. Four, safe
way to clean up any unused pre-allocated objects at the emalcbf system call.

Our approach is callednticipatory Memory Allocation (AMAJ he basic idea
behind AMA is simple. First, using both a static analysisl tmod domain knowl-
edge, the developer determines a conservative estimate tdtal memory alloca-
tion demand of each call into the kernel subsystem of intetésing this informa-
tion, the developer then augments the code to pre-allobateetjuisite amount of
memory at run-time, immediately upon entry into the kerndisystem. The AMA
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run-time then transparently redirects existing memotgealtion calls to use mem-
ory from the pre-allocated chunk. Thus, when a memory aflonatakes place
deep in the heart of the kernel subsystem, it is guaranteest tefail.

The rest of this chapter is organized as follows. First, iotiea 6.1, we present
a background on memory allocation in Linux. Then in Sectidh e present our
study of how Linux file systems react to memory failure. Thengive an overview
of our approach in Section 6.3. We present the design ancemmgitation of AMA
in Section 6.4 and Section 6.5, respectively. Finally, ictlea 6.6 we evaluate
AMA's robustness and performance.

6.1 Linux Memory Allocators

We provide some background on kernel memory allocation. ¥éeidbe the many
different ways in which memory is explicitly allocated wittithe kernel. Our dis-
cussion revolves around the Linux kernel (with a focus orsfjigtems), although in
our belief the allocation types shown here likely to exisbiher modern operating
systems.

6.1.1 Memory Zones

At the lowest level of memory allocation within Linux is a lilydbased allocator
of physical pages [25]. The buddy-based allocator useddoal-routines such as
al | oc_pages() andfree_pages() torequest and return pages, respectively.
These functions serve as the basis for the allocators uséeifioel data structures
(described below), although they can be called directlyiflssired.

6.1.2 Kernel Allocators

Most dynamic memory requests in the kernel use the Lslak allocator which is
based on Bonwick’s original slab allocator for Solaris [E2hewer SLUB allocator
provides the same interfaces but is internally simpler).e Premise behind the
slab allocator is that certain objects are repeatedly edeand destroyed by the
kernel; the allocator thus keeps separate caches for a odiadjecation sizes (from
32 bytes to 128 KB, in powers of 2), and thus can readily recyieded memory
and avoid fragmentation. One simply calls the generic mgratbocation routines
kmal | oc() andkf r ee() to use these facilities.

For particularly popular objects, specialized caches @meiplicitly created.
To create such a cache, one cddilsemcache_cr eat e(), which (if success-
ful) returns a reference to the newly-created object cachdasequent calls to
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kmem.
cache mempool alloc
kmalloc alloc  vmalloc create pages

btrfs 93 7 3 0 1
ext2 8 1 0 0 0
ext3 12 1 0 0 0
ext4 26 10 1 0 0
jfs 18 1 2 1 0
reiser 17 1 5 0 0
xfs 11 1 0 1 1

Table 6.1:Usage of Different Allocators. The table shows the number of differ-
ent memory allocators used within Linux file systems. Eatlmao presents the
number of times a particular routine is found in each file syst

kmemcache_al | oc() are passed this reference and return memory for the spe-
cific object. Hundreds of these specialized allocation eaxist in a typical sys-
tem (sed pr oc/ sl abi nf 0); a common usage for a file system, for example, is
an inode cache.

Beyond these commonly-used routines, there are a few othgs o request
memory in Linux. Amemory poolinterface allows one to reserve memory for
use in emergency situations. Finally, thigual mallocinterface requests in-kernel
pages that are virtually (but not necessarily physicalgntiguous.

To demonstrate the diversity of allocator usage, we preseatiidy of the pop-
ularity of these interfaces within a range of Linux file syste Table 6.1 presents
our results. As one can see, although the generic intekaeg | oc() is most
popular, the other allocation routines are used as wellkEorel code to be robust,
it must handle failures from all of these allocation rousine

6.1.3 Failure Modes

When calling into an allocator, flags determine the exacttiehn of the alloca-

tor, particularly in response to failure. Of greatest intpior us is the use of the
__GFP_NOFAI L flag, which a developer can use when they know their code can-
not handle an allocation failure; using the flag is the onlywa guarantee that

an allocator will either return successfully or not retutrat (i.e., keep trying for-
ever). However, this flag is rarely used. As lead Linux kemh@leloper Andrew
Morton said [119]: “_GFP_NOFAI L should only be used when we have no way
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of recovering from failure. ... Actually, nothing in the kesl should be using
__GFP_NOFAI L. It is there as a marker which says 'we really shouldn't bendoi
this but we don’t know how to fix it".” In all other uses of kelralocators, failure

is thus a distinct possibility.

6.2 Bugs in Memory Allocation

Memory-allocation failures are an issues in many systemsjeselopers do not
always handle rare events like allocation failures. Emnmli®rk has repeatedly
found that memory-allocation failure is often mishandlé€,[197]. In Yanget al.’s
model-checking work, one key to finding bugs is to follow tloele paths where
memory allocation has failed [197].

We now perform a brief study of memory-allocation failurending within
Linux file systems. We use fault injection to fail calls to teious memory allo-
cators and determine how the code reacts as the number ofalurhs increases.
Our injection framework picks a certain allocation calg, kmal | oc() ) within
the code and fails it probabilistically; we then vary thelpability and observe how
the kernel reacts as an increasing percentage of memamatithn calls fail. For
the workload, we created a micro-benchmark that performsxaaifile-system
operations (such as read, write, create, delete, opere,@osl lookup). Table 6.2
presents our results, which sums the failures seen in 15p®ingle system, while
changes the probability of an allocation request failingG®o, 10% and 50% of
the time.

We report the outcomes in two categories: process state larslyBtem state.
The process state results are further divided into two gsotipe number of times
(in 15 runs) that a running process received an error (SUGENEBMEM), and the
number of times that a process was terminated abnormadly killed). The file
system results are split into two categories as well: a cofitite number of times
that the file system became unusable (i.e., further use ofiltheystem was not
possible after the trial), and the number of times the filésgypdecame inconsistent
as a result, possible losing user data.

From the table, we can make the following observations.t,hire can see that
even a simple, well-tested, and slowly-evolving file sysgroh as Linux ext2 still
does not handle memory-allocation failures very well; westdnis as evidence that
doing so is challenging. Second, we observe that all fileesysthave difficulty
handling memory-allocation failure, often resulting in @musable or inconsistent
file system.

An example of how a file-system inconsistency can arise isdon Figure 6.1.
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Process State File-System State
Error Abort | Unusable Inconsistent
btrfsy 0 0 0 0
btl’me 0 14 15 0
btrfsso 0 15 15 0
ext2 0 0 0 0
ext2io 10 5 5 0
exts 10 5 5 0
extd 0 0 0 0
ext3ig 10 5 5 4
ext3o 10 5 5 5
extd, 0 0 0 0
extd o 10 5 5 5
extdso 10 5 5 5
ifso 0 0 0 0
jfle 15 0 2 5
jf550 15 0 5 5
reiserfs 0 0 0 0
reiserfsg 10 4 4 0
reiserfso 10 5 5 0
xfsgp 0 0 0 0
Xme 13 1 0 3
XfS50 10 5 0 5

Table 6.2: Fault Injection Results. The table shows the reaction of the Linux
file systems to memory-allocation failures as the probhdf a failure increases.
We randomly inject faults into the three most-used allaratalls: kmal | oc(),
kmemcache_al | oc(),and__al | oc_pages() . For each file system and each
probability (shown as subscript), we run a micro benchmaskiines and report
the number of runs in which certain failures happen in eadbrom. We categorize
all failures into process state and file-system state, irctvHtrror’ means that file
system operations fail (gracefully), 'Abort’ indicatesatithe process was termi-
nated abnormally, 'Unusable’ means the file system is nodomagcessible, and
‘Inconsistent’ means file system metadata has been codugid data may have
been lost. Ideally, we expect the file systems to gracefaltylle the error (i.e.,
return error) or retry the failed allocation request. Aborg a process, inconsistent
file-system state, and unusable file system are unacceatibes on an memory
allocation failure.
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ile: nanei.c]

empty_dir() [fi
| '(bh = ext4_bread(..., &err)))

if (...

return 1; // XXX: should have returned 0O

ext4_rndir() [file: nanei.c]
retval = - ENOTEMPTY;
if (lenpty_dir(inode))
goto end_rndir;
retval = ext4_delete_entry(handle, dir, de, bh);
if (retval)
goto end_rndir;

Figure 6.1: Improper Failure Propagation. The code shown in the figure is
from the ext4 file system, and shows a case where a failedelst-allocation
(in ext4 bread()) is not properly handled, which eventually leadatdnconsistent
file system.

In this example, while trying to remove a directory from thie Bystem ite., the
ext 4_r ndi r function), the routine first checks if the directory is emptycalling
enpt y_di r (). This routine, in turn, callext 4_br ead() to read the directory
data. Unfortunately, due to our fault injectioaext 4_br ead() tries to allocate
memory but fails to do so, and thus the callewt 4_br ead() returns an error
(correctly). The routineenpt y_di r () incorrectly propagates this error, simply
returning a 1 and thus accidentally indicating that thealory is empty and can
be deleted. Deleting a non-empty directory not only leads bard-to-detect file-
system inconsistency (despite the presence of journalimg) also could render
inaccessible a large portion of the directory tree.

Finally, a closer look at the code of some of these file systawsals a third
interesting fact: in a file system under active developmeantli as btrfs), there
are many places within the code where memory-allocatidartais never checked
for; our inspection has yielded over 20 places within btstsas this. Such trivial
mishandling is rarer inside more mature file systems.

Overall, our results hint at a broader problem: developeitewode as if mem-
ory allocation will never fail; only later do they (possiblgo through the code and
attempt to “harden” it to handle the types of failures thagimiarise. Proper han-
dling of such errors, as seen in the ext4 example, is a folnediask, and as a
result, such hardening sometimes remains “softer” thairatks
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Summary

Kernel memory allocation is complex, and handling failuséB proves challeng-
ing even for code that is relatively mature and generallplstaWe believe these
problems are fundamental given the way current systemsesigribd; specifically,
to handle failure correctly, deep recoverynust take place, where far downstream
in the call path, one must either handle the failure, or pgapa the error up to the
appropriate error-handling location while concurrentlakimg sure to unwind all
state changes that have taken place on the way down the patherBvork has
shown that the simple act of propagating an error corrently complex file system
is challenging [71]; doing so and correctly reverting alet state changes presents
further challenges. Although deep recovery is possible,bei@ve it is usually
quite hard, and thus error-prone. More sophisticated budjffg tools could be
built, and further bugs unveiled; however, to truly solve firoblem, an alternate
approach to deep recovery is likely required.

6.3 Overview

We now present an overview @nticipatory Memory Allocation (AMAR novel
approach to solve the memory-allocation failure-handpingpblem. The basic idea
is simple: first, we analyze the code paths of a kernel subsysh determine what
its memory requirements are. Second, we augment the coteawgtll to pre-
allocate the necessary amounts. Third, we transparertisecd allocation requests
during run-time to use the pre-allocated chunks of memory.

Figure 6.2 shows a simple example of the transformatiorhériigure, a simple
entry-point routing 1() calls one othedownstreantoutine,f 2() , which in turn
callsf 3() . Each of these routines allocates some memory during tleemal
execution, in this case 100 bytes®@() and 25 bytes by 3() .

With AMA, we analyze the code paths to discover the worsecatocation
possible; in this example, the analysis is simple, and theltrés that two memory
chunks, of size 100 and 25 bytes, are required. Then, be&tliegintof 2() , one
calls into the anticipatory memory allocator to pre-all@cahunks of 100 and 25
bytes. The modified run-time then redirects all downstredotation requests to
use this pre-allocated pool. Thus the calls to allocate D5 bytes irf 2() and
f 3() (respectively) will use memory already allocated by AMAdaare guaran-
teed not to fail.

The advantages of this approach are many. First, memaygedibn failures
never happen downstream, and thus there is no need to haidléasures; the
complex unwinding of kernel state and error propagatiorttawe avoided entirely.
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void f2()
void *p = mall oc(100);
£30);

}

void f3()
void *gq = malloc(25);
}

int f1() {
/1 AVA: Pre-allocate 100- and 25-byte chunks

f2();
/1 AMA: Free any unused chunks
}

Figure 6.2:Simple AMA Example. The code presents a simple example of how
AMA is used. In the unmodified case, routirly ) callsf 2() , which callsf 3() ,
each of which allocate some memory (and perhaps incorrbethylle their failure).
With AMA 1() pre-allocates the full amount needed; subsequent callkdoate
memory are transparently redirected to use the pre-alledathunks instead of
calling into the real allocators, and any remaining memayreed.

—~

-~

Second, because allocation failure can only happen in amyptace in the code
(at the top), it is easy to provide a unified handling mechanier example, if the
call to pre-allocate memory fails, the developer could ded¢d immediately return
a failure, retry, or perhaps implement a more sophisticagubnential backoff-
and-retry approach, all excellent examples of shallow recovenAMA enables.
Third, very little code change is required; except for théiscep pre-allocate and
perhaps free unused memory, the bulk of the code remainsdifieth as the run-
time transparently redirects downstream allocation retpu® use the pre-allocated
pool.

Unfortunately, code in real systems is not as simple as thaid in the figure,
and indeed, the problem of determining how much memory neebte allocated
given an entry point into a complex code base is generalleciddble. Thus, the
bulk of our challenge is transforming the code and gainingagaty that we have
done so correctly and efficiently. To gain a better undeditanof the problem, we
must choose a subsystem to focus upon, and transform it taAMge
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void ext2.init_block.alloc.info(struct inode *inode)

{

struct ext2.inode.info rei = EXT2. (inode);
struct ext2bl ockall oc.i nfo *block.i = ei —i _block_.all oc. nfo;
bl ock_.i = kmal | oc(si zeof (xbl ockd), G-P_NOFS);

-

Figure 6.3:A Simple Call. This code is a good example of a simple call in the ext2
file system. The memory allocation routine kmalloc allogaa object (block)

that is equal to the size of ext#lock alloc_info structure. This size is determined
at the compile time and does not change across invocations.

6.3.1 A Case Study: Linux ext2-mfr

The case study we use is the Linux ext2 file system. Althougiplgr than its
modern journaling cousins (i.e., ext3 and ext4), ext2 isad file system and has
enough complex memory-allocation behavior (as descrilzdal) to demonstrate
the intricacies of developing AMA for a real kernel subsyste

We describe our effort to transform the Linux ext2 file systiato a memory-
robust version of itself, which we call Linux ext2-mfr.€., a version of ext2 that
is Memory-Failure Robust). In our current implementatitite transformation re-
quires some human effort and is aided by a static analysisthab we have de-
veloped. The process could be further automated, thusgetsndevelopment of
other memory-robust file systems; we leave such effortsttoréuvork.

We now highlight the various types of allocation requests #re made, from
simpler to more complex. By doing so, we are showing what wurkds to be
done to be able to correctly pre-allocate memory beforentplhto ext2 routines,
and thus shedding light on the types of difficulties we entexaa during the trans-
formation process.

Simple Calls

Most of the memory-allocation calls made by the kernel ara fiked size. Allo-
cating file system objects such as dentry, file, inode, ané page pre-determined
sizes. For example, file systems often maintain a cache deindbjects, and thus
must have memory allocated for them before being read frask. dFigure 6.3
shows one example of such a call from ext2.
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struct dentry xd.alloc(..., struct gstr *nanme) {

if (nane—len > DNAMEI NLI NELEN-1) {
dnanme = knmal | oc(name—l en + 1, GFP_KERNEL);
i f (!dnane)
return NULL;

=
}

Figure 6.4:A Parameterized and Conditional Call. This code represents a sim-
plified version of the dentry allocation function, which ig@od example of both
parameterized and conditional call. The size of the objdoame) that needs to
be allocated depends on the input parameter (name) and tbeadion will only
happen if the condition (namelen > DNAME INLINE_LEN-1) holds true.

Parameterized and Conditional Calls

Some allocated objects have variable lengths (e.g., a fiteerend extended at-
tributes) and the exact size of the allocation is determetedin-time; sometimes
allocations are not performed due to conditionals. Figudeshiows how ext2 al-
locates memory for a directory entry, which uses a lengthd fiplus one for the

end-of-string marker) to request the proper amount of mgmohis allocation is

only performed if the name is too long and requires more spabeld it.

Loops

In many cases, file systems allocate objects inside a loapsité nested loops. In
ext2, the upper bound of the loop execution is determinechbyobject passed to
the individual calls. For example, allocating pages to dedor directory entries
are done inside a loop. Another good example is searching fie block within
the block bitmaps of the file system. Figure 6.5 shows the digeation code
during directory lookups in ext2.

Function Calls

Of course, a file system is spread across many functions, emckhany attempt to
understand the total memory allocation of a call graph g&erentry point must
be able to follow all such paths, sometimes into other magsné&l subsystems.
For example, one memory allocation request in ext2 is inddke calls deep; this
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ext2findentry (struct inode *= dir, ...)

{
unsi gned | ong npages = dir _pages(dir);
unsi gned long n = 0;
do {
page = ext2_get _page(dir, n,..); // allocate a page

if (ext2.matchentry (...));
got o found;

n++;
} while (n !'= npages); // worst case: n = npages

f ound:
return entry;

}

Figure 6.5:Loop Calls. This is a code snippet from the ext2 file system that belongs
to the directory entry search function. In the worst case,ibmber of pages that
need to be allocated before the entry is found (if presemigdds on the size of the
directory (dir) that is being searched.

example path starts ays_open, traverses through some link-traversal and lookup
code, and ends with a call kmremcache_al | oc.

Recursions

A final example of an in-kernel memory allocation is one tlsgbérformed within
a recursive call. Some portions of file systems are naturaltyirsive €.g, path-

name traversal), and thus perhaps it is no surprise thatgiecuis commonplace.
Figure 6.6 shows the block-freeing code that is called whéleas truncated or
removed in ext2; in the examplext 2_f r ee_br anches calls itself to recurse
down indirect-block chains and free blocks as need be.

6.3.2 Summary

To be able to pre-allocate enough memory for a call, one mastlle parameter-
ized calls, conditionals, loops, function calls, and remm. If file systems only
contained simple allocations and minimal amounts of code;afiocation would
be rather straightforward.
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static void
ext 2free_branches(struct inode *inode, ..., int depth){
if (depth--) {

/1 allocate a page and buffer head
bh = sb_bread(i node—i sb, ..);

ext 2.f ree_branches(i node,
(-1 e32x) bh—b_data,
(_l1e32+x) bh—b_data + addr _per _bl ock,
dept h);
} el se
ext 2 free_data(inode, ...);
}

Figure 6.6: Recursion. This code snippet is an example of memory allocation
invocation inside a recursion. The function shown here ésdkt2free branches,
which frees any triple-, double-, and single-indirect ls@ssociated with a data
block that is being freed in the ext2 file system. The ternginatondition for the
recursion is the depth of the branch (i.e., the input paranédepth), which also
determines the number of buffer heads and pages that neesdfekallocated to
avoid any allocation failures while executing this funatio

6.4 Static Transformation

We now present the static-analysis portion of AMA, in which gevelop a tookhe
AMAlyzer to help decide how much memory to pre-allocate at each enint into
the kernel subsystem that is being transformed (in this,dasax ext2). The AM-
Alyzer takes in the entire relevant call graph and producsisetetal version, from
which the developer can derive the proper pre-allocationwarts. After describing
the tool, we present two novel optimizations we employ, eaebeking and page
recycling, to reduce memory demands. We end the sectionandibcussion of the
limits of our current approach.

We build the AMAlyzer on top of CIL [122], a tool that allows e read-
ily analyze kernel source code. CIL does not resolve funcgiointers automati-
cally, which we require for our complete call graph, and leene perform a small
amount of extra work to ensure we cover all calls made in theed of the file
system; because of the limited and stylized use of functmnters within the ker-
nel, this process is straightforward. The AMAlyzer in itgm@nt form is comprised
of a few thousand lines of OCaml code.
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6.4.1 The AMAlyzer

We now describe the AMAlyzer in more detail. AMA consists wfot phases.

In the first phase, the tool searches through the entire stérayto construct the
allocation-relevant call graph.€., the complete set of downstream functions that
contain kernel memory-allocation requests). In the seqirase, a more complex
analysis determines which variables and state are relégaaitocation calls, and
prunes away other irrelevant code. The result is a skeletal bf the subsystem in
guestion, from which the pre-allocation amounts are rgatkrived.

Phase 1: Allocation-Relevant Call Graph

We start our analysis with the entire call graph (shown iruFeg6.7). The relevant
portion of the call graph for ext2 (and all related composeuitthe kernel) con-
tains nearly 2000 nodes (one per relevant function) andhigug000 edges (calls
between functions) representing roughly 180,000 linesaf&l source code. Even
for a relatively-simple file system such as ext2, the task afinally computing the
pre-allocation amount would be daunting, without autorassistance.

The first step of our analysis prunes the entire call graphgankrates what
we refer to as thallocation-relevant call graph (ARCGJThe ARCG contains only
nodes and edges in which a memory allocation occurs, eitlibinna node of the
graph or somewhere downstream of it.

We perform a Depth First Search (DFS) on the call graph to geaeARCG.
An additional attribute namelgalls. memoryallocation (CMA), is added to each
node (i.e., function) in the call graph to speed up the ARCegation. The CMA
attribute is set on two occasions. First, when a memory afloo routine is en-
countered during the DFS. Second, a node has its CMA set daat lone of the
node’s children has its CMA attribute set.

At the end of the DFS, the functions that do not have the CM#balie set are
safely deleted from the call graph. The remaining nodeserctil graph constitute
the ARCG. Figure 6.8 shows the ARCG for the ext2 file system.

Phase 2: Loops and Recursion

At this point, the tool has reduced the number of functiorad thust be examined.
In this part of the analysis, we add logic to handle loops &tdnsions, and where
possible, to help identify their termination conditiondhhieTAMAlyzer searches for
all f or, whi | e, andgot o-based loops, and walks through each function within
such a loop to find either direct calls to kernel memory allocsor indirect calls
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Figure 6.7:The ext2 Call Graph. The figure plots the call graph for the ext2 file
system. The gray nodes at the top represent entry pointghatéile system (such
assys_open() ), and the black dots at the bottom are different memory attors
(such askmal | oc()). The dots in the middle represent functions in ext2 and the
kernel, and lines between such dots (i.e., functions) atdia function call.
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Figure 6.8:The ext2 Allocation-Relevant Call Graph. The figure plots the ARCG
for the ext2 file system. The larger gray nodes represeny gutints into the file

system, and the black nodes are different memory allocaisd by ext2 either

directly or indirectly. The smaller gray nodes represemdiions in ext2 and the
kernel, and dotted lines between such functions indicaetesence of a loop.
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through other routines. To identify goto-based loops, AMgesl the line num-
bers of the labels that the goto statements point to. To ifgeloth recursions

and function-call based loops, AMA performs a DFS on the ARL®@ for every

function encountered during the search, it checks if thetion has been explored
before. Once these loops are identified, the tool searchieantb outputs the ex-
pressions that affect termination.

Phase 3: Slicing and Backtracking

The goal of this next step is to perform a bottom-up crawl! efghaph, and produce
a minimized call graph with only the memory-relevant codetleerein. We use a
form of backward slicing [190] to achieve this end.

In our current prototype, the AMAlyzer only performs a bottaup crawl until
the beginning of each function. In other words, the sliciaglbne at the function
level and developer involvement is required to perform baaking. To backtrack
until the beginning of a system call, the developer has toualiyruse the output
of slicing for each function (including the dependent inpattiables that affect the
allocation size/count) and invoke the slicing routine anaéller functions. The
caller functions are identified using the ARCG.

6.4.2 AMAlyzer Summary

As we mentioned above, the final output is a skeletal graplchvban be used by
the developer to arrive at the final pre-allocations with lie¢p of slicing support
in the AMAlyzer. For ext2-mfr, the reduction in code is draima from nearly
200,000 lines of code across 2000 functions (7000 functais)}cdown to less
than 9,000 lines across 300 functions (400 function callgfy all relevant vari-
ables highlighted. Arriving upon the final pre-allocatiom@unts then becomes a
straightforward process.

Table 6.3 summarizes the results of our efforts. In the takéepresent the pa-
rameterized memory amounts that must be pre-allocatechéofl8 most-relevant
entry points into the file system. From the table, we can saerthmber of allo-
cated objects depend on the input paramenters (sublai@eLengtf format-time
parameters (such a&orst(Bitmap), and size of files or directories that are cur-
rently being accessed (such%ige(ParentDir).



Entry point | Pre-allocation required
truncate() (Worst(Bitmap) + Worst(Indirect)) x (PageSize + Buf fer Head)
lookup() (1 + Size(ParentDir)) x (PageSize + Buf ferHead) + Inode + Dentry + NameLength+
NamesCache
lookuphash()| (1 + Size(ParentDir)) x (PageSize + Buf fer Head) + Inode + Dentry + NameLength + Filp
sysopen() lookup() + lookuphash() + (4 + Depth(Inode) + Worst(Bitmap)) x PageSize+
(5 4 Depth(Inode) + Worst(Bitmap)) x Buf fer Head + Inode + truncate()
sysread() (count + ReadAhead + Worst(Bitmap) + Worst(Indirect)) x (PageSize + Buf ferHead)
syswrite() (count + Worst(Bitmap)) x (PageSize + Buf ferHead) + sizeof(ext2_block_allocin fo)
mkdir() lookup() + lookuphash() + (Depth(ParentInode) + 4) x PageSize+
(Depth(Inode) 4+ 8) x Buf ferHead
unlink() lookup() + lookuphash() + (1 + Depth(Inode)) x (PageSize + Buf fer Head)
rmdir() lookup() + lookuphash() + (3 + Depth(Inode)) x (PageSize + Buf fer Head)
access() lookup() + NamesCache
chdir() lookup() + NamesCache
chroot() lookup() + NamesCache
statfs() lookup() + NamesCache

Table 6.3: Pre-Allocation Requirements for ext2-mfr. The table shows the worst-case memory requirements of the
various system calls in terms of the kmeathe, kmalloc, and page allocations. The following tyddsmmemcache are
used: NamesCache (4096 bytes)Buf fer Head (52 bytes),Inode (476 bytes),Filp (128 bytes), andentry (132
bytes). ThePageSize is constant at 4096 bytes. The other terms used above incliident: the number of blocks
read/written, Read Ahead: the number of read-ahead block§]orst(Bitmap): the number of bitmap blocks that needs
to be read,Worst(Indirect): the number of indirect blocks to be read for that particutslock, Depth(inode): the
maximum number of indirect blocks to be read for that pafticinode, andSize(inode): the number of pages in the
inode.

Tt
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6.4.3 Optimizations

As we transformed ext2 into ext2-mfr, we noticed a number mfartunities for
optimization, in which we could reduce the amount of memagrgllocated along
some paths. We now describe two novel optimizations.

Cache Peeking

The first optimizationcache peekingcan greatly reduce the amount of pre-allocated
memory. An example is found in code paths that access a filkk{lkuch as a
sys_read()). To access a file block in a large file, it is possible that jleri
indirect, double-indirect, and indirect block, inode, amtier blocks may need to
be accessed to find the address of the desired block and reawh itlisk.

With repeated access to a file, such blocks are likely to baenpage cache.
However, the pre-allocation code must account for the waase, and thus in the
normal case must pre-allocate memory to potentially readdtblocks. This pre-
allocation is often a waste, as the blocks will be allocatedjain unused during
the call, and then finally be freed by AMA.

With cache peeking, the pre-allocation code performs alsmabunt of extra
work to determine if the requisite pages are already in cathso, it pins them
there and avoids the pre-allocation altogether; upon cetigpl, the pages are un-
pinned.

The pin/unpin is required for this optimization to be safeitidut this step, it
would be possible that a page gets evicted from the cachethéigre-allocation
phase but before the use of the page, which would lead to atpaoed memory
allocation request downstream. In this case, if the rechest failed, AMA would
not have served its function in ensuring that no downstresharés occur.

Cache peeking works well in many instances as the cachedstataessible at
the beginning of a system call and does not require any newaneatlocations.
Even if cache peeking requires additional memory, the mgmatlocation calls
needed for cache peeking can be easily performed as paregbrérallocation
phase.

Page Recycling

A second optimization we came upon was the notigpagfe recycling The idea for
the optimization arose when we discovered that ext2 oftes fas more pages than
needed for certain tasks (such as file/directory truncatsrches on free/allocated
entries inside block bitmaps and large directories).
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For example, consider truncate. In order to truncate a file,raust read every
indirect block (and double indirect block, and so forthpimtemory to know which
blocks to free. In ext2, each indirect block is read into mgmand given its own
page; the page holding an indirect block is quickly discdrddter ext2 has freed
the blocks pointed to by that indirect block.

To reduce this cost, we implement page recycling. With thjgraach, the pre-
allocation phase allocates the minimal number of pageséed to be in memory
during the operation. For a truncate, this number is propoal to the depth of
the indirect-block tree, instead of the size of the entiemtrinstead of allocating
thousands of blocks to truncate a file, we only allocate a fentlje triple-indirect,
a double indirect, and an indirect block). When the code hashieéd freeing the
current indirect block, we recycle that page for the nexirext block instead of
adding the page back to the LRU page cache, and so forth.slmthinner, substan-
tial savings in memory is made possible.

6.4.4 Limitations and Discussion

We now discuss some of the limitations of our anticipatorgrapch. Not all pieces
are yet automated; instead, the tool currently helps tuegrirttractable problem of
examining 180,000 lines of code into a tractable one progdi lot of assistance
in finding the correct pre-allocations. Further work is riegd in slicing and back-
tracking to streamline this process, but is not the focusunfooirrent effort: rather
our goal here is to demonstrate the feasibility of the apétory approach.

The anticipatory approach could fail requests in cases evhermal execution
would successfully complete. Normal execution need noagdmake the worst
case (or longest) path. As a result, normal execution mighalile to complete
with fewer memory allocations than the anticipatory apptoaln contrast, the
anticipatory approach must always allocate memory for thesticase scenario, as
it cannot afford to fail on a memory allocation call after fire-allocation phase.

Cache peeking can only be used when sufficient informati@wvagable at the
time of allocation to determine if the required data is in¢haehe. For file systems,
sufficient information is available at the beginning of ateys call, which allows
cache peeking to avoid pre-allocation with little implertagion effort. More im-
plementation effort could be required in other systems terdane if the required
data is in its cache.
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6.5 The AMA Run-Time

The final piece of AMA is the runtime component. There are twajanpieces
to consider. First is the pre-allocation itself, which isénted at every relevant
entry point in the kernel subsystem of interest, and theemilent cleanup of pre-
allocated memory. Second is the use of the pre-allocatedamenm which the
run-time must transparently redirect allocation requésteh akmal | oc())to
use the pre-allocated memory. We discuss these in turn hemdaresent the other
run-time decision a file system such as Linux ext2-mfr mudtenahat to do when
a pre-allocation request fails?

6.5.1 Pre-allocating and Freeing Memory

For pre-allocation, we require that file systems implemesingle new VFS-level
call, which we callvf s_get _memur equi r enrent s() . This call takes as argu-
ments information about which call is about to be made, algvamt arguments
about the current operation (such as the file position) aae sif the file system,
and then returns a structure to the caller (in this case, the Myer) that describes
all of the necessary allocations that must take place. Thetste is referred to as
theanticipatory allocation description (AAD)

The VFS layer unpacks the AAD, allocates memory chunks gstusing dif-
ferent allocators) as need be, and links them into the tasktate of the calling
process for downstream use (described further below). ihélpre-allocated mem-
ory in place, the VFS layer then calls the desired routinel{sasvf s_r ead() ),
which then utilizes the pre-allocated memory during itscexion. When the op-
eration completes, a generic AMA cleanup routine is calledrée any unused
memory.

To give a better sense of this code flow, we provide a simpléeample from
ther ead() system call code path in Figure 6.9. Without the AMA addisipthe
code simply looks up the current file positiore(, where to read from next), calls
into vf s_read() to do the file-system-specific read, updates the file offsat, a
returns. As described in the original VFS paper [100], tludecis generic across
all file systems.

With AMA, two extra steps are required, as shown in the figuFérst, the
VFS layer checks if the underlying file system is using AMAdahso, calls the
file system'syf s_get _memr equi r enent s() routine to determine the pending
call's memory requirements. The VFS layer then allocatesrnteeded memory
using the AAD returned from thef s_get _memur equi r erent s() . All of this
work is neatly encapsulated by tiAd/A CHECK AND_ALLOCATE() call in the
figure.
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SYSCALL_DEFI NE3(read, ...) {

| of f .t pos = file_pos_read(file);
err = AMACHECKANDALLOCATE(fil e, AMASYSREAD, pos, count);
if (err)

ret = visread(file, buf, count, &pos);
fileposwite(file, pos);

AMA_CLEANUP() ;
}
i nt AMACHECKANDALLOCATE(..., int syscallno, ...) {
struct relevant_argunents =*ra;
struct anticipatory.allocationdescription *aad;
err = sb->vfsget_nemrequirenents(syscal lno, ra, aad);
if (err)
return err;
el se
return all ocat emenory(aad);
}

Figure 6.9:A VFS Read Example. This code snippet shows how pre-allocation
happens during a read system call. Pre-allocation happentha beginning of
a system call and the call continues executing only if thegticecation (i.e., the
AMA_CHECKAND_ALLOCATE function) succeeds.

Second, after the call is complete, a cleanup roudid_CLEANUP( ) is called.
This call is required because the AMAlyzer provides us withaast-case estimate
of possible memory usage, and hence not all pre-allocatedameis used during
the course of a typical call into the file system. In order &fthis unused memory,
the extra call toAMA_CLEANUP( ) is made.

6.5.2 Using Pre-allocated Memory

Central to our implementation tsansparency we do not change the specific file
system (ext2) or other kernel code to explicitly use or free-glocated mem-
ory. File systems and the rest of the kernel thus continueséoregular memory-
allocation routines and pre-allocated memory is returnecktruring such alloca-
tion calls.
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To support this transparency, we modified each of the keiffogladion routines
as follows. Specifically, when a process calls into ext2-thi pre-allocation code
(in AMA_CHECK_AND_ALLOCATE() above) sets a new flag within the per-task
task structure. Thisnticipatory flagis then checked upon each entry into any
kernel memory-allocation routine. If the flag is set, thetmo®l attempts to use
pre-allocated memory and returns one of the pre-allocaktenhks; if the flag is
not set, the normal allocation code is executed (and faikieepossibility). Calls
tokf ree() and other memory-releasing routines operate as normalharsdve
leave those unchanged.

Allocation requests are matched with the pre-allocategaibjusing the pa-
rameters passed to the allocation call at runtime. The petiers passed to the
allocation call aresize order (or the cachep point¢r andthe GFP flag The type
of the desired memory object is inferred through the invacabf the allocation
call at runtime. The size (for kmalloc and vmalloc) or ordier @lloc_pages) helps
to exactly match the allocation request with the pre-atiedaobject. For cache
objects, the cachep pointer help identify the correct piceated object.

One small complication arises during interrupt handlingpe&fically, we do
not wish to redirect memory allocation requests to use posated memory when
requested by interrupt-handling code. Thus, when intéedipwe take care to
save the anticipatory flag of the currently-running procass restore it when the
interrupt handling is complete.

6.5.3 What If Pre-Allocation Fails?

Adding pre-allocation into the code raises a new policy tjaes how should the
code handle the failure of the pre-allocation itself? Wedwel there are a number
of different policy alternatives, which we now describe:

=y

¢ Fail-immediate. This policy immediately returns an error to the caller (suc
as ENOMEM).

e Retry-forever (with back-off). This policy simply keeps retrying forever,
perhaps inserting a delay of some kiredg, exponential) between retry re-
quests to reduce the load on the system and control bettdoddeon the
memory system. Also, such delays could help make progreashigavily
contended system.

e Retry-alternate (with back-off). This form of retry also requests memory
again, but uses an alternate code path that uses less mdranrthe original
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through page/memory recycling and thus is more likely toceed. This
retry can also back-off as need be.

Using AMA to implement these policies is superior to the Brg approach,
as it enableshallow recoveryimmediately upon entry into the subsystem. For
example, consider the fail-immediate option above. Cyetinis policy could be
implemented in the traditional system without AMA, but inra@pinion doing so
is prohibitively complex. To do so, one would have to enshet the failure was
propagated correctly all the way through the many layerdeffile system code,
which is difficult [71, 151]. Further, any locks acquired ¢her state changes made
would have to be undone. Deep recovery is difficult and epronre; shallow re-
covery is the opposite.

Another benefit that the shallow recovery of AMA permits is r@fied pol-
icy [69]. The policy, whether failing immediately, retngnor some combination,
is specified in one or a few places in the code. Thus, the degetan easily decide
how the system should handle such a failure and be confidentith implementa-
tion meets that desire.

A third benefit of our approach: file systems could expose socomrol over
the policy to applications [7, 51]. Whereas most applicgaionay not be prepared
to handle such a failure, a more savvy application (such ds seiver or database)
could set the file system to fail-fast and thus enable bettetral over failure han-
dling.

Pre-allocation failure is not a panacea, however. Depgndinthe installation
and environment, the code that handles pre-allocationirésl will possibly run
quite rarely, and thus may not be as robust as normal-case cAithough we
believe this to be less of a concern for pre-allocation recpeode (because it is
small, simple, and usually correct “by inspection”), fuattefforts could be applied
to harden this code. For example, some have suggested ebtistadrilling” [27]
as a way to ensure operators are prepared to handle faikire#arly, one could
regularly fail kernel subsystems (such as memory allosattor ensure that this
recovery code is run.

6.6 Analysis

We now analyze Linux ext2-mfr. We measure its robustnesgsmumemory-allocation
failure, as well as its baseline performance. We furthed\sits space overheads,
exploring cases where our estimates of memory-allocatesdsa could be overly
conservative, and whether the optimizations introducetieeare effective in re-
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File-System State

Process State|
Unusable Inconsistent

Error Abort

ext2-mfrg 0 0 0 0
ext2-mfrg 0 0 0 0
ext2-mfrg 0 0 0 0

Table 6.4: Fault Injection Results: Retry. The table shows the reaction of the
Linux ext2-mfr file system to memory failures as the prolighilf a failure in-
creases. The file system uses a “retry-forever” policy todiareach failure. A
detailed description of the experiment is found in Table 6.2

ducing these overheads. All experiments were performed 212 &Hz Opteron
processor, with two 80GB WDC disks, 2GB of memory, runningux 2.6.32.

6.6.1 Robustness

Our first experiment with ext2-mfr reprises our earlier fanjection study found
in Table 6.2. In this experiment, we set the probability tiwet memory-allocation
routines will fail to 10%, 50%, and 99%, and observe how exf2behaves both
in terms of how processes were affected as well as the ovieadlystem state. For
this experiment, the retry-forever (without any back-gdf)licy is used. Table 6.4
reports our results.

As one can see from the table, ext2-mfr is highly robust to wrgmallocation
failure. Even when 99 out of 100 memory-allocation call$, fakt2-mfr is able to
retry and eventually make progress. This application neetices that the failures
are occurring, and file system usability and state remaactnt

6.6.2 Performance

In our next experiment, we study the performance overheédsing AMA. We
utilize both simple microbenchmarks as well as applicateme| tests to gauge the
overheads incurred in ext2-mfr due to the extra work of mgnpoe-allocation and
cleanup. Table 6.5 presents the results of our study.

From the table, we can see that the performance of our relgtintuned
prototype is excellent across both microbenchmarks as agehpplication-level
workloads. In all cases, the extra work done by the AMA rustito pre-allocate
memory, redirect allocation requests transparently, afequently free unused
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ext2 ext2-mfr  Overhead

Workload (secs) (secs) (%)

Sequential Write| 13.46 13.69 1.71
Sequential Read| 9.04 9.05 0.11
Random Writes 11.58 11.67 0.78
Random Reads | 146.33 151.03 3.21
Sort 129.64 136.50 5.29
OpenSSH 48.30 49.80 3.11
PostMark 55.90 59.60 6.62

Table 6.5:Baseline Performance.The baseline performance of ext2 and ext2-mfr
(without optimizations) are compared. The first four tests microbenchmarks:
sequential read and write either read or write 1-GB file inetgtirety; random read
and write read or write 100 MB of data over a 1-GB file. Note trmtdom-write
performance is good because the writes are buffered anddanse scheduled
when written to disk. The three application-level benchmaare a command-line
sort of a 100MB text file; the OpenSSH benchmark which copigars, configures,
and builds the OpenSSH 4.5.1 source code; and the PostMadhbeark run for
60,000 transactions over 3000 files (from 4KB to 4MB) withbBOread/append
and create/delete biases. All times are reported in segoans are stable across
repeated runs.

memory has a minimal cost. With further streamlining, wd famfident that the
overheads could be reduced even further.

6.6.3 Space Overheads and Cache Peeking

We now study the space overheads of ext2-mfr, both with amidowrt our cache-
peeking optimization. The largest concern we have abowgarwative pre-allocation
is that excess memory may be allocated and then freed; glthawe have shown
there is little time overhead involved (Table 6.5), the axpace requested could in-
duce further memory pressure on the system, (ironicallyjingpallocation failure
more likely to occur. We run the same set of microbenchmaris application-
level workloads, and record information about how much megnveas allocated
for both ext2 and ext2-mfr; we also turn on and off cache-pegkor ext2-mfr.
Table 6.6 presents our results.

From the table, we make a number of observations. First, moptimized ext2-
mfr does indeed conservatively pre-allocate a noticeablgust more memory than
needed in some cases. For example, during a sequentialfradd@®@B file, normal



130

ext2-mfr
ext2 ext2-mfr (+peek)
Workload (GB) (GB) (GB)

Sequential Write| 1.01 1.01 (1.00x) 1.01 (1.00x)
Sequential Read| 1.00 6.89 (6.87x) 1.00 (1.00x)
Random Write 0.10 0.10 (1.05x) 0.10 (1.00x)
Random Read 0.26 0.63 (2.41x) 0.28 (1.08x)

Sort 0.10  0.10 (1.00x) 0.10 (1.00x)
OpenSSH 0.02 1.56(63.29x) 0.07 (3.50x)
PostMark 3.15 5.88(1.87x) 3.28 (1.04x)

Table 6.6: Space Overheads. The total amount of memory allocated for both
ext2 and ext2-mfr is shown. The workloads are identical t@¢hdescribed in the
caption of Table 6.5.

ext2 allocates roughly 1 GB (mostly to hold the data pagekgreas unoptimized
ext2-mfr allocates nearly seven times that amount. Thediteing read one 4-KB
block at a time, which means on average, the normal scareééleone block per
read whereas ext2-mfr allocates seven. The reason for éxegss pre-allocations
is simple: when reading a block from a large file, itpessiblethat one would
have to read in a double-indirect block, indirect block, aadforth. However, as
those blocks are already in cache for these reads, the eatiserpre-allocation
performs a great deal of unnecessary work, allocating sfaacdese blocks and
then freeing them immediately after each read completesexicess pages are not
needed.

With cache peeking enabled, the pre-allocation space eadehimprove sig-
nificantly, as virtually all blocks that are in cache need betallocated. Cache
peeking clearly makes the pre-allocation quite spaces#ffe The only workload
which does not approach the minimum is OpenSSH. OpenSSHesowplaces
small demand on the memory system in general and hence i$ gaai concern.

6.6.4 Page Recycling

We also study the benefits of page recycling. In this experiinee investigate the
memory overheads that arise during truncate. Figure 6418 ghe results.
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Figure 6.10:Space Costs with Page RecyclingThe figure shows the measured
space overheads of page recycling during the truncate ofea filhe file size is
varied along the x-axis, and the space cost is plotted on theis/ (both are log
scales).

In the figure, we compare the space overheads of standardesk®2mfr (with-
out cache peeking or page recycling), and ext2-mfr with paggcling (without
cache peeking). As one can see from the figure, as the filensygtaws, the space
overheads of both ext2 and ext2-mfr converge, as numerayesge allocated for
indirect blocks. Page recycling obviates the need for thseks, and thus uses
many fewer pages than even standard ext2.

6.6.5 Conservative Pre-allocation

We also were interested in whether, despite our best effext®-mfr ever under-
allocated memory in the pre-allocation phase. Thus, we warsame set of work-
loads (i.e., all performance benchmarks) and checked ®isttme. To identify
under-allocated memory, we add a check inside each memiogatibn function
(such as kmalloc); the check reports an error when objeesat found in the
pre-allocated pool during a file-system request. In no ruindithese experiments
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and other stress-tests did we ever encounter an undeaadoc giving us further
confidence that our static transformation of ext2 was pigmne.

6.6.6 Policy Alternatives

We also were interested in seeing how hard it is to use a diftgpolicy to react
to allocation failures. Table 6.7 shows the results of outtfanjection experiment,
but this time with a “fail-fast” policy which immediately terns to the user should
the pre-allocation attempt fail.

Process State
Error  Abort

File-System State
Unusable Inconsistent

ext2-mfro 15 0 0 0
ext2-mfrg 15 0 0 0
ext2-mfrg 15 0 0 0

Table 6.7: Fault Injection Results: Fail-Fast. The table shows the reaction of
Linux ext2-mfr using a fail-fast policy file system. A detdidescription of the
experiment is found in Table 6.2.

The results show the expected outcome. In this case, theggaanning the
workload immediately returns tHENOVEMerror code; the file system remains con-
sistent and usable. By changing only a few lines of code, dinegndifferent
failure-handling behavior can be realized.

6.7 Summary

It is common sense in the world of programming that code theaiiely run rarely
works. Unfortunately, some of the most important code irteays falls into this
category, including any code that is run during a “recoverif’the problem that
leads to the recovery code being enacted is rare enoughedbeary code itself is
unlikely to be battle tested, and is thus prone to failure.

In this chapter, we presented Anticipatory Memory Allooat{AMA), a new
approach to avoiding memory-allocation failures deep iwithe kernel. By pre-
allocating the worst-case allocation immediately upomyeimto the kernel, AMA
ensures that requests further downstream will never fathose places within the
code where handling failure has proven difficult over thergedhe small bits of
recovery code that are scattered throughout the code need nen, and system
robustness is improved by design.
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As we build increasingly complex systems, we should comsiggv methods
and approaches that help build robustness into the systefedign. AMA presents
one method (early resource allocation) to handle one pnolfileemory-allocation
failure), but we believe that the approach could be appliedemrgenerally. We
believe that the only true manner in which to have workingovery code is to
have none at all.
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Chapter 7

Related Work

Reliability has been a major focus of computer systems desigsince the early
days of computers. |Initially, hardware failures were osdef magnitude more
frequent then they are today [46, 185]. Due to the advanchariware reliability
mechanisms, software has now become the dominant sourgstefisfailures [66].

In this thesis, we developed recovery techniques to imptteeeeliability of file
systems through restartability and resource reservatida.now look at previous
work that has similar goals of restartability and resoureservation and discuss
how our techniques differ from them.

The rest of the chapter is organized as follows. First, iniec.1, we review
previous work on improving reliability by restarting commpnts on failures. We
then look at previous work on improving reliability throudilure avoidance via
pre-allocation of resources in Section 7.2.

7.1 Reliability through Restartability

Restarting components on failures has been a popular mé&hagvive software
failure. We now look at solutions designed to restart keragtl user-level compo-
nents on failures.

7.1.1 Restartable OS Components

We now discuss previous systems designed to increasingtomgersystem fault
resilience via a restartable approach. We classify prevapproaches along two
axes:overheadandstatefulness

We classify fault isolation techniques that incur littleeohread agightweight
and more costly mechanisms lasavyweight Heavyweight mechanisms are not
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likely to be adopted by file systems, which have been tunetifgr performance
and scalability [23, 82, 170], especially when used in segm@ironments.

We also classify techniques based on how much system stgtaité designed
to recover after failure. Techniques that assume the faibedponent has little in-
memory state are referred tostatelessmost device driver recovery techniques are
stateless. Techniques that can handle components witleinemy and persistent
storage arestatefu] when recovering from file-system failure, stateful tecjugs
are required. We now discuss the previous systems in detail.

The renaissance in building isolated OS subsystems is fouSdvift et al.'s
work on Nooks and subsequently shadow drivers [171, 172doks, the authors
use memory-management hardware to build an isolation yraround device
drivers; not surprisingly, such techniques incur high teads [171]. The shadow
driver work shows how recovery can be transparently achidyerestarting failed
drivers and diverting clients by passing them error codesratated tricks. How-
ever, such recovery is relatively straightforward: onlyrage reinitialization must
occur before reintegrating the restarted driver into the €28h an approach cannot
be directly applied to file systems.

Device driver isolation can also be obtained through Virddachine Monitors
(VMM) [52, 104]. In Xen, Fraser et al. show that it is possibbdsolate and share
device drivers across operating systems by running devieerd in separate vir-
tual machines [52]. In L4, LeVasseur et al. went a step furédmel show that it is
possible to isolate and still run unmodified drivers in thariginal operating sys-
tems in a virtual machine [104]. In both approaches, compaiin to the device
driver happens through the VMM. In the event of an error, dhiyvirtual machine
running the buggy device driver is affected. To restart &éadriver, the VMM
starts a new virtual machine and initializes the failed dewdriver to a predefined
state. The disadvantages of a VMM-based approach are thatemuds to run sep-
arate instances of virtual machines for each device drilierrestart mechanism is
stateless, and isolation and data copying costs are high.

Isolation and restart of buggy device drivers have also lpssformed using
microkernel-based approaches [79, 80, 88, 103, 194]. Inx¥Vlihe device driver is
run as a user-mode process by encapsulating it in a privateessl space that is
protected by the MMU hardware. Faults in a device driver doimgact other op-
erating system components, as the driver is run in a sepadatess space. Upon
a driver failure, Minix simply reincarnates the failed d¥ivto service subsequent
requests. Moreover, in a subsequent work, Herder et al.igptemented param-
eterized policy scripts to provide flexibility in the way ders are restarted after a
failure [80].
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Nexus is another microkernel-based approach, where dravex executed as
user-level processes [194]. Nexus uses a global, trusteeree validation mech-
anism [4], device safety specification, and device-speciference monitor. In
Nexus, the safety specification is compiled with the refeeemonitor. Upon a
transition from (or to) the driver, the reference monitordeages the safety speci-
fications to check driver interactions for permissible andwmal behavior.

CuriOS, a recent microkernel-based operating system,aafss to be resilient
to subsystem failure [42]. CuriOS achieves this end throdigissic microker-
nel techniquesife., address-space boundaries between servers) with ancaxdiiti
twist: instead of storing session state inside a serviceiJ3uplaces such state
in an additional protection domain where it can remain sabenfa buggy ser-
vice. However, the added protection is expensive. Fregkemiel crossings, as
would be common for file systems in data-intensive enviramsievould dominate
performance [141]. As far as we can discern, CuriOS repissame of the few
systems that attempt to provide failure resilience for metegeful services such as
file systems. In the paper there is a brief description of ati2‘@nplementation”;
unfortunately it is difficult to understand exactly how sigticated this file service
is or how much work is required to recover from failures.

In summary, the advantage of micro-kernel-based appradstikat the shared
state between drivers and the operating system is smah; suall state simplifies
recovery by a large extent. The drawback of the micro-kebasled approaches is
that they work well only for stateless systems such as nétwaock, and char-
acter drivers and cannot be applied to stateful componerts as file systems.
Moreover, most of the commaodity operating systems are nitbwolkernels and
not microkernels [28, 171].

SafeDrive takes a different approach to fault resilien@®]2Instead of address-
space based protection, SafeDrive automatically addstmsseinto device drivers.
When an assert is triggered (e.g., due to a null pointer orurobbounds index
variable), SafeDrive enacts a recovery process that tegtes driver and thus sur-
vives the would-be failure. Because the assertions aredanida C-to-C trans-
lation pass and the final driver code is produced through gmepdation of this
code, SafeDrive is lightweight and induces relatively loveiteads. However, the
SafeDrive recovery machinery does not handle statefulystibims; as a result the
driver will be in an initial state after recovery. Thus, whiturrently well-suited for
a certain class of device drivers, SafeDrive recovery adsmot be applied directly
to file systems.

EROS is a capability-based operating system designed fmsugecurity and
reliability needs of active systems [156]. EROS providestagability through
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Heavyweight Lightweight
Nooks/Shadow[171,172]| SafeDrive[200}
Stateless| Xen[52], Minix[79,80] | Singularity[103]
L4[104], Nexus[194]

CuriOS[42]
EROS[156]

Stateful Membrané

Table 7.1: Summary of Approaches. The table performs a categorization of
previous approaches that handle OS subsystem crashesoaghas that use ad-
dress spaces or full-system checkpoint/restart are tooyweaight; other language-
based approaches may be lighter weight in nature but do nleesihe stateful
recovery problem as required by file systems. Finally, thdetanarks (with an as-
terisk) those systems that integrate well into existingaioeg systems, and thus do
not require the widespread adoption of a new operating sysievirtual machine
to be successful in practice.

three principles: no kernel allocation, atomicity of ogems, and a stateless ker-
nel. No kernel allocations ensures that the OS does notagthplallocate or free
resources. Atomicity of operations guarantees that altaimns are either com-
pleted in bounded time or not executed at all. Finally, tla¢ettss kernel, ensures
that all of the kernel state resides in user-allocated georen EROS, checkpoint of
the entire system is taken periodically, which can be usdlddrevent of an failure.
The advantage of this approach is that the entire systemeagskored back upon
failures. This approach has two major drawbacks: first, cewdn to rewrite the
entire operating system and other components to adherestdesign principles
of EROS; second, the overheads of checkpointing the ergizeating-system state
are prohibitively expensive to be deployed in commodityteyss.

The results of our classification are presented in Table Frdm the table, we
can see that many systems use methods that are simply tdp foodile systems;
placing address-space boundaries between the OS and tisgdiiéan greatly in-
creases the amount of data copying (or page remapping) thsit eocur and thus
is untenable. We can also see that fewer lightweight tect@sidhave been devel-
oped. Of those, we know of none that work for stateful sulesystsuch as file
systems.

7.1.2 Restartable User-level Components

In the context of restarting user-level components, thaselieen some significant
advances in the past few decades. We now discuss the prikrd@oe in restarting
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user-level components and their relevance and applitahilistateful components
such as user-level file systems.

Simple, whole program restart was proposed as a first attéorpdndle soft-
ware failures [65, 164]. Restart of an entire program helg@mms to survive
failures caused due to non-deterministic bugs. The adgant&these solutions is
that the restart mechanism is simple and straight forwahd drawback of simple
restart is that it is stateless and lossy; requests thatedbetween a crash and a
restart are discarded in these systems.

Software rejuvenation, an alternative solution to wholegoam restart, was
proposed to reduce the down-time periods of services (olicgpns) [21, 60,
101]. Software rejuvenation is a proactive approach imst#ahe commonly used
reactive approach. The key idea of software rejuvenatido periodically rejuve-
nate (or restart) to a fresh state even if there are no faijuteus eliminating any
residual or corrupt in-memory state. The goal of softwajewenation is to handle
corrupt states that could eventually result in resourckdes deadlocks. Software
rejuvenation is not applicable for user-level file systernghee restart mechanism
could result in lost updates and have noticeable downtime.

Microreboot was proposed to avoid entire program resta@s31, 129]. The
idea of microreboot is a fine-grain restart approach, whedévidual application
components are selectively restarted on a failure. Mitroot accomplishes selec-
tive restart by separating process recovery from data exgovihe advantage of
microreboot is that the restart times are significantly Ioixan an entire program
restart. The microreboot mechanism has a few drawbacks:rfirsroreboot works
only for stateless components where the application sedesto be recorded in
specialized state stores; second, requests need to bedterhprithout any side
effects; finally, frequently-used resources should bedéasn other words, appli-
cations and services must be redesigned and rewritten tk witih microreboot
mechanisms.

Many general checkpoint and restart mechanisms were pedgosurvive fail-
ures in the past [24, 47, 144]. The common approach takeresetBolution is to
checkpoint the program state, rollback the program statéaiture, and then re-
execute the program after recovery. The checkpoint refeasdonsistent state that
the system can trust, and can be recorded on disk [34, 91180}, non-volatile
memory [108], or in remote memory [3, 134, 201]. Additionalpport (such as
logging) is needed to deal with messages and in-flight ojeasf20, 91, 109, 110].
The drawback of these approaches is that they are prima#ligded to work with
distributed systems, require application rewrite, or bdtbnce, these approaches
are not applicable for stand-alone user-level file systems.
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Rx, a checkpoint restart mechanism, was proposed to telagtlication fail-
ures statefully [140]. Rx has similar goals as Re-FUSE bdifferent in its im-
plementation. Rx checkpoints the process state using C@s#ebtechniques and
records the application-specific state (such as file hapddsan error, Rx restarts
the crashed application and changes the environment (sualiogated memory)
in the hope that the failure does not happen again. Thoughtd&efslly restores
the in-memory state of user-level processes, it does n@ hay mechanisms to
restore the on-disk state of processes and is left as futark. w

N-version programming is another popular approach to &bieg failures [9,
10, 15, 147]. The idea is very simple; different instanceshefsoftware are con-
currently run within the same system. The diversity in thitvgare implementation
helps to avoid the same failure in all instances. As long aetare sufficient run-
ning instances to determine the majority, the system catirm@moperating even in
the presence of failures. The advantage of this approadtaiohe need not build
any checkpoint-restart or any other heavy-weight mechasisRecovery blocks
is a variant of N-version programming where multiple vensi@f the same block
exist [86, 143]. A block is a unit of execution, and a variahaidlock would only
be executed if the original blocks encounters an error dgutsexecution. Another
related approach to N-version programming is the multiepss model, where the
same application instance in run multiple times [175]. Unfoately, N-version
systems and its variants are too expensive to be deployéxtireal world. More-
over, such systems have to pay significant performance anagst costs.

In summary, there has been a great deal of work on restarseglavel pro-
cesses on failures. Unfortunately, these solutions camndtirectly applied to user-
level file systems, as recovery mechanisms in file systemd toebe stateful and
lightweight.

7.2 Reliability Through Reservation

Eager reservation of resources helps prevent allocatiturda in systems. We now
look at the related work that deals with improving reliatyilof systems through
pre-allocation or reservation of resources. We also compad contrast the related
work with our anticipatory memory allocation approach.

A large body of related work is found in the programming laagess commu-
nity on heap usage analysis, wherein researchers haveogedestatic analyses to
determine how much heap (or stack) space a program will y&6[B5, 36, 84, 85,
180, 184]. Determination of heap space enables one to pcaédi memory, thus
avoiding memory allocation failures during later stagepraigram execution. The
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general use-case suggested for said analyses is in the dethddmain, where
memory and time resources are generally quite constraBedd Whereas many of
the analyses focus on functional or garbage-collectedulapes, and thus are not
directly applicable to our problem domain (i.e., languatied are procedural and
require explicit memory management), we do believe thatesofthe more recent
work in this space could be applicable to anticipatory mgnadiocation. In partic-
ular, Chinet al.s work on analyzing low-level code [35] and the live heaplgsia
implemented by Alberet al. [1] are promising candidates for further automating
the AMA transformation process.

The more general problem of handling memory bugs has alsoibeestigated
in great detail [8, 17, 44, 140, 146]. Berger and Zorn proddexcellent discussion
of the range of common problems, including dangling posjteouble frees, and
buffer overruns [17]. Many interesting and novel solutidres’e been proposed,
including rolling back and trying again with a small changetthie environment
(e.g, more padding) [140], using multiple randomized heaps astihg to deter-
mine correctness [17], and even returning “made up” valuesnout-of-bounds
memory is accessed [146]. The problem we tackle is both wamrand broader
at once: narrower in that one could view the poor handlingnodléocation failure
as just one class of memory bug; broader in that true recdveny such a failure
in a complex code base is quite intricate and reaches beymndcbpe of typical
solutions to these classic memory bugs.

Our approach of using static analysis to predict memoryirements is similar
in spirit to that taken by Garbervetsky et al [59]. Their aggwh helps to come up
with estimates of memory allocation within a given regionh&kkeas, AMA helps to
come up with the estimate of memory allocation for the erfifieesystem operation.
Moreover, their system does not consider the allocatiome dhy native methods or
internal allocation performed by the runtime system, anesdwot handle recursive
calls. In contrast, AMA estimates the allocations done l®ykbrnel along with
handling recursive calls inside file systems.

Finally, the AMA approach to avoiding memory-allocationldiee is reminis-
cent of the banker’s algorithm [45] and other deadlock-dantce techniques. In-
deed, with AMA, one could build a sort of “memory scheduldrat avoids memory
over-commitment by delaying some requests until othersfresve taken place.
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Chapter 8

Future Work and Conclusions

“Program testing can be used to show the presence of bugsewar
to show their absence!” — Edsger Dijkstra

A great deal of research has been done in the design and iraptation of
local file systems to improve various aspects of it. For eXdapgerformance [57,
114,117, 149], scalability [113, 170], consistency mamnaget [53, 56, 155, 182],
and indexing support [62] are a few areas that have had signtfiamount of in-
novation in the recent past. However, some of the criticpeets of file system
design and implementation have not been improved at all.attiqular, recovery
in file systems has been ignored to a large extent.

Recovery is a critical component in file systems, as it is themonent that
deals with faults within the file system or in other composéhfat the file system
interacts with. Unfortunately, the recovery component lim $lystems is not robust
due to the presence of numerous bugs. Researchers havepil/@hany tools in
the last decade that use language-based support [71, @RJasmengineering [48,
106], model checking [50, 197], static analysis [49, 19&lilf injection [13, 15, 69,
138], and symbolic execution [196] to identify bugs in the filystem code; most
of the bugs identified by these tools are in the recovery corapoof such systems.

Even though many tools can detect bugs in the file system dwedannot
guarantee that file systems are free from them [49]. Moreqgwavious works
have also shown that even when file system developers are afviire problems,
they do not know how to reproduce, react, or fix them [71, 78]13Hence, we
believe that the right approach is to accept the fact thhirks are inevitable in file
systems; we must learn to cope with failures and not just hopeoid them.

In this dissertation, we explored two different approactoesnproving the re-
liability of commodity file systems: restartability and eegation. These two ap-
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proaches help file systems to survive faults and henceydailwithin itself and in
other components that they interact with. First, we intcatlMembrane, an oper-
ating system framework to support restartable kerneltigeesystems (Chapter 4).
Then, we introduced Re-FUSE, a framework built inside therafing system and
FUSE to restart user-level file systems on crashes (ChapteFihally, we pre-
sented AMA, a mechanism that combined static analysis, ™imanalysis, and
domain knowledge, to simplify recovery code that dealt witamory allocation
failures in file systems (Chapter 6).

In this chapter, we first summarize our solutions and reg&éstion 8.1). We
then list a set of lessons learned from years of researchimgystem reliability
(Section 8.2). Finally, we outline future directions wherg work can possibly be
extended (Section 8.3).

8.1 Summary

This dissertation focused on developing recovery teclesda improve file system
reliability and is mainly divided in two parts: reliabilitthrough restartability and
reliability through reservation. We focus on local file sysis due to their ubiqui-
tous presence and the new challenges they present. We nawagira the results
in both parts.

8.1.1 Reliability Through Restartability

The first part of this dissertation is about improving fileteys reliability through
restartability. In this work, we focus on reliability of kezl-level and user-level file
systems and developed frameworks to statefully restam tiygon failures.

Kernel-level File Systems

For kernel-level file systems, we designed and implementgenaric framework
(Membrane) inside operating systems to support restéityatiembrane enabled
kernel-level file systems to tolerate a wide range of faipstaults by selectively
restarting the failed file system in a transparent and statefy. The transpar-
ent and stateful restart of kernel-level file systems allapglications to continue
executing requests in file systems even in the presencelwfdsi

Lightweight and stateful restart of kernel-level file syatewas difficult to
implement with existing techniques. To solve this problemg came up with
three novel techniques: Generic COW-based checkpoingiage stealing, and a
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skip/trust unwind protocol. Our generic COW-based cheakpwy mechanism en-
abled low-cost snapshots of file system-state that servedcasery points after
a crash with minimal support from existing file systems. Thgestealing tech-
nique greatly reduced logging overheads of write operatiavhich would other-

wise have increased the time and space overheads. Firedlgkip/trust unwind

protocol prevented file-system-induced damage to itself @her kernel compo-
nents on failures through careful unwind of in-kernel tligaia both the crashed
file system and kernel proper.

We evaluated Membrane with the ext2, VFAT, and ext3 file systeThrough
experimentation,we showed that Membrane enabled exifitingystems to crash
and recover from a wide range of fault scenarios. We also sHotlhiat Mem-
brane has less than 5% overhead across a set of file systehmtemks. Moreover,
Membrane achieved these goals with little or no intrusigsni® existing file sys-
tems: only 5 lines of code were added to make ext2, VFAT, an8 mstartable.
Finally, Membrane improved robustness with complete apfilbn transparency;
even though the underlying file system had crashed, apiglicatontinued to run.

User-level File Systems

For user-level file systems, we designed and implementedexrigégramework (Re-
FUSE) inside the operating system and FUSE to support tabitily. Re-FUSE
enabled user-level file systems to tolerate a wide rangeile$ttzp and transient
faults through statefully restart of the entire user-lefilel system on failures. Re-
FUSE also ensured that the applications were oblivious éesfistem failures and
could continue executing requests in user-level file systewen during recovery.

In Re-FUSE, we added three new techniques to statefullpntaster-level file
systems. The first was request tagging, which differerdiatetivities that were
being performed on the behalf of concurrent requests; tbersewas system-call
logging, which carefully tracked the system calls issuedahyser-level file sys-
tem and cached their results; the third was non-interrigtdystem calls, which
ensured that no user-level file-system thread was terndriatthe midst of a sys-
tem call. Together, these three techniques enabled Re-RtJ&over correctly
from a crash of a user-level file system by simply re-issuhmgdalls that the FUSE
file system was processing when the crash took place. Additiperformance
optimizations, including page versioning and socket lirfee were employed to
lower the performance overheads.

We evaluated Re-FUSE with three popular file systems, NT¢SSEHFS,
and AVFS, which differ in their data-access mechanismsdisk-structures, and
features. Less than ten lines of code were added to each s e systems to
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make them restartable, showing that the modifications redquo use Re-FUSE
are minimal. We tested these file systems with both micro-raadro-benchmarks
and found that performance overheads during normal opastre minimal. The
average performance overhead was less than 2% and the aasesiperformance
overhead was 13%. Moreover, recovery time after a crash &l som the order of
a few hundred milliseconds in our tests.

Overall, we showed that Re-FUSE successfully detects armvees from a
wide range of fail-stop and transient faults. By doing so;/RESE increases system
availability, as many faults no longer make the entire filetegn unavailable for
long periods of time. Re-FUSE thus removes one criticalibato the deployment
of future file-system technology.

8.1.2 Reliability Through Reservation

The second part of this dissertation is about improving fitgesm reliability through
reservation. The reservation was done for in-memory objétat could be allo-
cated while executing file system requests. We focused arekézvel file systems
and developed Anticipatory Memory Allocation (AMA), a mextism to eliminate

the scattered recovery code for memory-allocation fagdureside operating sys-
tems. As part of AMA, we added few lines of recovery code (ab@00) inside

a single function to deal with pre-allocation failures. fher words, we showed
that it is possible to perform shallow recovery for memolig@ation failures dur-

ing file system requests. We also added flexible, unified egopolicies (retry

forever and fail-fast) on top of it.

To identify and reserve all the in-memory objects requiedatisfy file-system
requests, we use a combination of static analysis, dynandltysis, and domain
knowledge in file systems. We also added two novel optinonaticache peeking
andpage recyclingo reduce the space overheads of AMA. Cache peeking avoids
pre-allocation of cached objects by peeking into the in-mgncache before exe-
cution and page recycling reuses one or more of the presaidcpages during a
request, and thus reduces the space overheads.

We demonstrated the benefits of AMA by applying it to the Lirext2 file
system and built a memory-failure robust version of extZechéxt2-mfr. Through
experimentation, we showed that ext2-mfr is robust to megratincation failure;
even for a memory-allocation failure probability of .99etaxt2-mfr is able to ei-
ther retry and eventually make progress or fail-quickly asidirn error depending
on the specified failure policy. In all cases, AMA ensuredt tlila system and
the operating system are consistent and usable. We alsedhtmat ext2-mfr has
less with 7% performance overheads and 8% space overhaactsniononly-used
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micro- and macro-benchmarks. Further, little code chaagequired, thus demon-
strating the ease of transforming a significant subsystem.

Overall, we showed that AMA achieves its goal of toleratingmory-allocation
failure, and thus altogether avoids of one important cléssamvery bug commonly
found in kernel code.

8.2 Lessons Learned

In this section, we present a list of general lessons we éghwhile working on
this dissertation.

e Recovery as afirst class citizenTraditionally, systems have been designed
and built with performance as the main goal. As a result, vegofeatures
are not designed carefully and are added as an after tho&ghtexample,
we have shown that, in btrfs, a newly evolving file system,natessary
recovery components needed to handle memory-allocatianndehave not
yet been built (Section 6.2). We have also observed thaherile systems,
recovery features are scattered and buried deep withiroithe. cThe complex
designs combined with the bias for performance make botimtbat and the
realization of recovery in file systems difficult to evolve.

e Hardened operating-system interfacesOperating systems consist of many
components, and these components need to interact withhoitiees to com-
plete application requests. Unfortunately, many of theseponents blindly
trust each other, and as a result, the interface betweee thgsrs is not
hard as it should be. For example, in Membrane, we showedhbatperat-
ing system does not check parameters and return values flosyfitems at
many places; this resulted in corruption of operating-eysstate.

To build robust operating systems, we need to clearly sped intent (or
semantics) of each operation, its input and output paraseiad expected
return values [88]. The operating-system proper or its coments should use
such information to check and validate the parameter dutsgnteraction
with other components to prevent bugs from silently colingpits state.

¢ Interfaces to support fault injection. For easier reliability testing, systems
should provide suitable interfaces that enable a variefawf-injection sce-
narios. For our reliability experiments, such interfacesuld have helped
greatly. In our experience, to perform our fault-injectierperiments, we
had to change a considerable amount of operating system lansly$item
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code. More specifically, we had to modify different file systeomponents
(such as namespace management), virtual file system lagenony man-
agement layer, block driver layer, and the journaling layereturn failures
during our fault injection experiments.

8.3 Future Work

In terms of future work, our vision is to build highly-relilband highly-available
systems. This section outlines various directions foriggn.

8.3.1 Reliability through Automation

Reliability research in the last decade has shown time aauhdigat recovery code
in systems is insufficient, missing, or incorrect [37,49, 88 138, 151,171, 195—
197]. From our own experience in building recovery techegjin the operating
system, we believe that the right approach to improving ey system reliability
is to automate the recovery process to the largest possil#ate The automation
would help eliminate the need for manual implementatioreobrwery code in oper-
ating systems. More importantly, automation could be irdelent of components
(such as file systems, device drivers, etc.) and resourcef @s memory, 1/O,
etc.).

Previous research that had similar goals built transaatisopport inside op-
erating systems [75, 124, 135, 136]. In these solutions tramesactional support
tracks the changes performed during request executionnagrrar, the transac-
tional mechanism automatically reverts all recent changé®re are a few draw-
backs of these approaches that make them less attractivarimodity systems.
First, these system are heavyweight. Second, they styllarl programmers to
correctly invoke and implement all of the transactional exod hird, they do not
handle all possible errors; for example, memory-allocafiailures or /O errors
during transactions are not handled in TxOS [136]. Finaligy require wide-scale
changes to the operating-system code.

Unlike previous approaches, we would like to explore thespmlity of build-
ing transactional support outside the operating systeraciggally, we would like
to explore the possibility of leveraging the support aJa#ain hardware transac-
tional memory to automate the recovery process in operaysgems [118]. Our
vision of hardware-assisted recovery is as follows. Fidsiting regular opera-
tions, the hardware could automatically log the change® dorthe context of a
request [81, 118, 142]; to prevent corruption, the hardweardd restrict the operat-
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ing system from accessing the memory locations of the logsoid, for atomicity

and isolation, the hardware could eagerly detect and resaiwflicts on updates
to shared operating system data structures [118]. Thirgroarror, the hardware
would automatically revert the actions of the request udimépg and either retry
the request or directly return an error back to the applicetvith little support from

the operating system [150]. Finally, to optimize the reecguane overheads, we
would like to explore the possibility of adding support famplicit (at the function

boundary) and explicit checkpoints (requested by the dipgraystem).

There are many advantages of automating recovery usingdwhes-based
mechanism. First, a large portion of the recovery code ngdomeeds to be imple-
mented by operating system developers and would be autdriratbe hardware
layer. Second, the recovery process is transparent to fleatons and the oper-
ating system. Third, it is possible to get near-native penmce, as fault anticipa-
tion and recovery can be performed at the hardware layertlratis easy for the
operating system to implement flexible recovery policiesama hardware layer.
Finally, detection of errors at the operating-system lealld be an optimization
and not an requirement for many error scenarios (e.g., mititer exception).

8.3.2 Other Data Management Systems

While we limit the focus of this dissertation to local file sss, several of the
issues we discuss here such as fault-tolerance and recareegpplicable to other
data management systems such as distributed file systendatatthse manage-
ment systems. The solutions developed in this dissertatoutd be applied to
other systems to improve their reliability. First, the gkipst unwind protocol
could help recover and cleanup systems that have intricégegaictions between
components (or layers). Second, non-interruptible systalis could be used in
multi-threaded systems that require stronger atomicigrguatees. Third, the static
analysis technique and runtime support developed in AMAdbe used to esti-
mate and pre-allocate memory in systems (such as datalihaegerform many
dynamic memory allocations.

8.4 Closing Words

“Simplicity is prerequisite for reliability.”
— Edsger Dijkstra

Availability is important in all systems and data availétiilis of utmost im-
portance. File systems will become more powerful and coriple¢he future, and
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reliability of file systems will directly determine data aeadility. In this disserta-
tion, we have adhered to three important principles thaidtus face the colossal
challenge of building practical recovery techniques toriove file system reliabil-
ity.

First, simplicity should be the pursuit in achieving reliable gysts Recovery
code in operating systems is complex, difficult to get rigintd is in the order of
thousands of lines of code written in a low-level languagehsas C. To make
things worse, the recovery code is scattered all over theatipg system and file
system, making it hard to reason or verify either manuallyging sophisticated
techniques such as static analysis. As Dijkstra said (guabt®ve), we aimed at
designing simple recovery mechanisms such that they ayg@asason about and
verify.

Secondreliability need not come at the cost of performanE#ée systems have
been tuned for high performance and scalability [23, 82], Ténce, heavyweight
reliability techniques are not likely to be adopted by thémall our solutions, we
made a conscious effort to minimize the performance ovelhidaough our design
and added optimizations, when possible, to reduce the eadefurther.

Third, favor generality over particularity There are a gamut of user-level and
kernel-level file systems that exist today. Solutions thattailored to a particular
system tend to be limited in their applicability and requiviele scale design and
code changes; hence, are not widely adopted in commoditgrags In all our
solutions, we favor generality and backward compatihiiitythe hope that devel-
opers will adopt our recovery techniques to improve theatglity of commodity
operating systems and file systems.
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