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Abstract

RECOVERY TECHNIQUES TO IMPROVE FILE SYSTEM RELIABILITY
Swaminathan Sundararaman

We implement selective restart and resource reservation for commodity file systems
to improve their reliability. Selective restart allows filesystems to quickly recover
from failures; resource reservation enables file systems toavoid certain failures
altogether. Together they enable a new class of more robust and reliable file systems
to be realized.

In the first part of this dissertation (on selective restart), we develop Membrane,
a generic framework built inside the operating system to selectively restart kernel-
level file systems. Membrane allows an operating system to tolerate a broad class
of file system failures and does so while remaining transparent to running applica-
tions; upon failure, the file system restarts, its state is restored, and pending applica-
tion requests are serviced as if no failure had occurred. We also develop Re-FUSE,
a generic framework designed to restart user-level file systems upon failures. Re-
FUSE monitors the user-level file-system and on a crash restarts the file system and
restores its state; the restart process is completely transparent to applications. We
evaluate both Membrane and Re-FUSE, and show, through experimentation, that
both of these frameworks induce little performance and space overhead and can
tolerate a wide range of crashes with minimal code change.

In the second part of the dissertation (on resource reservation), we develop An-
ticipatory Memory Allocation (AMA), a technique that uses static analysis to sim-
plify recovery code dealing with memory-allocation failures. AMA determines the
memory requirements of a particular call into a file system, and then pre-allocates
said amount immediately upon entry; subsequent allocationrequests are serviced
from the pre-allocated pool and thus guaranteed never to fail. We evaluate AMA
by transforming Linux ext2 file system into a memory-failurerobust version of it-
self (called ext2-mfr). Experiments reveal that ext2-mfr avoids memory-allocation
failures successfully while incurring little space and time overheads.
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Chapter 1

Introduction

“It’s not the prevention of bugs but the recovery, the ability to grace-
fully exterminate them, that counts.”– Victoria Livschitz

With the advent of low-cost disk drives, storage capacitiesand disk utilization
have grown at rapid rates [58]. It is now possible for users tostore terabytes of data
on a modern disk drive. As the amount of data increases, access to data is even
more critical, with data unavailability costing users mental anguish and companies
millions of dollars per hour [38, 97, 131].

File systems are the commonly used software for managing data on disk. Mod-
ern file systems are large code bases with tens of thousands oflines of code and they
support many features, protocols, and operations [23, 191]. Further, file systems are
still under active development, and new ones are introducedquite frequently. For
example, Linux has many established file systems, includingext2 [32], ext3 [183],
reiserfs [145], and still there is great interest in next-generation file systems such as
Linux ext4 [113], btrfs [191], and ZFS [23]. Thus, file systems are large, complex,
and under development – the perfect storm for numerous bugs to arise.

A great deal of recent activity in systems research has focused on new tech-
niques for finding bugs in file systems [37, 49, 50, 74, 195]. Researchers have built
tools that use static analysis [49, 74], model checking [107, 197], symbolic execu-
tion [29, 196], machine learning [106], and other testing-based techniques [11, 14,
138], all of which have uncovered hundreds of bugs in commonly-used file systems.

The majority of the software defects are found inrecovery code; i.e., code that
is run in reaction to a failure. Although these failures, whether from hardware
(e.g., a disk) or software (e.g., a memory allocation), tendto occur infrequently
in practice, the correctness of recovery code is nevertheless critical. For example,
Yang et al. found a large number of bugs in file-system recovery code; when such
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bugs were triggered, the results were often catastrophic, resulting in data corruption
or unmountable file systems [197]. Recovery code has the worst possible property:
it is rarely run, but must work absolutely correctly.

It is challenging to implement robust recovery code for the following reasons.
First, current file systems have poor failure models and policies [69]. The recovery
code is distributed across the file system and the success of recovery depends on
the correctness of recovery code in each involved function.Unfortunately, not all
functions in file systems and the kernel handle and propagateerrors correctly [71,
138]. Even if file system developers are aware of the specific problem, it is hard
for them to implement the correct recovery strategy due to inherently complex file
system designs [69].

Second, manual implementation of recovery code combined with the large
number of error scenarios inhibits scalability of recoverycode. For example, there
are around 100 different error cases that can arise in the Linux operating system and
currently, there is no single way of handling errors in a file system. A developer has
to manually write recovery code for every function in the filesystem that correctly
handles the error code and propagates the error back to the caller. In many cases,
the developer needs to implement different recovery strategies for different types
of errors [138]. Given the number of errors that one must handle in the file system,
it is easy to miss an error scenario or implement an incorrectrecovery strategy.

The implications of poor recovery code depend on the nature of the fault and
the state of the file system. In worst case scenarios, failures can lead to file system
crashes. There are two primary reasons that such file system crashes are harmful.
First, when a file system crashes, manual intervention is often required to repair
any damage and restart the file system; thus, crashed file systems stay down for
noticeable stretches of time and decrease availability dramatically, requiring costly
human time to repair. Second, crashes give users the sense that a file system “does
not work” and thus decrease the chances for adoption of new file systems.

The fact that file systems do not have robust recovery codes, combined with
the existence of bugs in file system code, leaves us with a significant challenge:
How can we promise users that file systems work robustly in spite of their massive
software complexity and all the complex failures that can arise? We propose that
the right approach is to accept the fact that failures are inevitable in file systems;
we must learn to cope with failures rather than hoping to avoid them. To respond
to this challenging question in a manner that accepts inevitable failures, we build
new recovery techniques on top of the increasingly complex and less reliable file
systems.

The goals of this thesis are two-fold: first, to develop techniques to improve
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availability of file systems in the event of failures; second, to develop techniques to
minimize the complexity of recovery code in file systems.

We address the goals of this thesis as follows. To improve availability, we
restart file systems on failures, and to simplify recovery code, we employ resource
reservation. First, we develop Membrane, an operating system framework that
restarts kernel-level file systems on failures [165, 166, 169], and Re-FUSE, a frame-
work built inside the operating system and FUSE to restart user-level file systems
on crashes [167]. Second, we develop Anticipatory Memory Allocator (AMA), a
technique that combines static analysis, dynamic analysis, and file-system domain
knowledge to simplify and minimize the recovery code neededto handle memory
allocation failures in operating systems [168]. The following sections elaborate on
each of these contributions of the thesis.

1.1 Reliability Through Restartability

Data availability can be improved by restarting file systemsafter failure. Though
recent research work has developed techniques to tolerate mistakes in the other
components with which file systems interact, these techniques still cannot tolerate
failures inside the file system code [15, 69, 138]. Failures in file systems can be
avoided through prevention techniques (such as detection and removal) or tolerated
through restart mechanisms. Unfortunately, the prevention techniques that exist
today do not uncover all possible bugs in file system code [49,128]. Hence, a
practical solution would be to selectively restart file systems on failures.

In the past, many restart mechanisms have been proposed for restarting both
kernel-level and user-level components upon failure. Mostof these techniques
work only for stateless components such as device drivers orapplications that do
not have to maintain a persistent state on a disk [52, 79, 80, 104, 171, 172, 200];
hence, these techniques are not applicable for file systems.Other restart techniques
that can handle persistent storage are heavyweight and require wide scale code
changes in the operating system, file system, or both [31, 42,103, 156]; the over-
heads and code changes make such techniques less attractivefor commodity file
systems.

In the first part of the dissertation, we explore the possibility of selective restart
of kernel-level and user-level file systems on failures. File systems deployed in-
side the operating system are known as kernel-level file systems and file systems
deployed outside the operating system (i.e., user space) are known as user-level
file systems. As mentioned earlier, the selective restarting of file systems tolerates
bugs in the file system code and hence improves data availability in systems. Also,
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instead of providing a customized solution for individual file systems, we explore
the possibility of providing a generic framework that can beleveraged by different
commodity file systems.

Kernel-level file systems

To tolerate kernel-level file-system failures, we developMembrane, an operat-
ing system framework to support lightweight, stateful recovery from file system
crashes [165]. During normal operation, Membrane logs file system operations,
tracks file system objects, and periodically performs lightweight checkpoints of
file system state. If a file system crash occurs, Membrane parks pending requests,
cleans up existing state, restarts the file system from the most recent checkpoint,
and replays the in-memory operation log to restore the stateof the file system. Once
finished with recovery, Membrane allows the file system to resume service to ap-
plication requests; applications are unaware of the crash and recover except for a
small performance blip during restart.

Membrane achieves its performance and robustness through three novel mech-
anisms. First, ageneric checkpointing mechanismenables low-cost snapshots of
file system state that serve as recovery points after a crash with minimal support
from existing file systems. Second, apage stealingtechnique greatly reduces the
logging overheads of write operations, which would otherwise increase time and
space overheads. Finally, an intricateskip/trust unwind protocolis applied to care-
fully unwind in-kernel threads through both the crashed filesystem and kernel
proper. This unwind protocol restores kernel state while preventing further file-
system-induced damage from taking place.

Membrane does not add new fault detection mechanisms; instead, it leverages
the existing fault-detection mechanisms in file systems. File systems already con-
tain many explicit error checks throughout their code. Whentriggered, these checks
crash the operating system (e.g., by calling panic) after which the file system either
becomes unusable or unmodifiable. Membrane leverages theseexplicit error checks
and invokes recovery instead of crashing the file system. We believe that this ap-
proach will have the propaedeutic side-effect of encouraging file system developers
to add a higher degree of integrity checking in order to fail quickly rather than run
the risk of further corrupting the system. If such faults aretransient (as many impor-
tant classes of bugs are [111]), crashing and quickly restarting is a sensible manner
in which to respond to them.

As performance is critical for file systems, Membrane only provides a light-
weight fault detection mechanism and does not place an address-space boundary
between the file system and the rest of the kernel. Hence, it ispossible that some



5

types of crashes (e.g., wild writes [33]) will corrupt kernel data structures and
thus prohibit complete recovery, an inherent weakness of Membrane’s architec-
ture. Users willing to trade performance for reliability could use Membrane on top
of stronger protection mechanism such as Nooks [171].

We demonstrate the benefits of Membrane by evaluating it on three different file
systems: ext2, VFAT, and ext3. Through experimentation we show that Membrane
enables file systems to recover through a wide range of fault scenarios. We also
show that Membrane incurs less than 5% performance overheadfor commonly
used benchmarks; furthermore only 5 lines of code needed to be changed to enable
existing file systems to work with Membrane.

User-level file systems

User-level file systems are an alternative to kernel-level file systems and are com-
monly run using a platform like File systems in USEr space (FUSE) [141]. The
FUSE simplifies the development and deployment of user-level file system as file
systems run outside the operating system in a separate address space. In the last
five years, around 200 different user-level file systems havebeen implemented us-
ing FUSE [192].

Faults in user-level file systems still impact their availability. Though faults in
user-level file systems do not impact the correctness or availability of the operating
system, applications that depend on the file system are stillaffected and, in almost
all cases, such applications are prematurely terminated.

To understand how user-level file systems work in the real world, we first look
at six representative user-level file systems: NTFS-3g, ext2fuse, SSHFS, AVFS,
HTTPFS, and TagFS. Using these six file systems, we create a reference model for
user-level file systems. From the reference model, we derivethe common properties
of this type of file system; we also find that by excluding the in-memory file system
state, the rest of the state (including on-disk data) is preserved during a user-level
file system crash.

We leverage the reference model to developRe-FUSE, a framework built inside
the operating system and FUSE that restarts user-level file systems on crashes [167].
During normal operations, Re-FUSE tracks the progress of in-flight file-system op-
erations and caches the results of the system calls executedby the user-level file
systems. On a file-system failure, Re-FUSE automatically restarts the file system
and continues executing requests from their last executionpoint using the informa-
tion recorded during normal operations. Similar to Membrane, the application that
is using the user-level file system will not notice file-system failure, except perhaps
for a small drop in performance during the restart.
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Re-FUSE implements three basic techniques to enable lightweight restart of
user-level file systems. The first isrequest tagging, which differentiates activities
being performed on the behest of concurrent requests; the second issystem-call log-
ging, which carefully tracks the system calls executed by a user-level file system
and caches their results; the third isnon-interruptible system calls, which ensure
atomicity of system-call execution by user-level file system threads. We also add
page versioningand socket bufferingoptimizations to further reduce the perfor-
mance overheads.

We evaluate Re-FUSE with three popular file systems: NTFS-3g, SSHFS, and
AVFS. Through evaluation, we show that Re-FUSE can statefully restart the user-
level file system, while hiding crashes from applications. We test the file systems
with commonly used workloads and show that the space and performance over-
heads associated with running user-level file systems on Re-FUSE are minimal.
Moreover, less than ten lines of code changes were required in each of the three file
systems in order for them to work with Re-FUSE.

1.2 Reliability Through Reservation

Reservation is a popular technique that is used in many systems. In computer sys-
tems, reservation can be done for resources such as processors [93], memory [186],
and network bandwidth [139]. The reservation of resources helps in improving
fairness, quality of service, and reliability. In the context of reliability, the reserva-
tion of resources helps to simplify the recovery code, as allof the needed resources
can be acquired at the beginning of an operation. In other words, through resource
reservation, a system ensures that a resource-allocation failure can only happen
during the reservation phase, which can be handled easily.

File systems extensively use heap-allocated memory to store in-memory copies
of on-disk user data, on-disk metadata, as well as for other temporary objects. Un-
fortunately, the memory-allocation calls in operating systems can fail; commodity
operating systems do not provide guarantees for the successof memory allocation
calls. As a result, components (such as file systems) that usememory allocation
routines are forced to handle memory-allocation failures at each calling site.

First, to understand the robustness of memory-allocation failure-handling code,
we perform fault injection during memory allocation calls in commodity file sys-
tems. We test seven different Linux file systems: btrfs, ext2, ext3, ext4, jfs, reis-
erfs, and xfs. Interestingly, we found that all seven file systems are not robust
to memory-allocation failure. In many cases, the memory-allocation failure re-
sulted in an unusable or inconsistent file system. Moreover,the processes exe-
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cuting file system requests are killed due to the inability offile systems to handle
allocation failures correctly. These results are in alignment with previous work
that has also shown that memory allocation failures are not handled properly in
file systems and can lead to catastrophic results (such as data loss or data corrup-
tion) [50, 71, 120, 197].

Given that memory allocation failures are poorly handled incommodity file
systems, we develop a technique calledAnticipatory Memory Allocation (AMA)to
simplify recovery code that is responsible for handling memory-allocation failures.
The idea is simple: we move all the memory allocation calls toa single function that
allocates all memory at the beginning of a request. If the pre-allocation succeeds,
AMA guarantees that no file-system allocation fails downstream, as all subsequent
memory allocation are serviced using the pre-allocated pool. Of course, allocation
requests can fail during the pre-allocation phase, but unlike existing systems, we
only need to perform shallow recovery wherein no state modification are done to
the existing systems.

Pre-allocation of memory is challenging in commodity operating systems. File-
system requests pass through different layers of the operating system; one example
of this is through the virtual file system. In each layer, manyfunctions can be
invoked and any of these functions have the ability to potentially call a memory al-
location routine. Moreover, commodity operating systems such as Linux allocates
memory in a variety of ways (e.g.,kmalloc, kmemcachealloc, andalloc pages).
Hence, to pre-allocate all objects, one needs to identify the potential allocation
sites, object types, object sizes, and the total number of objects. Making this pro-
cess somewhat more difficult is the fact that the sizes and parameters passed to the
memory-allocation calls also depend on the on-disk state ofthe file system, the
input parameters to the system call, and the cached state in the operating system.

To determine a conservative estimate of total memory allocation demand, AMA
combines static analysis, dynamic analysis, and file-system domain knowledge.
Using AMA, a developer can augment the file system code to pre-allocate all the
memory at the entry of a system call. At run time, AMA transparently returns
memory from the pre-allocated chunk for all memory-allocation calls. Thus, when
a memory allocation takes place deep in the heart of the kernel subsystem, it is
guaranteed never to fail.

With AMA, kernel code is written naturally, with memory allocations inserted
wherever the developer requires them; however, with AMA, the developer need not
be concerned with downstream memory-allocation failures and the scattered (and
often buggy) recovery code that would otherwise be required. Furthermore, by
allocating memory in one large chunk upon entry, failure of the anticipatory pre-
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allocation is straightforward to handle. We also implementtwo uniform failure-
handling polices (retry forever and fail fast) with little effort.

To show the practicality of AMA, we apply it to the ext2 file system in Linux.
We transform ext2 to ext2-mfr, a memory-failure robust version of the ext2 file
system. Through experimentation, we show that ext2-mfr is robust to memory al-
location failure; even for an allocation-failure probability of .99, ext2-mfr is able to
retry and eventually make progress, thus hiding failures from application processes.
Moreover, we show that for many commonly-used benchmarks the performance
and space overheads of running ext2-mfr are less than 7% and 8%, respectively.

1.3 Contributions

The contributions of this thesis are as follows:

• We implement Membrane, a framework inside operating systems to restart
kernel-level file systems on failures. To the best of our knowledge, this is the
first work that shows stateful restarts of file systems are possible in commod-
ity operating systems.

• We show that is possible to checkpoint the state of kernel-level file systems in
a generic way that requires minimal changes to the file systemcode. In con-
trast, existing solutions such as journaling or snapshotting require extensive
file-system code changes and need to be implemented on a per-file-system
basis.

• We develop a new protocol (skip/trust unwind) to selectively avoid recovery
code in kernel-level file systems on failures. This protocolalso helps clean
up any residual state in the kernel and restores the kernel back to a consistent
state. Though the protocol was developed in the context of file systems, it is
applicable to other operating-system components and user-level programs.

• We develop Re-FUSE, a framework inside the operating systemand FUSE
to statefully restart user-level file systems on failures. This framework is
generic, lightweight, and is independent of the underlyinguser-level file sys-
tems. To the best of our knowledge, no other solutions exist to restart user-
level file systems on failures.

• We describe a reference model for user-level file systems. Our reference
model helps guide the development of new file systems and modifications to
existing file systems to work with Re-FUSE.
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• We develop AMA to show that it is possible to have shallow recovery for
memory-allocation failures during file system requests in commodity operat-
ing systems. We also show that it is possible to combine static analysis, dy-
namic analysis, and domain knowledge to estimate the heap-allocated mem-
ory required to satisfy requests in commodity operating systems.

1.4 Outline

The rest of this thesis is organized as follows.

• Background: Chapter 2 provides background on different aspects of file sys-
tems: components, request handling, on-disk state, consistency mechanisms,
and deployment types.

• Reliability through Restartability: To help understand the design choices
of our restartable systems, we first provide a taxonomy on fault models, de-
scribe the restart process in file systems, and components ofa restartable
framework in Chapter 3. We then begin presenting the first contribution of
this thesis, where we describe the design and implementation of Membrane
in Chapter 4; Membrane is a generic framework built inside the operating
system to restart kernel-level file systems on failures. Then, in Chapter 5, we
describe the design and implementation of Re-FUSE, a generic framework
built inside the operating system and FUSE to restart user-level file systems
on crashes.

• Reliability through Reservation: Chapter 6 presents the second major con-
tribution of this thesis, where we explore reservation as a mechanism to im-
prove file system reliability. In this chapter, we present the design and imple-
mentation of AMA, a solution that combines static analysis,dynamic analy-
sis, and domain knowledge to estimate and hence, preallocate the amount of
memory required to satisfy file system requests.

• Related Work: Chapter 7 summarizes research efforts related to building
restartable systems and systems that use reservation as a mechanism to im-
prove their reliability.

• Conclusions and Future Work: Chapter 8 concludes the thesis, first sum-
marizing our work and highlighting the lessons learned, andthen discussing
various avenues for future work that arise from our research.
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Chapter 2

File Systems

“There are two ways to write error-free programs; only the third works.”
– Alan J. Perlis

This chapter provides a background on the various aspects offile systems that
are integral to this dissertation. It begins with an overview of the role of file systems
in managing user data on a disk, in Section 2.1. Next, Section2.2 presents the com-
mon file-system components and their inter-component interactions. Section 2.3
describes how application requests are processed in file systems. In Section 2.4,
important objects that constitute the on-disk state of file systems and the need for
on-disk consistency are described, and Section 2.5 provides an overview of exist-
ing consistency mechanisms in file systems. Finally, Section 2.6 presents user-level
and kernel-level file systems – the two common ways of deploying commodity file
systems.

2.1 Overview

It is difficult for users to directly manage data on a disk. Users are accustomed to
the notion of files and directories. Unfortunately, commodity disk systems do not
come with interfaces that can deal with files and directories. Rather, commodity
disks have a simplified block-based interface, where a disk presents stored data as
a sequence of fixed-sized blocks containing bytes of information [55]. The disk
interface typically supports read and write operations; the arguments to these op-
erations are a block number and a buffer, and the result is data transfer from the
buffer to the disk location or vice versa.

File systems are software modules that help users to organize their data on one
or more disks. File systems allow users to access data in the granularity of files

11
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and directories and internally translate user requests to reads and writes of disk
blocks. File systems internally maintain some metadata to map files to a list of
block locations on a disk. Figure 2.1 shows an example of how afile denoted by
the nameDocument Acould be stored on a disk by a file system. In addition to
the mapping information, file systems also maintain additional information about
directory contents, free blocks, and other relevant bookkeeping information.

The fundamental unit of data storage in file systems is a file. Afile can be a
regular file or a directory. A regular file contains user data and is represented by a
name assigned by the user along with a unique identifier that is internally generated
by the file system. The unique identifiers help to locate files efficiently on a disk.
A directory is a special file whose contents could be file or directory names along
with their unique identifiers. Directories help in groupingrelated entities inside a
file system for easier access.

For efficient data organization, files are typically maintained in a hierarchical
structure within a file system. At the topmost level, there isthe main directory,
popularly known as theroot directory. The purpose of the root directory is to serve
as an origin from which the file system grows. Figure 2.2 showsan example of a
file-system hierarchy. From the figure, we can see that all files and directories can
be reached from the root directory.

File systems need to support a variety of operations in orderto enable users
to effectively access their data on a disk. The operations that file systems need to
support are well-defined by the operating system and library(such as FUSE) de-
velopers for kernel-level and user-level file systems, respectively. These operations
are required to manipulate file system contents by users and applications. Table 2.1
shows some of the common operations that are supported by filesystems.

A file system caches frequently accessed data in the memory and periodically
synchronizes file system updates to the disk to improve performance. Disks are
a few orders magnitude slower than memory and have significantly longer access
times. Because of this, frequent access to the disk significantly slows down the per-
formance of file systems. To improve performance, file systems (or operating sys-
tems) typically maintain a cache of frequently accessed data; when data is read or
written to a disk, it is first cached in memory by the file system, so that subsequent
requests can be serviced from the memory instead of going to the disk. Moreover,
the caching of frequent updates and lazy writes of dirty datais beneficial because
file accesses typically represent both spatial and temporallocality [16, 127, 148].

File systems are initialized and removed using mount and unmount operations,
respectively. The mount operation initializes and loads the file system state after
reading the disk contents. The unmount operation is used to safely persist recent
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Figure 2.1: Mapping Files to Disk Blocks. This figure shows a user file being
internally mapped by a file system and stored in different locations on disk. The
user file shown here is Document A which contains three blocksof data (i.e., ABC,
DEF, and XYZ). These three blocks of data are internally mapped by the file system
to three different disk locations: 100, 200, and 150. Each disk block contains data
and is identified by a unique block number.
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Figure 2.2: File System Hierarchy Example. The figure shows an example of
a simple file-system hierarchy. At the topmost level, we havethe root directory.
Underneath the root directory, we have usr, home, and lib directories. Further
down, the lib directory has both directories (gview and glibc) and files (list.log and
Readme) in it.

Operation Functionality Arguments Return Value
open opens a file path to a file fh
close closes a file fh status
read Reads data from a file fh, offset, bytes data
write Writes data to a file fh, offset, buffer, bytes status
mkdir create a directory dir path status
rmdir deletes a directory dir path status
readdir return directory contents dir path entries
fsync flush dirty data of a file fh status
sync flush dirty data to disk none none

Table 2.1: Common File-system Operations.The tables shows a few common
operations supported by file systems. The argument column denotes the parameters
that must be passed with the file system operation. Various symbols have been used
to condense the presentation: fh - file handle, entries - directory entries, and dir
path - path to a directory.
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changes to the disk and to clean up the in-memory file system state. More specifi-
cally, on unmount, file systems write back all dirty data thathas not yet been written
to the disk, free any cached data (or objects) in other operating-system components,
and destroy any in-memory objects allocated by file systems.

2.2 File System Components

File systems can contain a variety of components depending on the features and
guarantees they provide. In general, the majority of file systems contain the fol-
lowing four components: namespace management, data management, consistency
management, and recovery. Figure 2.3 shows these file systemcomponents along
with their inter-component interactions.

The namespace-management component handles all file systemrequests and is
responsible for mapping user-visible filenames to unique identifiers that are internal
to the file system. As mentioned earlier, other file system andoperating system
components do not understand filenames and require the unique identifiers in order
to process requests. The common operation that this component handles is path
traversal. In path traversal, a user sends in a list of directory names that need to be
looked up in the file system hierarchy. Upon a path traversal request, the namespace
component checks the permission and validity of each entry in the directory name
list and returns the file handle to the caller if the request succeeds.

The data management component is responsible for managing storage space on
disks. The responsibilities of the data management component include locating and
reclaiming disk blocks used by the file system (i.e., freespace management), man-
aging file-system metadata and data locations, and persistent storage of file-system
metadata on the disk (see Section 2.4 for details). This component is essential in
file systems, as disk systems are very simple and do not provide any support for
high-level functionality such as freespace management [157].

The consistency management component is responsible for recording stable file
system states to the disk. These stable states are used during the mount operation
of file systems. To create such stable states, this componentperiodically groups
file-system updates and atomically writes the updates to thedisk (see Section 2.5
for details).

The recovery component is responsible for cleaning up file system states on
errors. An error arises for various reasons: a file system mistake or a bug [49, 195,
197], data corruption [12, 13, 154], or unexpected behaviorfrom the components
with which file systems interact [153, 173, 196]. Ideally, file systems should be
able to handle or tolerate such errors and continue servicing requests. Hence, this
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Figure 2.3: Components of a File System. The figure shows the common
components of a file system and its inter-component interactions. The common
components are namespace management, data management, consistency man-
agement, and recovery. The namespace-management component interacts with
the data-management component to retrieve directory contents. The consistency-
management component interacts with both namespace- and data-management
components to record file-system state on disk. The recoverycomponent is spread
across all file-system components.

component is critical for ensuring file system availabilityeven in the presence of
errors. To the best of our knowledge, this component is neverimplemented as
a stand-alone component, and is always tightly integrated with other file-system
components [138].

2.3 Handling Application Requests

Applications interact with file systems through requests. As mentioned earlier, file
systems support a variety of requests and these requests provide different function-
ality and guarantees depending on the type and parameters passed to it.
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File system requests go through multiple layers in the storage stack when they
are executed. Figure 2.4 shows how requests are executed in akernel-level file sys-
tem. From the figure, we can see that requests enter the operating system through
the system call (or syscall) layer, which checks the validity of requests and then
forwards requests to a virtual file system or an equivalent layer [100]. The virtual
file system layer acts as a switch and forwards the request to the corresponding file
system. The file system then processes these requests by accessing its in-memory
contents, on-disk contents, or both. File systems might also have to interact with
other components in order to reserve resources (such as memory) or use their ser-
vices to complete its requests.

File system requests can be executed in either synchronous or asynchronous
mode. In synchronous mode, modifications to user and file-system data are im-
mediately written to the disk. In asynchronous mode, modifications to user and
file system data are first cached in memory; a worker thread (ordaemon) periodi-
cally writes the modifications to the disk in the background.By default, file system
requests are executed in asynchronous mode, which helps improve file system per-
formance [89, 125].

2.4 On-Disk State
The on-disk state of file systems consists of both file system metadata and user data.
File system metadata consists of data structures such as inodes, bitmaps, extents,
superblocks, etc. These metadata objects help locate and maintain user data and
system metadata efficiently on disks. To improve their performance, file systems
create in-memory copies of their on-disk objects and cache them in memory.

The correctness of the on-disk state is critical to the proper operation of the file
system. As mentioned earlier, on-disk data is used to bootstrap the file system to its
initial state on a mount operation, and all further actions on the file system depend
on this initial state. As a result, file systems constantly write back their in-memory
changes to disk and also use additional mechanisms (such as checksums) to ensure
the correctness of file system objects on disk [23, 198].

The on-disk format of file system objects differs from one filesystem to the
next. Despite these differences, the functionality and useof such objects remain
the same across file systems. To give an overview of the on-disk objects of file
systems, we will briefly discuss the on-disk state of the ext2/3 file system.

Figure 2.5 shows the ext2/3 on-disk layout. In this on-disk organization (based
loosely on FFS [114]), the disk space is split into a number ofblock groups; within
each block group are bitmaps, an inode table, and data blocks. Each block group
also contains a redundant copy of crucial file-system control information such as
the superblock and the group descriptors.
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Figure 2.5:Ext2/3 Ondisk Layout. The figure shows the layout of an ext2/3 file
system. The disk address space is broken down into a series ofblock groups (similar
to FFS cylinder groups), each of which is described by a groupdescriptor and has
bitmaps to track allocations and regions for inodes and datablocks. The lower
figure shows the organization of an inode. An ext2/3 inode hassome attributes and
twelve direct pointers to data blocks. If the file is large, indirect pointers are used.
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The super block is the most important block and is used to bootstrap the ext2/3
file system. The superblock contains important layout information such as inodes
count, blocks count, and how the block groups are laid out. Without the informa-
tion in the superblock, the file system cannot be mounted properly and would be
unusable.

Group descriptor blocks maintain the summary for the block group they rep-
resent. Each one contains information about the location ofthe inode table, block
bitmap, and inode bitmap for the corresponding group. In addition, each group
descriptor also keeps track of allocation information suchas the number of free
blocks, free inodes, and used directories in the group.

Inodes contain necessary information to locate file and directory data on disk.
An inode table consists of an array of inodes, and it can span multiple blocks. An
inode can represent a user file, a directory, or other specialfiles (e.g., symbolic
link). An inode primarily stores file attributes (e.g., size, access control list) and
pointers to its data blocks. An ext2/3 inode has 12 direct pointers to its data blocks.
If more blocks are required (to hold a larger file), the inode will use its indirect
pointer that points to an indirect block which contains pointers to data blocks. If
the indirect block is not enough, the inode will use a double indirect block which
contains pointers to indirect blocks. At most, an ext2/3 inode can use a triple indi-
rect block which contains pointers to double indirect blocks.

A data block can contain user data or directory entries. If aninode represents
a user file, its data blocks contain user data. If an inode represents a directory, its
data blocks contain directory entries. Directory entries are managed as linked lists
of variable length entries. Each directory entry contains the inode number, the entry
length, the file name and its length.

2.5 Consistency

A file system is said to be in a consistent state if the following conditions are met.
First, all of its metadata must correctly point to their respective metadata and data
blocks; for example, in the ext2/3 file system, an inode blockshould correctly point
to the indirect and direct blocks that belong to that particular file. Second, the inter-
nal set of tables and bitmaps (i.e., file-system-specific metadata) that are used for
various pieces of bookkeeping information should match thecount or locations of
the allocated on-disk objects. For example, in the ext2/3 file system, the summary
information in the group descriptor should match the actualutilization and loca-
tions of the objects within that group. At a high level, a consistent file-system state
ensures that the semantics of the file-system state is respected, which also includes
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proper security and privacy attributes on users’ data.
The file system state can become inconsistent due to a varietyof reasons. For

example, power failures can result in only partially updated file-system state on a
disk [115], and incorrect behavior can in wrong updates [138]. Another reason can
be hardware failures that lead to file-system updates being lost [61, 173]. Finally,
bugs in file and operating-system code can also result in an inconsistent state [49].

A consistent on-disk state is critical for the correct operation of a file system.
File systems are stateful; they use their on-disk state to bootstrap the file system
during the mount operation and depend on this boot-strappedstate to perform sub-
sequent operations. If the on-disk state is inconsistent, the file system will always
remain inconsistent, as the same state is observed across reboots. In extreme cases,
file systems can perform incorrect operations, which have the potential to lead to
catastrophic results (e.g., data loss, data corruption, unusable file systems, or unre-
coverable file systems) [15, 70, 196, 197].

The file system state can be fixed using a consistency checker (such as fsck) [19,
76, 99, 115]. Consistency checkers are offline tools or programs that read the on-
disk file-system state, validate the contents, and fix any inconsistencies that might
exist. Although the repair might lose some file-system updates, there is an attempt
to ensure that the fixed file system state is consistent [70]. The main drawback
of such consistency checkers is that they are very slow and their scanning and
repairing of the on-disk state of file systems can take hours or even days [76–78].

Modern file systems have different crash-consistency mechanisms to help avoid
file system inconsistencies due to power failures. The popular crash-consistency
techniques that exist today are journaling [18, 113, 170, 183] and snapshotting [82,
191, 198]. These crash-consistency mechanisms are orthogonal to fsck, where the
file system records additional information during regular operations to help restore
it to a consistent state on reboots after power failures.

2.5.1 Journaling

In journaling file systems, extra information is recorded onthe disk in the form of
a write-ahead log or a journal [67]. The common approach taken by journaling
file systems is to group multiple file-system updates into a single transaction and
atomically commit the updates to the journal. File system updates are typically
pinned in memory until the journal records are safely committed to stable storage.
By forcing journal updates to disk before updating complex file system structures,
this write-ahead logging technique enables efficient crashrecovery; a simple scan
of the journal and a redo of any incomplete committed operations bring the file
system to a consistent state. During normal operation, the journal is treated as a
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circular buffer; once the necessary information has been propagated to its fixed
location structures, journal space can be reclaimed.

Different modes of journaling exist in modern file systems. These modes pro-
vide different recovery guarantees to the stored file-system metadata and data. In
some cases, a file system support multiple journaling modes,where users have the
freedom to choose their journaling mode depending on their requirements. The
common modes in journaling are writeback, ordered, and data.

In writeback mode, only updates to file system metadata are journaled; data
blocks are written directly to their fixed location. The writeback mode does not
enforce any ordering between the journal and fixed-locationdata writes, and as
a result, writeback mode has the weakest integrity and consistency semantics of
the three modes. File-system metadata and data could be out of sync after crash
recovery. Although it guarantees integrity and consistency for file system metadata,
it does not provide any corresponding guarantees to the datablocks.

In ordered journaling mode, again only metadata writes are journaled; how-
ever, data writes to their fixed location are ordered before the journal writes of
the metadata. Though the data blocks are not journaled, the ordering attempts to
keep file-system metadata and data to in sync after recovery.In contrast to write-
back mode, the ordered mode provides better integrity semantics where a metadata
block is guaranteed not to point to a block that does not belong to the file.

In data journaling mode, the file system logs both metadata and data to the jour-
nal. In this mode, typically both metadata and data will be written out to disk twice:
once to the journal, and then later to their fixed location. Ofthe three modes, data
journaling mode provides the strongest integrity and consistency guarantees. How-
ever, it has a different performance characteristics compared to the other nodes, and
the performance depends heavily on the workload [137].

2.5.2 Snapshotting

Snapshotting or Copy-On-Write (COW), is an alternative technique to journal-
ing that helps preserve consistent file-system state on crashes. Many recently-
developed file systems have resorted to snapshots as their mechanism for enforcing
file-system consistency during crash-recovery [23, 82, 191].

Snapshotting works on a simple principle: never overwrite existing metadata
or data contents on disk. All updates to file-system data are first cached in memory
and are periodically written to a separate location on disk in an atomic fashion. The
idea behind this approach is that the original data contentsare always preserved,
and on recovery, the recent updates are visible to users if and only if the snapshot
that they belong to are committed to disk.
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Snapshotting works well due to its copy-on-write approach.Since snapshot-
ting does not overwrite any existing data on disk, it always preserves file-system
consistency by writing updates to a new location. Once all updates of a snapshot
are written to disk, the file system atomically switches to the new snapshot. In the
event of a failure, the file system simply discards (i.e., reclaims) the partially writ-
ten blocks of any uncommitted snapshots and bootstraps the file system from the
last consistent (i.e., committed) snapshot on disk. It is easy to see that the recovery
through snapshots could be lossy; recent updates that are part of an uncommitted
snapshot are simply discarded during recovery.

In summary, these crash-consistency approaches always ensure that file system
can be restored to the most recent consistent state using theassociated meta-data
maintained by them. The recovered file-system state is guaranteed to be consistent
if there are no errors or bugs in the underlying storage system [138]. The disadvan-
tages of these approaches are that they do not recover all file-system updates before
a crash, but only until the last committed checkpoint (or transaction). Moreover,
crash-consistency mechanisms are specialized for a particular file system and are
not generic enough to be applied to a variety of file systems.

2.6 Deployment Types

File systems can be deployed in two ways: inside the kernel oras a user-level
process. We will now discuss both types of deployments.

2.6.1 Kernel-level File Systems

File systems that are deployed and executed as part of an operating system are
knows as kernel-level file systems. Kernel-level file systems are widely deployed
and used in real systems [61, 83, 87]. Kernel-level file systems run in the same ad-
dress space as the operating system and directly manage the data stored on disks or
across the network. Examples of kernel-level file systems are ext3 [183], xfs [170],
FAT32 [116], NTFS [158], and HFS [6].

Kernel-level file systems come with many advantages. They can leverage the
design and features of the operating system to the full extent, as they are tightly
integrated with the operating system code. These file systems can effectively con-
trol when data gets written to the disk or sent across the network, as they have
direct access to operating system components, such as blockand network drivers.
Moreover, these file systems also have better control over the cached in-memory
data. The combination of tight integration with the operating system, direct access
to operating system components, and control over cached data helps provide better
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performance in kernel-level file systems. Kernel-level filesystems are also consid-
ered secure, as it is difficult for a malicious user to change the file-system code or
manipulate its in-memory objects.

Though kernel-level file systems are widely used in real systems, they do have
a few limitations. First, it is hard to port kernel-level filesystems to other operating
systems. Second, kernel-level file systems have longer development cycles [199].
Third, a bug in the kernel-level file system code has the potential to easily bring
down the entire operating system, as kernel- level file systems run in the same ad-
dress space as the operating system. Fourth, one needs skilled programmers with
in-depth operating-system knowledge to design and developthese file systems. Fi-
nally, it is difficult to add all user-desired features to these kernel-level file systems.

2.6.2 User-level File Systems

File systems that are deployed and executed in user space areknown as user-level
file systems. User-level file systems provide better flexibility in terms of the fea-
tures that they offer. Moreover, these file systems are completely isolated from the
operating system and are run as regular processes with no special privileges. Ex-
amples of user-level file systems are SSHFS [163], NTFS-3g [181], AVFS [159],
and HTTPFS [161].

User-level file systems have many advantages. They are relatively easy to de-
velop and deploy, as most of them are only a few thousand linesof code. They can
easily be ported to other operating systems with little to noeffort. They can provide
specialized functionality on top of existing kernel-levelfile systems. These file sys-
tems can be developed by a regular programmer and do not require a highly skilled
developer with a deep understanding of operating system components. User-level
file-system failures no longer impact the availability, correctness, and consistency
of the entire operating system, as user-level file systems are completely isolated
from the operating system.

Though user-level file systems are simpler than kernel-level file systems, they
are not widely deployed for the following reasons. First, they are less secure than
kernel-level file systems, as they run in user space. Second,the performance over-
heads are higher than kernel-level file systems due to the additional copying of data
across the file-system-kernel boundary and context switches in the operating sys-
tem [141]. Finally, they do not have control over the quantity of dirty data that gets
written to the disk, nor do they have control over when dirty data gets written to the
disk; hence, they cannot provide good crash-consistency guarantees.
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2.7 Summary

In this chapter, we provided a brief background on how file systems manage user
data on a disk. We then gave an overview of namespace management, data man-
agement, consistency management, and recovery in file systems along with their
interactions to persist file-system changes to disk. We thendescribed the different
on-disk objects in file systems along with the need for consistency of the on-disk
state. We concluded the chapter by giving an overview of kernel-level and user-
level file systems. In the following chapters we will exploredifferent solutions to
tolerate failures in file systems.
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Chapter 3

Reliability through Restartability

“Failure is not falling down but refusing to get up.”
– Chinese Proverb

It is difficult for a file system to recover from a failure, as file systems maintain
a significant amount of in-memory state, on-disk state, and OS state. Upon a file
system failure, the common recovery solution is to crash andrestart the affected file
system. Such crash-restart recovery mechanisms may require an entire operating
system reboot, manual restart of the file system followed by aconsistency check
(fsck) of the file system, or both. This process of recoveringfrom a file-system
failure through an explicit restart is slow and applications can no longer use the
crashed file system and hence are forcefully killed.

A popular way to improve reliability is to restart systems onfailures [31, 174],
with the goal being to selectively restart a particular component (or a sub-component)
on failures. Such selective restarts can potentially help hide file-system failures
from applications and other operating system components. Moreover, selective
restarts allow for applications to survive file system crashes.

Recent research, such as EROS and CuriOS, has proposed solutions to tolerat-
ing file system bugs through stateful restart mechanisms [42, 156]. Unfortunately,
these solutions have required complete redesign and rewrite of both OS and file sys-
tem code. Moreover, solutions that require extensive code restructuring are not vi-
able for commodity operating systems and file systems, as extensive code changes
take a long time to become adopted in the mainline kernel. This is attributed to the
fact that extensive changes tend to reduce the stability – and hence the reliability –
of the system.

In this chapter, we explore the possibility of creating generic frameworks in
order to restart both kernel- and user-level file systems. The intuition behind our
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approach is that we do not want to customize the restart process to suit a particular
file system. Instead, our intention is to create a generic restart mechanism that is
suited for most file systems. We believe that because this would more likely require
a one-time change to the operating system code, it could easily be leveraged by
those file systems that run on it.

The rest of this chapter is organized as follows. First, in Section 3.1, we explain
the fault space and failure model in file systems. Section 3.2gives an overview of
the restart process in file systems. Finally, in Section 3.3,we look at the three
important components of a restartable framework for file systems: detection, antic-
ipation, and recovery.

3.1 Failure Model

File systems can fail in a variety of ways [90, 138, 173]. Failure in a file system
impacts its availability. A failure may be caused by developer mistakes, an incom-
plete implementation (such as missing or improper error handling), or a variety of
other issues. When a failure occurs, a file system becomes unavailable until it is
restarted. It is important to understand how systems fail tohelp determine the trade-
offs between performance and reliability in the framework designed for restartable
file systems.

Before we present the failure model, we first define the commonterms used in
this research and provide a taxonomy of faults. We then present our system model,
behavior of systems on failures, failure occurrence pattern, and operating system
response to a failure. Finally, we present our approach to handling file system
failure.

3.1.1 Definitions

• System: An entity that interacts with other entities. Entity may refer to
hardware, software, a human, etc.

• System Boundary: The common frontier between the system and its envi-
ronment.

• Fault: A fault is a flaw in the software or hardware.

• Error: In a system, any deviation from the system’s correct state isdefined
as an error. The correct state of a system is defined as the state that is achieved
when the system’s functionality is implemented correctly.Alternatively, we
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can define error as a condition that occurs when a fault is executed or acti-
vated and the system state is corrupted.

• Failure: We define failure as an event that occurs when the observable output
of a system deviates from its correct state. Alternatively,a failure is said to
have happened if the error causes the system to behave incorrectly.

3.1.2 Taxonomy of Faults

All faults that can affect a system when activated are classified into eight fundamen-
tal types, which are shown in Figure 3.1. Faults need not necessarily be restricted
within these eight classes; combinations of faults from different categories are also
possible.

Most relevant to file and storage systems are the following faults categories:
system boundary, dimension, persistence, capability, andoccurrence phase [12, 49,
95, 128, 138, 173, 176].

3.1.3 System Model

In the context of our research, the system is a file system. Thesystem boundary
is the file system interface that file systems use to interact with other components.
Our goal is not to attempt to handle failures outside the file systems, but rather, to
improve the fault-tolerance of file systems and therefore focus on failures inside
file systems. Faults occur either within or outside of the filesystem, but in this
research, we assume that the consequence of a fault results in a file-system failure.

Figure 3.2 shows a system model in user-level and kernel-level file systems.
For kernel-level file systems, we assume that only the file system state is affected
by the fault, and that the failure is isolated within the file system; we trust that
the data that is available in the other operating system components (such as mem-
ory management, virtual file system, block layer, etc.) willbe able to recover the
crashed file system. For user-level file systems, we assume that fault results in a
file-system failure and affects the file system state; all theother components (i.e.,
the operating system, FUSE, and any remote host) work correctly after a user-level
file system failure.

3.1.4 Behavior of Systems on Failures

The failure behavior of a component determines how a system contains and detects
faults. For example, the operating system detects user-level file system crashes
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Faults

Phase of Occurrence

System Boundary

Phenomenological Cause

Dimension

Objective

Intent

Capability

Persistence

Natural Faults

Human-Made Faults

Development Faults

Operational Faults

Internal Faults

External Faults

Permanent Faults

Transient Faults

Accidental Faults

Incompetence Faults

Hardware Faults

Software Faults

Deliberate Faults

Non-Deliberate Faults

Malicious Faults

Non-Malicious Faults

[Caused by natural phenomenon]

[Caused due to human actions]

[Occur during development and testing]

[Occur during execution in the real world]

[Originate inside the system boundary]

[Originate outside the system boundary]

[Assumed to be continuous in time]

[Assumed to be bounded in time]

[Introduced inadvertently]

[Results due to lack of professional competence]

[Originate in, or affect hardware]

[Affect the data or program]

[Result due to a conscious decision]

[Introduced without awareness]

[Caused harm to the system]

[Introduced without awareness]

Figure 3.1:Basic Fault Classes.The figure shows the elementary fault classes in
systems. The first level in the hierarchy shows the base faultclasses and the second
level shows further classification within the base classes.
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Figure 3.2: System Model. The figure shows the deployment of user-level and
kernel-level file systems. The system consists of the operating system and the file
system. In our model, we assume that faults could occur within or outside the file
system but failures only happen inside file systems.

through process termination. Failures are categorized into five different groupings
based on failure behavior [41]:

• Omission Failures:which occur when a system fails to produce an expected
output.

• Crash Failures: which occur when the system stops producing any output.

• Arbitrary Failures: which occur when some or all of the system users per-
ceive incorrect service (or output).

• Response Failures:which occur when a system outputs an incorrect value;
and

• Timing Failures: which occur when a system violates timing constraints.
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Each failure category could require its own detection and isolation mechanism,
with such mechanisms also requiring additional support in terms of software and
hardware implementation.

3.1.5 Occurrence Pattern

The activation of a fault that causes a failure determines the possible strategy for
tolerating that failure. A failure caused by a fault that is activated by a regularly
occurring event is defined as adeterministicfailure. Since failures are determin-
istic, the recovery strategy should ensure that the triggering event does not occur
again on recovery. In the context of file systems, deterministic failures can occur
due to a variety of reasons: hardware failures [12, 138], corrupt file-systems, or
operating-system state [13, 14].

A failure caused by an irregularly occurring fault is definedas atransient fail-
ure. Transient failures are usually triggered by a combinationof inputs, such as
request interleaving or rarely-occurring environment conditions [66]. In the con-
text of file systems, transient failures may be caused by faulty SCSI back plane,
cables, or Ethernet cables [173]. These faults typically donot occur on subsequent
requests or retries. Empirical evidence also suggests thatmany failures are transient
in nature [65].

3.1.6 Operating System Response to a Failure

When a file system (or a component) failure occurs, the operating system may
translate the failure from one category to another. The translation of failure also
depends on the failure policy described in the file system. For example, Linux
either crashes or remounts the file system as read-only when it detects file-system
failures. Moreover, a file system could first attempt to fix thefailure by itself.
For example, ZFS attempts to fix disk corruption by using redundant copies of the
data stored in other disks. Failure translation also helps in simplifying the failure
handling policy. A higher-level system – such as an operating system – must only
handle a single category of component failure rather than manage the variety of
component failures that may occur.

Many fault-tolerant systems, such as Phoenix and Hive, perform failure trans-
lation in order to simplify recovery [33, 54]. These systems, on detection of a
failure in a component, halt the component as a means of preventing further cor-
ruption. In order to halt a component (i.e., translate to a fail-stop failure), a system
must meet the following three conditions that are defined in the fail-stop processor
model [193]:
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• Halt on failure: the system halts the component before performing an erro-
neous state transformation.

• Failure status: the failure of a component can be detected.

• Stable storage: the component state can be separated into volatile storage,
which is lost after a failure, and stable storage, which is preserved and unaf-
fected by the failure.

The fail-stop model of handling failure simplifies the design of reliable sys-
tems. The system and its components deal only with correct and incorrect states and
not with other failure modes. In other words, the simplicityin design is achieved
through the ability to differentiate between correct and incorrect states, and to par-
tition memory into correct and corrupted storage.

The drawback of the fail-stop model is that it is difficult to achieve in commod-
ity operating systems. Commodity operating systems typically run their compo-
nents in the operating system address space, allowing components to spread their
state throughout the operating system. To transform component failures into fail-
stop faults, the operating system might require additionalsupport, such as address-
space isolation [171].

3.1.7 Our Approach

In designing our restartable systems, we make several assumptions about file sys-
tem failures. First, we assume that most file system failuresare crash failures and
response failures. Furthermore, we assume that these failures are fail-stop and can
be detected and stopped before the kernel or other components are corrupted. When
possible, we also add mechanisms that can transform detected faults in file systems
in order to fail-stop failures.

Second, we also assume that most file system failures are transient. Thus, a
possible recovery solution would be to restart the file system and to retry requests
in progress at the time of failure, as the failure is unlikelyto occur again. We
believe that this is a reasonable solution as most of the failures in the real world.
Including storage system failures, are transient in nature[66, 173]. Although we
assume transient failures, we attempt to handle deterministic failures if they occur
in the context of a file system request.

Our goal is not to handle malicious faults, natural faults, human-made faults,
development faults, incompetence faults, and deliberate faults. For example, avoid-
ing development faults (such as logic errors) is critical for the correct operation of
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the file system; we believe that such bugs should (and likely will) be detected and
eliminated during development and testing.

3.2 Restarting a file system

Restarting a crashed file system is not straightforward. File systems have a great
deal of state spread across memory and on disk. Moreover, applications also have
some in-memory state (such as file descriptors) that are associated with a particular
file system. Additional care must be taken to restore all suchstate after a file-system
restart.

In this section, we first describe the goals of restartable frameworks designed
for user- and kernel-level file systems. We then describe states associated with a
running file system. Finally, we describe the different waysof restarting a crashed
file system.

3.2.1 Goals

We believe there are five major goals for a system that supports restartable file
systems.

• Fault Tolerant: A large range of faults can occur in file systems. Failures
can be caused by faulty hardware and buggy software, can be permanent or
transient, and can corrupt data arbitrarily or be fail-stop. Theideal restartable
file system recovers from all possible faults.

• Lightweight: Performance is important to most users and most file systems
have had their performance tuned over many years. Thus, adding significant
overhead is not a viable alternative: a restartable file system will only be used
if it has comparable performance to existing file systems.

• Transparent: We do not expect application developers to be willing to
rewrite or recompile applications for this environment. Weassume that it
is difficult for most applications to handle unexpected failures in the file sys-
tem. Therefore, the restartable environment should be completely transparent
to applications; applications should not be able to discernthat a file system
has crashed.

• Generic: A large number of commodity file systems exist and each has its
own strengths and weaknesses. Ideally, the infrastructureshould enable any
file system to be made restartable with little or no changes.
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• Maintain File-System Consistency: File systems provide different crash
consistency guarantees and users typically choose their file system depend-
ing on their requirements. Therefore, the restartable environment should not
change the existing crash consistency guarantees.

Many of these goals are at odds with one another. For example,higher levels
of fault resilience can be achieved with heavier-weight fault-detection mechanisms.
Thus in designing restartable file systems, we explicitly make the choice to favor
performance, transparency, and generality over the ability to handle a wider range
of faults.

In this thesis, we investigate the following questions:

• Is it possible to implement a generic framework to restart file systems?

• Whether a light-weight solution is sufficient?

• How transparent is the restart process to applications?

• How many modifications are required to transform commodity file systems
to work with a framework that support restartability?

• Can a restartable framework respect file-system-consistency guarantees?

3.2.2 State Associated with File Systems

File systems have a great deal of state spread across different components. The
number of components depend on the file system deployment. File systems running
inside the operating system (i.e., kernel-level file systems) have their state spread
across other operating system components, and also they share the same address
space as the operating system. File systems running in user space have most of
their state spread across their own address space and some oftheir state is spread
in the underlying FUSE and storage systems (such as disks or networks).

The state that needs to be restored on a file system restart areapplication-
specific state, in-memory file-system system, on-disk file-system state, and operating-
system state. Restoring all of the above-mentioned states after a failure makes
restarting file systems challenging. We now discuss the file-system-associated
states in detail.
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Application-specific state

An application (or a process) using the file system has state inside the operating sys-
tem that is specific to the file or directory it is using. The state typically associated
with an application are file handles, file positions, file locks, and callbacks. All of
the above mentioned state are typically maintained by the virtual file system or an
equivalent layer inside the operating system [100]. A file handle, as the name sug-
gests, serves as a unique identifier to access a file that has been previously opened
by the application. A file position is an index to a file’s data and is updated at the
end of a read or write operation. A file lock is used to provide atomicity for updated
by user-level processes. Finally, a callback (such as inotify) helps utilities (such as
desktop search) to easily identify modified or updated files or directories [112]. All
such state needs to be tracked and restored after a restart.

Operating-system state

File systems leverage operating system components (such asmemory management,
network, block layer, and virtual file system) to execute file-system requests to
completion. For example, during the execution of a file-system request, in-memory
objects in the operating system could be created or updated,or a lock could have
been acquired or released. In the event of a file-system failure, one needs to ensure
that changes done in the operating system by partially completed requests are prop-
erly cleaned up. The cleanup will help ensure that the operating system is restored
to an consistent state, which would allow it to service subsequent requests.

In-memory File-system State

The in-memory state of the file system mainly consist of threecomponents. First,
application-specific file-system state gets created in the process of executing appli-
cation requests. A good example of such a state is a file object. Second, file systems
cache recently accessed data from the disk to improve overall performance. Such
cached in-memory state need not be restored as they would be recreated again dur-
ing subsequent access. In other words, since read-only datadoes not affect the
correctness of the file-system state, it is not necessary to restore all of the cached
in-memory state. Finally, file systems also maintain their own metadata (such as
bitmaps, extents, etc.) in memory. Only the dirty metadata that have not yet writ-
ten back to the disk need to be restored, as in-memory copies of metadata are also
persistently stored on disks.
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On-Disk File-system State

Changes to the file-system state need to be persistently written to the disk. The
persistent writes help ensure that the modified or updated data can survive across
operating system reboots. The on-disk state of file systems consists of meta-data
specific to the file system (described in Section 2.4) and datawritten by applica-
tions. The file-system specific meta-data needs to be consistent on disk to prevent
further damage to the stored data [13, 15, 138].

3.2.3 Different Ways to Restart a File System

File systems can be restarted in different ways depending onthe user’s needs and
requirements. We characterize the restart process into three different categories
depending on the recovered state. The recovered state includes file system (both
in-memory and on-disk), application, and the operating-system state.

Primitive Restart

Primitive restart is the currently used restart mechanism in commodity file systems.
The goal of primitive restart is to restore the file system to aconsistent state after
a crash. This “consistent” state need not be the state that existed at the time of the
crash. In other words, some of the updates to the file system prior to a crash could
be lost during the restart process.

Upon a fault in file systems, the operating system is restarted (applicable only to
kernel-level file systems) and then file-system state is restored by using the recently
recorded file-system state on disk. The recorded file-systemstate could be created
using any of the crash-consistency mechanisms (see Section2.5). In the event that
a file system does not have any crash consistency mechanism, afile-system utility
(such as fsck) is run to repair and recover the file system state.

The advantage of primitive restart is that is does not require any explicit support
from the operating system or the file system. The drawbacks ofthis approach are
that it is lossy, manual, and slow. The application-state islost and applications
have to be manually restarted to use the file systems. More over, for kernel-level
file systems, the operating-system state is also lost and allother applications or
processes are also killed and have to be manually restarted.

Stateless Restart

We define stateless restart as an automatic restart and restore of crashed file systems
but not applications or the underlying operating system. Stateless restart can be
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achieved if the faults or failures are isolated within the file system. In other words,
the other components that the file system interacts with should not be affected by
the fault. One can restore the file-system to a consistent state by simply leveraging
a crash-consistency mechanism, an offline checker, or both.

Stateless restart is better than primitive restart for the following reasons. First,
application or processes that are not using the file system are not affected by the
file system restart. Second, the entire operating system need not be restarted (i.e.,
smaller down time). Third, no manual intervention is required to restart a crashed
file system.

The drawback of stateless restart is that application-specific state is not restored
after a file-system restart. The disconnected application state (e.g., file position
pointing to a non-existent file location) forces developersto handle incorrect file-
system behavior inside applications. Also, like primitiverestart, some of the recent
file-system updates could be lost. The magnitude of loss depends on the time of the
crash and the parameters defined inside the crash consistency mechanism.

Stateless restart is difficult to implement for kernel-level file systems and is
easier for user-level file systems. Implementing statelessrestart is a bit tricky for
kernel-level file systems, as they have state that is spread across operating system
components. Moreover, we still require sophisticated techniques to isolate failures
within file systems to correctly restart and restore back itsstate without corrupting
the underlying operating-system state. Stateless restartcan be easily achieved in
the case of user-level file systems as they do not have any explicit state inside the
operating system.

Stateful Restart

Stateful restart, as the name indicates, restarts and restores the state associated with
applications, file systems, and the operating system on a file-system failure. The
restored state is closer (or equivalent) to the state that existed prior to the file-system
crash. The idea behind stateful restart is to recover the filesystem in a way that
applications and other operating system components are oblivious to file system
failures and restarts. Also, after a restart, file systems can continue servicing both
pending and new requests.

There are many advantages of stateful restart. First, applications can be made
oblivious to file-system failures. Second, the services running inside the operating
system, including those that depend on file systems, can continue to work correctly.
Third, the downtime on faults could be minimized to a large extent. Fourth, no user
intervention is required to restart the application or file systems after a failure.

The major drawback of stateful restart is that one needs to track many updates
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(or states) across file systems and the operating system in order to correctly restore
the file system to the state it was in before the crash. Moreover, one also needs to
ensure that the side effects of all in-flight requests are correctly undone; this undo
process allows in-flight requests to be re-executed again.

Our goal while designing restartable frameworks is to support stateful restart
of file systems. As mentioned earlier, stateful restarts enable applications, file sys-
tems, and the operating system to gracefully tolerate a widevariety of file-system
failures. In most cases, when we have perfect recovery, applications can continue
to use file systems even after a crash. In other cases, file system can continue to
service new request that arrive after the crash. Either way,file system reliability is
significantly improved in comparison with the existing commodity file systems.

3.3 Components of a Restartable Framework

A framework that provides restartability for stateful systems needs to first iden-
tify faults when they occur, continually record system state in preparation for a
failure, and recover systems when faults happen. Thus, fault detection, fault antici-
pation, and fault recovery are the three fundamental components of a framework for
restartable file systems. Functionality of the three components are common across
kernel- and user-level file systems but their implementations could significantly
differ depending on the system (or subsystem) that they interact with.

3.3.1 Fault Detection

The fault-detection component is responsible for identifying occurrences of faults
within file systems. As seen before, faults can be detected after arbitrary periods
of time. Without timely fault detection (i.e., absence of fail-stop faults), the file
system or the operating system could become corrupted and become unrecoverable
after a failure. Hence, the goal of fault detection is to reduce the time delay between
the occurrence and detection of faults. The detection of faults can be implemented
inside (such as assertions) and outside (such as hardware checks) of a file system.

Fault detection can be implemented at different granularities. In terms of granu-
larity, a file system developer can detect faults at the levelof instructions, functions,
requests, or modules. At instruction-level, a file system developer can check if syn-
tax and semantics of the operations are respected. Hardware-level checks such as
segment-violation checks are a good example of instruction-level fault detection.
At function-level, a file system developer can add simple checks (such as asser-
tions) in one or more statements or can add a higher-level semantic check at the
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beginning or at the end of a function. At the request-level, afile system devel-
oper can add syntactic and semantic checks at various execution points. Finally, at
module-level, a file system developer detect faults by monitoring its liveliness and
responses. For a flexible fault-detection mechanism, a file system developer can
also use a combination of checks at different granularities.

Fault detection can also be implemented at different boundaries. Boundaries act
as a natural divide between two entities. An entity could be an instruction, a func-
tion, or a module. At the instruction-level boundary, a file system developer can
check the input parameters for the next instruction. At the function-level boundary,
a file system developer can check the input and the return values between function
calls. At the module-level boundary, we can add checks for the input and the output
values. It is important to note that the above-mentioned checks could also include
checks for verifying or validating the state of different objects before or after a
boundary crossing.

One can further improve fault-detection techniques by adding heavyweight
mechanisms. A good example of a heavyweight mechanism is running specialized
file system checks after a few operations that verify both thedata and the semantics
of the operations. Another example is to add address-space protection [171]. Un-
fortunately, such checks come at a very high performance cost, and hence, are not
in alignment with our goals.

We must use checks for fault detection with caution. On one extreme, too many
checks could significantly slow down the system. On the otherextreme, too few
checks might not be able to catch many faults. There is alwaysthe trade-off be-
tween performance and reliability. Since our focus is more on anticipation and
recovery, we leave the choice of implementing such checks tofile system devel-
opers, who can make an informed decision based on users (or applications) needs.
Ideally, we envision many lightweight checks that would improve fault detection
and not impact the overall performance of the system.

3.3.2 Fault Anticipation

Anticipation in the context of file systems involves recording file-system state,
along with application- and OS-specific associated state. Anticipation is pure over-
head, paid even when the system is behaving well; it should beminimized to the
greatest extent possible while retaining the ability to recover.

Anticipation can be implemented at different layers and granularities depend-
ing on how much of the state needs to be restored after a fault has occurred. In
terms of implementation location (i.e., layer), anticipation can be performed at the
system call layer [171, 172], the file system layer [5, 82, 113, 183, 191, 198], the
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block driver layer [130, 132], and virtual file system or an equivalent layer [15, 94].
In the context of granularities, we can implement anticipation at the instruction
level [152, 188], the file-system request level [5, 82], and the epoch level (i.e., gran-
ularity of time) [132].

The correct layer and granularity of anticipation depends on the design and de-
ployment of the file system of interest. It is important to keep in mind that with any
system that improves reliability, there is a performance and space cost to enabling
recovery when a fault occurs.

3.3.3 Fault Recovery

Fault recovery is likely the most complex component of a restartable framework.
Correct recovery is critical for proper operation of applications, file systems, and
the OS after a fault. For stateful recovery, we need to restore the system to the
state it was just before the fault. The fault recovery component is responsible for
cleaning residual state, restarting file systems and restoring their state, and restoring
application-specific state. We now discuss the responsibilities of the fault recovery
component in detail.

Cleanup of Residual State

Cleanup of residual state is critical for correct recovery.Upon a failure, the file
system, the operating system, or both could be in an inconsistent (or corrupt) state.
As a result, one must first perform a cleanup before any repairis attempted on the
failed system.

The goal of the cleanup process is to eliminate any residual state and restore
the operating system to a consistent state. The residual state is created by in-flight
requests, which could generate dirty data, create or modifyexisting OS objects,
acquire locks, and modify on-disk contents. If requests areprematurely terminated,
the corresponding cleanup actions are never run and thus could leave the system in
an inconsistent or a corrupt state.

Cleanup of residual state includes the following actions. First, undo any ac-
tions (or effects) of in-flights requests that were executing at the time of the fault.
Second, free up any in-memory objects of the file system; examples of such objects
are bitmaps, extents, and inodes. Finally, cleanup any file-system objects that are
stored in operating system components; examples of such objects are files, direc-
tory entries, and locks.
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Restore and Restart Failed File System

After a fault, a file system typically becomes inconsistent,unusable, or both. Cleanup
typically discards all file-system state and undoes the residual state in the OS or
other components (if any). For stateful recovery, we must first restore this lost
state.

It is difficult to recreate the lost state in file systems. The difficulty is caused by
the fact that the file-system state is spread across many components and needs to
be consistent in memory and on disk (see Section 3.2.2). To recreate the lost file-
system state, we could leverage the state recorded by the fault-anticipation com-
ponent along with the state maintained in other components that the file system
interacts with.

One must then restart the file system to service pending and new requests. A
file-system restart mainly consists of reinitialization ofthe failed file system. Typi-
cally, this reinitialization would be a mount (or an equivalent) operation along with
some repair of operating-system state.

Restore Application-specific State

The connection between the application-specific state (such as file descriptors) and
the actual file-system state is lost on a file-system restart.The cleanup and restore
process discards and recreates file system objects, but, applications still have point-
ers to the old file-system objects, which could result in wrong (or faulty) behavior.

To restore the application-specific state, the recovery component should reat-
tach the application-specific metadata in the OS with the newly created file-system
objects. The application-specific state typically includes the open files (i.e., file
descriptors), file positions, locks, and handles registered with notification daemons
(such as inotify and dnotify).

3.4 Summary

In this chapter, we first discussed the fault space, and described our failure model.
Then, we described the restart process in file systems, goalsof our restartable
framework, and different ways to restart a file system. Finally we described the
three components of a restartable framework: fault detection, fault anticipation,
and fault recovery.



Chapter 4

Restartable Kernel-level File
Systems

“The best performance improvement is the transition from the
nonworking state to the working state.”– John Osterhout

File systems have traditionally been built inside the OS. Modern operating sys-
tems support a variety of file systems. For example, Linux supports 30 or so differ-
ent block-based file systems. These file systems differ from each other in terms of
the features, performance, and reliability guarantees they provide.

Kernel-level file systems come with both advantages and disadvantages. The
primary advantage of using a kernel-level file system is thatit eliminates the addi-
tional data copying and context switching costs that are associated with user-level
file systems. The main drawback with kernel-level file systems is that they spread
their state across other OS components and run in the same address space as the
OS.

The design of kernel-level file systems makes recovery difficult to implement.
When a fault occurs inside a file system, it is hard to isolate the fault within the
file system, and restore the OS to a consistent state by undoing the actions of the
file system. As a result, the recovery solution that exists today is to simply crash
the entire OS and hope that the problem goes away on a reboot. Though this is
practical, we believe it is not acceptable as applications and other services running
in the OS are forcefully killed, making them unavailable to users.

In this chapter, we explore the possibility of implementinga generic frame-
work inside OS to restart kernel-level file systems. Such a generic framework helps
eliminate the need for an entire OS reboot and a tailored solution to restart individ-
ual file systems on crashes. Moreover, as performance is critical for file systems,
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we also explore the possibility of minimizing the reliability tradeoffs while still
maintaining similar performance characteristics of vanilla file systems.

Our solution to restarting file systems isMembrane, an operating system frame-
work to support lightweight, stateful recovery from file system crashes. During nor-
mal operation, Membrane logs file system operations, tracksfile system objects,
and periodically performs lightweight checkpoints of file system state. If a file
system crash occurs, Membrane parks pending requests, cleans up existing state,
restarts the file system from the most recent checkpoint, andreplays the in-memory
operation log to restore the state of the file system. Once finished with recovery,
Membrane begins to service application requests again; applications are unaware
of the crash and restart except for a small performance blip during recovery.

The rest of this chapter is organized as follows. Sections 4.1 and 4.2 present
the design and implementation, respectively, of Membrane.Section 4.3 discuss
the consequence of having Membrane in the operating system;finally, we evaluate
Membrane in Section 4.4.

4.1 Design

Membrane is designed to transparently restart the affectedkernel-level file system
upon a crash, while applications and the rest of the OS continue to operate nor-
mally. A primary challenge in restarting file systems is to correctly manage the
state associated with the file system (e.g., file descriptors, locks in the kernel, and
in-memory inodes and directories).

In this section, we first give an overview of our solution. We then present the
three major pieces of the Membrane system: fault detection,fault anticipation, and
recovery.

4.1.1 Overview
The main design challenge for Membrane is to recover file-system state in a light-
weight, transparent fashion. At a high level, Membrane achieves this goal as fol-
lows.

Once a fault has been detected in the file system, Membrane rolls back the state
of the file system to a point in the past that it trusts: this trusted point is a consistent
file-system image that was checkpointed to disk. This checkpoint serves to divide
file-system operations into distinct epochs; no file-systemoperation spans multiple
epochs.

To bring the file system up to date, Membrane replays the file-system operations
that occurred after the checkpoint. In order to correctly interpret some operations,
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Figure 4.1:Membrane Overview. The figure shows a file being created and writ-
ten to on top of a restartable file system. Halfway through, Membrane creates
a checkpoint. After the checkpoint, the application continues to write to the file;
the first succeeds (and returns success to the application) and the program issues
another write, which leads to a file system crash. Steps 1 to 4 denoted by gray
circles indicate the sequence of operation that Membrane performs to restart the
file system after a crash.

Membrane must also remember small amounts of application-visible state from
before the checkpoint, such as file descriptors. Since the purpose of this replay is
only to update file-system state, non-updating operations such as reads do not need
to be replayed.

Finally, to clean up the parts of the kernel that the buggy filesystem interacted
with in the past, Membrane releases the kernel locks and frees memory the file
system allocated. All of these steps are transparent to applications and require no
changes to file-system code. Applications and the rest of theOS are unaffected
by the fault. Figure 4.1 gives an example of how Membrane works during normal
file-system operation and upon a file system crash.

From the figure, we can see that Membrane creates a checkpointafter the open
and the first write operation (w0) on the file system. After thecheckpoint, the
second write operation (w1) also successful completes. Butthe next write opera-
tion (w2) causes the file system to crash. Upon a crash, for Membrane to operate
correctly, it must (1) unwind the currently-executing write and park the calling
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thread, (2) clean up file system objects (not shown), restorestate from the previous
checkpoint, and (3) replay the activity from the current epoch (i.e., write w1). Once
file-system state is restored from the checkpoint and session state is restored, Mem-
brane can (4) unpark the unwound calling thread and let it reissue the write, which
(hopefully) will succeed this time. The application shouldthus remain unaware,
only perhaps noticing the timing of the third write (w2) was a little slow.

Thus, there are three major pieces in the Membrane design. First, fault de-
tection machinery enables Membrane to detect faults quickly. Second, fault an-
ticipation mechanisms record information about current file-system operations and
partition operations into distinct epochs. Finally, thefault recoverysubsystem exe-
cutes the recovery protocol to clean up and restart the failed file system.

4.1.2 Fault Detection

The main aim of fault detection within Membrane is to be lightweight while catch-
ing as many faults as possible. Membrane uses both hardware and software tech-
niques to catch faults. The hardware support is simple: nullpointers, divide-by-
zero, and many other exceptions are caught by the hardware and routed to the Mem-
brane recovery subsystem. More expensive hardware machinery, such as address-
space-based isolation, is not used.

The software techniques leverage the many checks that already exist in file sys-
tem code. For example, file systems contain assertions as well as calls topanic()
and similar functions. We take advantage of such internal integrity checking and
transform calls that would crash the system into calls into our recovery engine. An
approach such as that developed by SafeDrive [200] could be used to automatically
place out-of-bounds pointer and other checks in the file system code.

Membrane provides further software-based protection by adding extensive pa-
rameter checking on any call from the file system into the kernel proper. These
lightweight boundary wrappersprotect the calls between the file system and the
kernel and help ensure such routines are called with proper arguments, thus pre-
venting file system from corrupting kernel objects through bad arguments. Sophis-
ticated tools (e.g., Ballista[102]) could be used to generate many of these wrappers
automatically.

4.1.3 Fault Anticipation

In Membrane, there are two components of fault anticipation. First, thecheck-
pointingsubsystem partitions file system operations into differentepochs(or trans-
actions) and ensures that the checkpointed image on disk representsa consistent
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state. Second, updates to data structures and other state are tracked with a set of
in-memory logsand parallel stacks. The recovery subsystem (described below)
utilizes these pieces in tandem to restart the file system after failure.

Fault anticipation is difficult due to the complex interactions between the file
system and the core kernel services. File system operationsuse many core kernel
services (e.g., locks, memory allocation), are heavily intertwined with major ker-
nel subsystems (e.g., the page cache), and have application-visible state (e.g., file
descriptors). In order to selectively restart the crashed file system and restore the
operating-system state, careful checkpointing and state-tracking are thus required.
We now discuss our checkpointing and state-tracking mechanisms in detail.

Checkpointing

Checkpointing is critical because a checkpoint representsa point in time to which
Membrane can safely roll back and initiate recovery. We define a checkpoint as
a consistent boundary between epochs where no operation spans multiple epochs.
By this definition, file-system state at a checkpoint is consistent as no file system
operations are in flight.

We require such checkpoints for the following reason: file-system state is con-
stantly modified by operations such as writes and deletes andfile systems lazily
write back the modified state to improve performance. As a result, at any point in
time, file system state is comprised of (i) dirty pages (in memory), (ii) in-memory
copies of its meta-data objects (that have not been copied toits on-disk pages),
and (iii) data on the disk. Thus, the file system is in an inconsistent state until all
dirty pages and meta-data objects are quiesced to the disk. For correct operation,
one needs to ensure that the file system is consistent at the beginning of the mount
process (or the recovery process in the case of Membrane).

Modern file systems take a number of different approaches to the consistency
management problem: some group updates into transactions (as in journaling file
systems [73, 145, 170, 179]); others define clear consistency intervals and create
snapshots (as in shadow-paging file systems [23, 82, 149]). All such mechanisms
periodically create checkpoints of the file system in anticipation of a power failure
or OS crash. Older file systems do not impose any ordering on updates at all (as
in Linux ext2 [178] and many simpler file systems). In all cases, Membrane must
operate correctly and efficiently.

The main challenge with checkpointing is to accomplish it ina lightweight
and non-intrusive manner. For modern file systems, Membranecan leverage the in-
built journaling (or snapshotting) mechanism to periodically checkpoint file system
state; as these mechanisms atomically write back data modified within a check-
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point to the disk. To track file-system level checkpoints, Membrane only requires
that these file systems explicitly notify the beginning and end of the file-system
transaction (or snapshot) to it so that it can throw away the log records before the
checkpoint. Upon a file system crash, Membrane uses the file system’s recovery
mechanism to go back to the last known checkpoint and initiate the recovery pro-
cess. Note that the recovery process uses on-disk data and does not depend on the
in-memory state of the file system.

For file systems that do not support any consistent-management scheme (e.g.,
ext2), Membrane provides a generic checkpointing mechanism at the VFS layer.
Membrane’s checkpointing mechanism groups several file-system operations into
a single transaction and commits it atomically to the disk. Atransaction is cre-
ated by temporarily preventing new operations from entering into the file system
for a small duration in which dirty meta-data objects are copied back to their on-
disk pages and all dirty pages are marked copy-on-write. Through copy-on-write
support for file-system pages, Membrane improves performance by allowing file
system operations to run concurrently with the checkpoint of the previousepoch.
Membrane associates each page with a checkpoint (or epoch) number to prevent
pages dirtied in the current epoch from reaching the disk. Itis important to note
that the checkpointing mechanism in Membrane is implemented at the VFS layer;
as a result, it can be leveraged by all file system with little or no modification.

Tracking State with Logs and Stacks

Membrane must track changes to file system state that transpired after the last
checkpoint. This tracking is accomplished with five different types of logs or stacks
to track: file system operations, application-visible sessions, memory allocations,
locks, and execution state.

First, an in-memoryoperation log (op-log)records all state-modifying file sys-
tem operations (such as open) that have taken place during the epoch or are cur-
rently in progress. The op-log records enough information about requests to enable
full recovery from a given checkpoint.

Membrane also requires a smallsession log (s-log). The s-log tracks which files
are open at the beginning of an epoch and the current positionof the file pointer.
The op-log is not sufficient for this task, as a file may have been opened in a previ-
ous epoch; thus, by reading the op-log alone, one can only observe reads and writes
to various file descriptors without the knowledge of which files such operations re-
fer to.

Third, an in-memorymalloc table (m-table)tracks heap-allocated memory.
Upon failure, the m-table can be consulted to determine which blocks should be
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freed. If failure is infrequent, an implementation could ignore memory left allo-
cated by a failed file system; memory may leak slowly enough not to impact overall
system reliability.

Fourth, lock acquires and releases are tracked by thelock stack (l-stack). When
a lock is acquired by a thread executing a file system operation, information about
said lock is pushed onto a per-thread l-stack; when the lock is released, the infor-
mation is popped off. Unlike memory allocation, the exact order of lock acquires
and releases is critical; by maintaining the lock acquisitions in LIFO order, recov-
ery can release them in the proper order as required. Also note that only locks that
are global kernel locks (and hence survive file system crashes) need to be tracked
in such a manner; private locks internal to a file system will be cleaned up during
recovery and therefore require no such tracking.

Finally, an unwind stack (u-stack)is used to track the execution of code in
the file system and kernel. By pushing register state onto theper-thread u-stack
when the file system is first called on kernel-to-file-system calls, Membrane records
sufficient information to unwind threads after a failure hasbeen detected in order
to enable restart.

Note that the m-table, l-stack, and u-stack arecompensatory[189]; they are
used to compensate for actions that have already taken placeand must be undone
before proceeding with restart. On the other hand, both the op-log and s-log are
restorativein nature; they are used by recovery to restore the in-memorystate of
the file system before continuing execution after restart.

4.1.4 Fault Recovery

The fault recoverysubsystem is the largest subsystem within Membrane. Once a
fault is detected, control is transferred to the recovery subsystem, which executes
the recovery protocol. This protocol has the following phases:

• Halt execution and park threads: Membrane first halts the execution of
threads within the file system. Such “in-flight” threads are prevented from
further execution within the file system in order to both prevent further dam-
age as well as to enable recovery. Late-arriving threads (i.e., those that try to
enter the file system after the crash takes place) are parked as well.

• Unwind in-flight threads: Crashed and any other in-flight thread are un-
wound and brought back to the point where they are about to enter the file
system; Membrane uses the u-stack to restore register values before each call
into the file system code. During the unwind, any held global locks recorded
on l-stack are released.
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• Commit dirty pages from previous epoch to stable storage:Membrane
moves the system to a clean starting point at the beginning ofan epoch; all
dirty pages from the previous epoch are forcefully committed to disk. This
action leaves the on-disk file system in a consistent state. Note that this step is
not needed for file systems that have their own crash consistency mechanism.

• “Unmount” the file system: Membrane consults the m-table and frees all in-
memory objects allocated by the the file system. The items in the file system
buffer cache (e.g., inodes and directory entries) are also freed. Conceptually,
the pages from this file system in the page cache are also released mimicking
an unmount operation.

• “Remount” the file system: In this phase, Membrane reads the super block
of the file system from stable storage and performs all other necessary work
to reattach the FS to the running system.

• Roll forward: Membrane uses the s-log to restore the sessions of active
processes to the state they were at the last checkpoint. It then processes the
op-log, replays previous operations as needed and restoresthe active state of
the file system before the crash. Note that Membrane uses the regular VFS
interface to restore sessions and to replay logs. Hence, Membrane does not
require any explicit support from file systems.

• Restart execution:Finally, Membrane wakes all parked threads. Those that
were in-flight at the time of the crash begin execution as if they had not
entered the file system; those that arrived after the crash are allowed to enter
the file system for the first time, both remaining oblivious ofthe crash.

4.2 Implementation

We now present the implementation of Membrane. We first present each of the
main components of Membrane, and then describe the operating system (Linux)
changes. Much of the functionality of Membrane is encapsulated within two com-
ponents: thecheckpoint manager (CPM)and therecovery manager (RM). Each of
these subsystems is implemented as a background thread and is needed during an-
ticipation (CPM) and recovery (RM). Beyond these threads, Membrane also makes
heavy use ofinterposition to track the state of various in-memory objects and to
provide the rest of its functionality. We ran Membrane with ext2, VFAT, and ext3
file systems.
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In implementing the functionality described above, Membrane employs three
key techniques to reduce overheads and make lightweight restart of a stateful file
systems feasible. The techniques are (i)page stealing, for low-cost operation
logging, (ii) COW-based checkpointing, for fast in-memory partitioning of pages
across epochs using copy-on-write techniques for file systems that do not support
transactions, and (iii)control-flow captureandskip/trust unwind protocol, to halt
in-flight threads and properly unwind in-flight execution.

4.2.1 Fault Detection

There are numerous fault detectors within Membrane, each ofwhich, when trig-
gered, immediately begins the recovery protocol. We describe the detectors Mem-
brane currently uses; because they are lightweight, we imagine more will be added
over time, particularly as file-system developers learn to trust the restart infrastruc-
ture.

Hardware-based Detectors

The hardware provides the first line of fault detection. In our implementation in-
side Linux on x86 (64-bit) architecture, we track the following runtime exceptions:
null-pointer exception, invalid operation, general protection fault, alignment fault,
divide error (divide by zero), segment not present, and stack segment fault. These
exception conditions are detected by the processor; software fault handlers, when
run, inspect system state to determine whether the fault wascaused by code execut-
ing in the file system module (i.e., by examining the faulting instruction pointer).
Note that the kernel already tracks these runtime exceptions which are considered
kernel errors and triggers panic as it doesn’t know how to handle them. We only
check if these exceptions were generated in the context of the restartable file system
to initiate recovery, thus preventing kernel panic.

Software-based Detectors

A large number of explicit error checks are extant within thefile system code
base; we interpose on these macros and procedures to detect abroader class of
semantically-meaningful faults. Specifically, we redefinemacros such asBUG(),
BUG ON(), panic(), andassert() so that the file system calls our version of
said routines.

These routines are commonly used by kernel programmers whensome unex-
pected event occurs and the code cannot properly handle the exception. For ex-
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File System assert() BUG() panic()
xfs 2119 18 43
ubifs 369 36 2
ocfs2 261 531 8
gfs2 156 60 0
jbd 120 0 0
jbd2 119 0 0
afs 106 38 0
jfs 91 15 6
ext4 42 182 12
ext3 16 0 11
reiserfs 1 109 93
jffs2 1 86 0
ext2 1 10 6
ntfs 0 288 2
nfs 0 54 0
fat 0 10 16

Table 4.1: Software-based Fault Detectors.The table depicts how many calls
each file system makes toassert(), BUG(), andpanic() routines. The data
was gathered simply by searching for various strings in the source code. A range
of file systems and the ext3 journaling devices (jbd and jbd2)are included in the
micro-study. The study was performed on the latest stable Linux release (2.6.26.7).

ample, Linux ext2 code that searches through directories often callsBUG() if di-
rectory contents are not as expected; seeext2 add link() where a failed scan
through the directory leads to such a call. Other file systems, such as reiserfs, rou-
tinely call panic() when an unanticipated I/O subsystem failure occurs [138].
Table 4.1 presents a summary of calls present in existing Linux file systems.

In addition to those checks within file systems, we have addeda set of checks
across the file-system/kernel boundary to help prevent fault propagation into the
kernel proper. Overall, we have added roughly 100 checks across various key points
in the generic file system and memory management modules as well as in twenty or
so header files. As these checks are low-cost and relatively easy to add, we believe
that operating system developers will continue to “harden”the file-system/kernel
interface when Membrane gets integrated inside commodity operating systems.

4.2.2 Fault Anticipation

We now describe the fault anticipation support within the current Membrane imple-
mentation. Anticipation consists of the following techniques: page stealing, state
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Figure 4.2: Page Stealing. The figure depicts the op-log both with and without
page stealing. Without page stealing (left side of the figure), user data quickly fills
the log, thus exacting harsh penalties in both time and spaceoverheads. With page
stealing (right), only a reference to the in-memory page cache is recorded with each
write; further, only the latest such entry is needed to replay the op-log successfully.

tracking, and COW-based checkpointing. We begin by presenting our approach to
reducing the cost of operation logging via a technique we refer to aspage stealing.

Low-Cost Op-Logging via Page Stealing

Membrane interposes at the VFS layer in order to record the necessary information
to the op-log about file-system operations during an epoch. Thus, for any restartable
file system that is mounted, the VFS layer records an entry foreach operation that
updates the file system state in some way.

One key challenge of logging is to minimize the amount of datalogged in order
to keep interpositioning costs low. A naive implementation(including our first at-
tempt) might log all state-updating operations and their parameters; unfortunately,
this approach has a high cost due to the overhead of logging write operations. For
each write to the file system, Membrane has to not only record that a write took
place but also log thedata to the op-log, an expensive operation both in time and
space.

Membrane avoids the need to log this data through a novelpage stealingmech-
anism. Because dirty pages are held in memory before checkpointing, Membrane
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is assured that the most recent copy of the data is already in memory (in the page
cache). Thus, when Membrane needs to replay the write, it steals the page from the
cache (before it is removed from the cache by recovery) and writes the stolen page
to disk. In this way, Membrane avoids the costly logging of user data. Figure 4.2
shows how page stealing helps in reducing the size of op-log.

When two writes to the same block have taken place, note that only the last
write needs to be replayed. Earlier writes simply update thefile position correctly.
This strategy works because reads are not replayed (indeed,they have already com-
pleted); hence, only the current state of the file system, as represented by the last
checkpoint and current op-log and s-log, must be reconstructed.

Other Logging and State Tracking

Membrane also interposes at the VFS layer to track all necessary session state in
the s-log. There is little information to track here: simplywhich files are open (with
their pathnames) and the current file position of each file.

Membrane also needs to track memory allocations performed by a restartable
file system. We add a new allocation flag,GFP RESTARTABLE and provide a new
header file to include in file-system code to appendGFP RESTARTABLE to all
memory allocation call in Membrane. This enables the memoryallocation module
in the kernel to transparently record the necessary per-file-system information into
the m-table and thus prepare for recovery.

Tracking lock acquisitions is also straightforward. As we mentioned earlier,
locks that are private to the file system will be ignored during recovery, and hence
need not be tracked; only global locks need to be monitored. Thus, when a thread
is running in the file system, the instrumented lock functionsaves the lock informa-
tion in the thread’s private l-stack for the following locks: the global kernel lock,
super-block lock, and the inode lock.

Finally, Membrane must track register state across certaincode boundaries to
unwind threads properly. To do so, Membrane wraps all calls from the kernel into
the file system; these wrappers push and pop register state, return addresses, and
return values onto and off of the u-stack.

COW-based Checkpointing

Our goal of checkpointing was to find a solution that is lightweight and works cor-
rectly despite the lack of transactional machinery in file systems such as Linux ext2,
many UFS implementations, and various FAT file systems; these file systems do not
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Figure 4.3:COW-based Checkpointing.The picture shows what happens during
COW-based checkpointing. At time=0, an application writesto block 0 of a file and
fills it with the contents “A”. At time=1, Membrane performs acheckpoint, which
simply marks the block copy-on-write. Thus, Epoch 0 is over and a new epoch
begins. At time=2, block 0 is over-written with the new contents “B”; the system
catches this overwrite with the COW machinery and makes a newin-memory page
for it. At time=3, Membrane decides to flush the previous epoch’s dirty pages to
disk, and thus commits block 0 (with “A” in it) to disk.

include journaling or shadow paging to naturally partitionfile system updates into
transactions.

One could implement a checkpoint using the following strawman protocol.
First, during an epoch, prevent dirty pages from being flushed to disk. Second,
at the end of an epoch, checkpoint file-system state by first halting file system ac-
tivity and then forcing all dirty pages to disk. At this point, the on-disk state would
be consistent. If a file-system failure occurred during the next epoch, Membrane
could rollback the file system to the beginning of the epoch, replay logged opera-
tions, and thus recover the file system.

The obvious problem with the strawman is performance: forcing pages to disk
during checkpointing makes checkpointing slow, which slows applications. Fur-
ther, update traffic is bunched together and must happen during the checkpoint,
instead of being spread out over time; as is well known, forcing pages to disk can
reduce I/O performance [117].
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Our lightweight checkpointing solution instead takes advantage of the page-
table support provided by modern hardware to partition pages into different epochs.
Specifically, by using the protection features provided by the page table, the CPM
implements acopy-on-write-based checkpointto partition pages into different epochs.
This COW-based checkpoint is simply a lightweight way for Membrane to parti-
tion updates to disk into different epochs. Figure 4.3 showsan example on how
COW-based checkpointing works.

We now present the details of the checkpoint implementation. First, at the
time of a checkpoint, the checkpoint manager (CPM) thread wakes and indicates
to thesession manager(SM) that it intends to checkpoint. The SM parks new VFS
operations and waits for in-flight operations to complete; when finished, the SM
wakes the CPM so that it can proceed.

The CPM then walks the lists of dirty objects in the file system, starting at the
superblock, and finds the dirty pages of the file system. The CPM marks these
kernel pagescopy-on-write; further updates to such a page will induce a copy-
on-write fault and thus direct subsequent writes to a new copy of the page. Note
that the copy-on-write machinery is present in many systems, to support (among
other things) fast address-space copying during process creation. This machin-
ery is either implemented within a particular subsystem (e.g., file systems such as
ext3cow [133], WAFL [82] manually create and track their COWpages) or built in
the kernel for application pages. To our knowledge, copy-on-write machinery is not
available for kernel pages. Hence, we explicitly added support for copy-on-write
machinery for kernel pages in Membrane; thereby avoiding extensive changes to
file systems to support COW machinery.

The CPM then allows these pages to be written to disk (by tracking a checkpoint
number associated with the page), and the background I/O daemon (pdflush) is
free to write COW pages to disk at its leisure during the next epoch. Checkpointing
thus groups the dirty pages from the previous epoch and allows only said modifi-
cations to be written to disk during the next epoch; newly dirtied pages are held in
memory until the complete flush of the previous epoch’s dirtypages.

There are a number of different policies that can be used to decide when to
checkpoint. An ideal policy would likely consider a number of factors, including
the time since last checkpoint (to minimize recovery time),the number of dirty
blocks (to keep memory pressure low), and current levels of CPU and I/O utiliza-
tion (to perform checkpointing during relatively-idle times). Our current policy is
simpler, and just uses time (5 secs) and a dirty-block threshold (40MB) to decide
when to checkpoint. Checkpoints are also initiated when an application forces data
to disk.
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4.2.3 Fault Recovery

We now describe the last piece of our implementation which performs fault recov-
ery. Most of the protocol is implemented by the recovery manager (RM), which
runs as a separate thread. The most intricate part of recovery is how Membrane
gains control of threads after a fault occurs in the file system and the unwind pro-
tocol that takes place as a result. We describe this component of recovery first.

Gaining Control with Control-Flow Capture

The first problem encountered by recovery is how to gain control of threads already
executing within the file system. The fault that occurred (ina given thread) may
have left the file system in a corrupt or unusable state; thus,we would like to stop
all other threads executing in the file system as quickly as possible to avoid any
further execution within the now-untrusted file system.

Membrane, through the RM, achieves this goal by immediatelymarking all
code pages of the file system as non-executable and thus ensnaring other threads
with a technique that we refer ascontrol-flow capture. When a thread that is al-
ready within the file system next executes an instruction, a trap is generated by the
hardware; Membrane handles the trap and then takes appropriate action to unwind
the execution of the thread so that recovery can proceed after all these threads have
been unwound. File systems in Membrane are inserted as loadable kernel modules,
this ensures that the file system code is in a 4KB page and not part of a large kernel
page which could potentially be shared among different kernel modules. Hence, it
is straightforward to transparently identify code pages offile systems.

Intertwined Execution and The Skip/Trust Unwind Protocol

Unwinding a thread is challenging, as the file system interacts with the kernel in a
tightly-coupled fashion. Thus, it is not uncommon for the file system to call into the
kernel, which in turn calls into the file system, and so forth.We call such execution
pathsintertwined.

Intertwined code puts Membrane into a difficult position. Ideally, Membrane
would like to unwind the execution of the thread to the beginning of the first kernel-
to-file-system call as described above. However, the fact that (non-file-system)
kernel code has run complicates the unwinding; kernel statewill not be cleaned up
during recovery, and thus any state changes made by the kernel must be undone
before restart.

For example, assume that the file system code is executing (e.g., in function
f1()) and calls into the kernel (functionk1()); the kernel then updates kernel-
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state in some way (e.g., allocates memory or grabs locks) andthen calls back into
the file system (functionf2()); finally, f2() returns tok1() which returns to
f1() which completes. The tricky case arises whenf2() crashes; if we simply
unwound execution naively, the state modifications made while in the kernel would
be left intact, and the kernel could quickly become unusable.

To overcome this challenge, Membrane employs a carefulskip/trust unwind
protocol. The protocolskipsover file system code buttrusts the kernel code to
behave reasonable in response to a failure and thus manage kernel state correctly.
Membrane coerces such behavior by carefully arranging the return value on the
stack, mimicking an error return from the failed file-systemroutine to the kernel;
the kernel code is then allowed to run and clean up as it sees fit. We found that the
Linux kernel did a good job of checking return values from thefile-system function
and in handling error conditions. In places where it did not (12 such instances), we
explicitly added code to do the required check.

In the example above, when the fault is detected inf2(), Membrane places an
error code in the appropriate location on the stack and returns control immediately
tok1(). This trusted kernel code is then allowed to execute, hopefully freeing any
resources that it no longer needs (e.g., memory, locks) before returning control to
f1(). When the return tof1() is attempted, the control-flow capture machinery
again kicks into place and enables Membrane to unwind the remainder of the stack.
A real example from Linux is shown in Figure 4.4.

Throughout this process, the u-stack is used to capture the necessary state to
enable Membrane to unwind properly. Thus, both when the file system is first
entered as well as any time the kernel calls into the file system, wrapper functions
push register state onto the u-stack; the values are subsequently popped off on
return, or used to skip back through the stack during unwind.

Correctness of Recovery

We now discuss the correctness of our recovery mechanism. Membrane throws
away the corrupted in-memory state of the file system immediately after the crash.
Since faults are fail-stop in Membrane, the control-flow capture mechanism in
Membrane ensures that the on-disk data is never corrupted after a fault. Membrane
also prevent any new operation from being issued to the file system while recovery
is being performed. The file-system state is then reverted tothe last known check-
point (which is guaranteed to be consistent). Next, successfully completed op-logs
are replayed to restore the file-system state to the crash time. Finally, the unwound
processes are allowed to execute again.
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sys_open()

do_sys_open()

filp_open()

open_namei()

vfs_create()

ext2_create()

ext2_addlink()

ext2_prepare_write()

block_prepare_write()

ext2_get_block()

do_sys_open() cleanup

release fd

open_namei() cleanup
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block_prepare_write() cleanup

clear buffer

zero page

mark not dirty

fault membrane

fault membrane
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3
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1
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Figure 4.4: The Skip/Trust Unwind Protocol. The figure depicts the call path
from theopen() system call through the ext2 file system. The first sequence
of calls (throughvfs create()) are in the generic (trusted) kernel; then the
(untrusted) ext2 routines are called; then ext2 calls back into the kernel to pre-
pare to write a page, which in turn may call back into ext2 to get a block to
write to. Assume a fault occurs at this last level in the stack; Membrane catches
the fault, and skips back to the last trusted kernel routine,mimicking a failed
call to ext2 get block(); this routine then runs its normal failure recovery
(marked by the circled “3” in the diagram), and then tries to return again. Mem-
brane’s control-flow capture machinery catches this and then skips back all the
way to the last trusted kernel code (vfs create), thus mimicking a failed call
to ext2 create(). The rest of the code unwinds with Membrane’s interference,
executing various cleanup code along the way (as indicated by the circled 2 and 1).

Non-determinism could arise while replaying the completedoperations. The
order recorded in op-logs need not be the same as the order executed by the sched-
uler. This new execution order could potentially pose a problem while replaying
completed write operations as applications could have observed the modified state
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Components No Checkpoint With Checkpoint
Added Modified Added Modified

FS 1929 30 2979 64
MM 779 5 867 15
Arch 0 0 733 4
Headers 522 6 552 6
Module 238 0 238 0
Total 3468 41 5369 89

Table 4.2:Implementation Complexity. The table presents the code changes re-
quired to tranform vanilla Linux 2.6.15 x8664 kernel to support restartable file
systems. Most of the modified lines indicate places where vanilla kernel did not
check/handle errors propagated by the file system. As our changes were non-
intrusive in nature, none of existing code was removed from the kernel.

(via read) before the crash. On the other hand, operations that modifythe file-
system state (such as create, unlink, etc.) would not be a problem as conflicting
operations are resolved by the file system through locking.

Membrane avoids non-deterministic replay of completed write operations through
page stealing. While replaying completed operations, Membrane reads the final
version of the page from the page cache and re-executes the write operation by
copying the data from it. As a result, write operations whilebeing replayed will
end up with the same final version no matter what order they areexecuted. Lastly,
as the in-flight operations have not returned back to the application, Membrane
allows the scheduler to execute them in arbitrary order.

4.2.4 Implementation Statistics

Our prototype is implemented in Linux 2.6.15 kernel. Table 4.2 shows the code
changes required to transform a vanilla 2.6.15 kernel into an operating system that
implements Membrane. We now briefly describe the code changes in different OS
components to support Membrane.

The FS changes include support for op-logging, COW-based checkpointing,
and skip/trust unwind protocol. The op-logging support mainly consists of log-
ging input arguments, return values, and lock acquisitionsor releases of file-system
requests. The COW-based checkpointing changes mainly consists of support for
parking (or releasing) threads executing file-system operations during (or after)
checkpoint and maintaining the count of requests that are currently executing in-
side the file system of interest. The skip/trust unwind support consist of calls to
macros that records the current operating-system state before a request makes a
transition from the OS into the file system.
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The MM changes include support for COW-based checkpointingand page
stealing mechanisms. The COW-based checkpoint changes consist of support to
manage attributes of COW pages in the operating system. The page stealing sup-
port consist of tracking and freeing pages that belong to thefile system before a
crash.

Finally, the arch code changes correspond to COW support forkernel pages,
and the module changes include support to locate file-systemcode pages and meth-
ods to change the page protection bits.

4.3 Discussion

The major negative of the Membrane approach is that, withoutaddress-space-based
protection, file system faults may corrupt other componentsof the system. If the file
system corrupts other kernel data or code or data that resides on disk, Membrane
will not be able to recover the system. Thus, an important factor in Membrane’s
success will be minimizing the latency between when a fault occurs and when it is
detected.

An assumption we make is that kernel code is trusted to work properly, even
when the file system code fails and returns an error. We found that this is true in
most of the cases across the kernel proper code. But in twentyor so places, we
found that the kernel proper did not check the return value from the file system and
additional code was added to clean up the kernel state and propagate the error back
to the callee.

A potential limitation of our implementation is that, in some scenarios, a file
system restart can be visible to applications. For instance, when a file is created, the
file system assigns it a specific inode number, which an application may query (e.g.,
rsync and similar tools may use this low-level number for backup and archival
purposes). If a crash occurs before the end of the epoch, Membrane will replay the
file create; during replay, the file system may assign a different inode number to the
file (based on in-memory state). In this case, the application would possess what it
thinks is the inode number of the file, but what may be in fact either unallocated or
allocated to a different file. Thus, to guarantee that the user-visible inode number
is valid, an application must sync the file system state afterthe create operation.

On the brighter side, we believe Membrane will encourage twopositive fault-
detection behaviors among file-system developers. First, we believe that quick-fix
bug patchingwill become more prevalent. Imagine a scenario where an important
customer has a workload that is causing the file system to occasionally corrupt data,
thus reducing the reliability of the system. After some diagnosis, the development
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team discovers the location of the bug in the code, but unfortunately there is no easy
fix. With the Membrane infrastructure, the developers may beable to transform
the corruption into a fail-stop crash. By installing a quickpatch that crashes the
code instead of allowing further corruption to continue, the deployment can operate
correctly while a longer-term fix is developed. Even more interestingly, if such
problems can be detected, but would require extensive code restructuring to fix,
then a patch may be the best possible permanent solution. As Tom West said: not
all problems worth solving are worth solving well [98].

Second, with Membrane, file-system developers will see significant benefits to
putting integrity checks into their code. Some of these lightweight checks could be
automated (as was nicely done by SafeDrive [200]), but we believe that develop-
ers will be able to place much richer checks as they have a deepknowledge about
expectations at various locations. For example, developers understand the exact
meaning of a directory entry and can signal a problem if one has gone awry; au-
tomating such a check is a great deal more complicated [43]. The motivation to
check for violations is low in current file systems since there is little recourse when
a problem is detected. The ability to recover from the problem in Membrane gives
greater motivation.

4.4 Evaluation

We now evaluate Membrane in the following three categories:transparency, per-
formance, and generality. All experiments were performed on a machine with a
2.2 GHz Opteron processor, two 80GB WDC disks, and 2GB of memory running
Linux 2.6.15. We evaluated Membrane using ext2, VFAT, and ext3. The ext3 file
system was mounted in data journaling mode in all experiments.

4.4.1 Generality

We chose ext2, VFAT, and ext3 to evaluate the generality of our approach. In other
words, we want to understand the effort involved in porting existing file systems
to work with Membrane. ext2 and VFAT file systems were chosen for their lack
of crash consistency machinery and for their completely different on-disk layout.
The ext3 file system was selected for its journaling machinery that provides better
crash consistency guarantees than ext2. Table 4.3 shows thecode changes required
in each file system.

From the table, we can see that the file system specific changesrequired to work
with Membrane are minimal. For ext3, we also added 4 lines of code to JBD to
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File System Added Modified Deleted
ext2 4 0 0
VFAT 5 0 0
ext3 1 0 0
JBD 4 0 0

Table 4.3:File system code changes.The table presents the code changes required
to transform a ext2, VFAT, and ext3 file systems in Linux 2.6.15 kernel into their
restartable counterparts.

notify the beginning and the end of transactions to the checkpoint manager, which
could then discard the operation logs of the committed transactions. All of the
additions were straightforward, including adding a new header file to propagate the
GFP RESTARTABLE flag and code to write back the free block/inode/cluster count
when thewrite super method of the file system was called. No modification
(or deletion) of existing code were required in any of the filesystems.

In summary, Membrane represents a generic approach to achieve file system
restartability; existing file systems can work with Membrane with minimal changes
of adding a few lines of code.

4.4.2 Transparency

We employ fault injection to analyze the transparency offered by Membrane in
hiding file system crashes from applications. The goal of these experiments is to
show the inability of current systems in hiding faults from application and how
using Membrane can avoid them.

Our injection study is quite targeted; we identify places inthe file system
code where faults may cause trouble, and inject faults there, and observe the re-
sult. These faults represent transient errors from three different components: vir-
tual memory (e.g., kmap, dalloc anon), disks (e.g., writefull page, sbbread), and
kernel-proper (e.g., clearinode, iget). In all, we injected 47 faults in different code
paths in three file systems. We believe that many more faults could be injected to
highlight the same issue.

We use four different metrics to understand the impact of each fault injection
experiment. The metrics used in our experiments are: how detected, application,
FS:consistent, and FS:usable. How detected denotes how (orif at all) the fault was
detected, and the reaction of the operating system to that fault. Application denotes
the state of the application (or process) that is executing the file system request.
FS:consistent denotes whether the file system was consistent after the injected fault.
FS:usable denotes whether the file system was able to servicesubsequent requests
after the injected fault.
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Tables 4.4, 4.5, and 4.6 present the results of our study. Thecaption explains
how to interpret the data in the table. In all experiments, the operating system was
always usable after fault injection (not shown in the table). We now discuss our
observations and conclusions.

Vanilla OS and File Systems

First, we analyzed the vanilla versions of the file systems onstandard Linux ker-
nel as our base case. The results are shown in the leftmost result column in Ta-
bles 4.4, 4.5, and 4.6.

For ext2, 85% of faults triggered a kernel “oops”. An oops typically indicates
that something seriously went wrong within the file system. The other 15% of
faults resulted in general protection error inside the OS. The file system was only
consistent for 55% of the fault injection experiments. In cases where the file system
was consistent, the operation triggering the fault did not internally modify any file-
system state to cause an inconsistency. Finally, the file system was unusable in 80%
of the fault injection experiments. In the remaining 20% of experiments, the file
system was unmountable 75% of the time, even though it was still usable.

For VFAT, all of the injected faults triggered an oops and theapplication (i.e.,
process executing the file system request) was killed after the fault was triggered
in the file system. Only in a few experiments (around 38%) was the file system
consistent after a fault injection. Finally, the file systemwas usable after fault
injection in 54% of experiments. In cases where the file system was usable, it was
not unmountable, indicating that file-system state was corrupted and did not get
correctly cleaned up after the fault-injection experiment.

For ext3, 93% of the fault-injection experiments result in akernel oops. After
every fault-injection experiment, the application was killed as the file system or
the OS was unable to recover from the fault correctly. The filesystem was left
in a consistent state only in 43% of experiements and was bothusable and not
unmountable in 7% of experiments.

Overall, we observed that Linux does a poor job in recoveringfrom the injected
faults; most faults (around 91%) triggered a kernel “oops” and the application (i.e.,
the process performing the file system operation that triggered the fault) was always
killed. Moreover, in one-third of the cases, the file system was left unusable, thus
requiring a reboot and repair (fsck).
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create null-pointer o × × × o × × × d
√√√

create markinode dirty o × × × o × × × d
√√√

writepage writefull page o ×
√√

a d s ×
√

a d
√√√

writepages writefull page o × ×
√

a d s ×
√

a d
√√√

free inode markbuffer dirty o × × × ob × ×
√a d

√√√

mkdir d instantiate o × × × d s
√ √

d
√√√

get block mapbh o × ×
√a ob × × × d

√√√

readdir pageaddress G × × × G × × × d
√√√

get page kmap o ×
√

× ob ×
√

× d
√√√

get page waitpagelocked o ×
√

× ob ×
√

× d
√√√

get page readcachepage o ×
√

× o ×
√

× d
√√√

lookup iget o ×
√

× ob ×
√

× d
√√√

addnondir d instantiate o × × × d e
√ √

d
√√√

find entry pageaddress G ×
√

× Gb ×
√

× d
√√√

symlink null-pointer o × × × o ×
√

× d
√√√

rmdir null-pointer o ×
√

× o ×
√

× d
√√√

empty dir pageaddress G ×
√

× G ×
√

× d
√√√

makeempty grabcachepage o ×
√

× ob × × × d
√√√

commit chunk unlockpage o ×
√

× d e × × d
√√√

readpage mpagereadpage o ×
√ √

i ×
√ √

d
√√√

Table 4.4:Fault Study of ext2. The table shows the results of fault injections on
the behavior of Linux ext2. Each row presents the results of asingle experiment,
and the columns show (in left-to-right order): which routine the fault was injected
into, the nature of the fault, how/if it was detected, how it affected the application,
whether the file system was consistent after the fault, and whether the file system
was usable. Various symbols are used to condense the presentation. For detection,
“o”: kernel oops; “G”: general protection fault; “i”: inval id opcode; “d”: fault
detected, say by an assertion. For application behavior, “×”: application killed by
the OS; “

√
”: application continued operation correctly; “s”: operation failed but

application ran successfully (silent failure); “e”: application ran and returned an
error. Footnotes:a- file system usable, but un-unmountable;b - late oops or fault,
e.g., after an error code was returned.
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create null-pointer o × × × o × × × d
√√√

create dinstantiate o × × × o × × × d
√√√

writepage blkwrite fullpage o × ×
√a d s ×

√a d
√√√

mkdir d instantiate o ×
√

× d s
√ √

d
√√√

rmdir null-pointer o ×
√

× o ×
√√a d

√√√

lookup dfind alias o ×
√

× d e
√ √

d
√√√

get entry sbbread o ×
√

× o ×
√

× d
√√√

get block mapbh o × ×
√

a o × ×
√

a d
√√√

removeentries markbuffer dirty o × ×
√

a d s ×
√

d
√√√

write inode markbuffer dirty o × ×
√

a d s
√ √

d
√√√

clear inode isbad inode o × ×
√a d s

√ √
d
√√√

get dentry dalloc anon o × ×
√a ob × × × d

√√√

readpage mpagereadpage o ×
√√

a o ×
√√

a d
√√√

Table 4.5:Fault Study of VFAT. The table shows the results of fault injections on
the behavior of Linux VFAT. Each row presents the results of asingle experiment,
and the columns show (in left-to-right order): which routine the fault was injected
into, the nature of the fault, how/if it was detected, how it affected the application,
whether the file system was consistent after the fault, and whether the file system
was usable. Various symbols are used to condense the presentation. For detection,
“o”: kernel oops; “G”: general protection fault; “i”: inval id opcode; “d”: fault
detected, say by an assertion. For application behavior, “×”: application killed by
the OS; “

√
”: application continued operation correctly; “s”: operation failed but

application ran successfully (silent failure); “e”: application ran and returned an
error. Footnotes:a- file system usable, but un-unmountable;b - late oops or fault,
e.g., after an error code was returned.
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create null-pointer o × × × o ×
√
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get blk handle bhresult o × × × d s ×
√
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follow link nd set link o × ×
√a d e

√ √
d
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mkdir d instantiate o × × × d s
√ √

d
√√√

symlink null-pointer o × × × d ×
√

× d
√√√

readpage mpagereadpage o × ×
√

a d ×
√√

a d
√√√

add nondir d instantiate o ×
√

× o ×
√

× d
√√√

preparewrite blk preparewrite o ×
√

× i e
√ √

d
√√√

readblk bmap sbbread o ×
√

× o ×
√

× d
√√√

new block dquotalloc blk o ×
√

× o ×
√

× d
√√√

readdir null-pointer o × × × o ×
√√a d

√√√

file write file aio write G ×
√ √

i e
√ √

d
√√√

free inode clearinode o × × × o ×
√

× d
√√√

new inode null-pointer o ×
√

× i × ×
√

a d
√√√

Table 4.6:Fault Study of ext3. The table shows the results of fault injections on
the behavior of Linux ext3. Each row presents the results of asingle experiment,
and the columns show (in left-to-right order): which routine the fault was injected
into, the nature of the fault, how/if it was detected, how it affected the application,
whether the file system was consistent after the fault, and whether the file system
was usable. Various symbols are used to condense the presentation. For detection,
“o”: kernel oops; “G”: general protection fault; “i”: inval id opcode; “d”: fault
detected, say by an assertion. For application behavior, “×”: application killed by
the OS; “

√
”: application continued operation correctly; “s”: operation failed but

application ran successfully (silent failure); “e”: application ran and returned an
error. Footnotes:a- file system usable, but un-unmountable;b - late oops or fault,
e.g., after an error code was returned.



68

Hardening Through Parameter Checks

Second, we analyzed the usefulness of fault detection without recovery by hard-
ening the kernel and file-system boundary through parameterchecks. The goal of
this experiment is to understand if we really need Membrane to handle file system
crashes or could hardening the kernel and the file-system boundary suffice. The
second result column (denoted by +boundary) of Tables 4.4, 4.5, and 4.6 shows the
results.

For ext2, faults were correctly detected in 25% of the fault-injection experi-
ments. In 35% of experiments, the injected fault went undetected and later triggered
an oops when the corrupted data was subsequently accessed. Moreover, in 5% and
10% of cases, the injected fault resulted in an invalid operation and triggered a pro-
tection fault, respectively. An error was correctly returned to the application in 10%
of the fault-injection experiments. In 15% of cases, errorswere silently discarded
by the operating system and application was falsely notifiedthat the request was
successfully completed. The consistency percentages for file systems in the hard-
ened kernel were the same as that of the vanilla OS. Finally, the file system was
usable in 30% of cases; a slight improvement compared to the vanilla OS. In 50%
of cases, where the file system was usable, it was unmountable.

For VFAT, in 46% of the fault-injection experiments, faultswere successfully
detected inside the OS. Only in 8% of cases, the faults initially went undetected, but
later resulted in an oops. In 38% of cases, a failure was incorrectly propagated as a
successful operation to the application. Only in one experiment (i.e., 8% of cases),
an error was correctly returned back to the application. File system consistency
improved to 54% compared to 38% for the vanilla OS. Finally, around 70% of
cases, the file system was usable after a fault. In 44% of experiements where the
file system was usable, it was not unmountable after the faultinjection.

For ext3, around 36% of cases, faults were correctly detected in the OS. In
21% of the cases, an injected fault was incorrectly detectedas an invalid opcode in
the OS. In terms of application state, only in 21% of cases, anerror was correctly
returned back to the application. In 14% of cases, error was silent ignored inside
the OS and a success was incorrectly propagated to the application. The file system
was consistent in 86% of cases, which was much more than that of the vanilla OS
running ext3 (around 43%). Finally, in 57% of cases, the file system was usable
after the fault-injection experiment. Amongst the 57% of the usable file-system
states, the file system was not unmountable for 50% of experiments.

Overall, although assertions detect the bad argument passed to the kernel proper
function, in the majority of the cases, the returned error code was not handled
properly (or propagated) by the file system. The applicationwas always killed and
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ext2 ext2+ o/h VFAT VFAT+ o/h ext3 ext3+ o/h

Benchmark Membrane % Membrane % Membrane %
Seq. read 17.8 17.8 0 17.7 17.7 0 17.8 17.8 0
Seq. write 25.5 25.7 0.8 18.5 19.4 4.9 56.3 56.3 0
Rand. read 163.2 163.5 0.2 163.5 163.6 0 163.2 163.2 0
Rand. write 20.3 20.5 1 18.9 18.9 0 65.5 65.5 0
create 34.1 34.1 0 32.4 34.0 4.9 33.9 34.3 1.2
delete 20.0 20.1 0.5 20.8 21.0 0.9 18.6 18.7 0.5

Table 4.7: Microbenchmarks. This table compares the execution time (in sec-
onds) for various benchmarks for restartable versions of ext2, VFAT, and ext3 (on
Membrane) against their regular versions on the unmodified kernel. Sequential
read/writes are 4 KB at a time to a 1-GB file. Random reads/writes are 4 KB at
a time to 100 MB of a 1-GB file. Create/delete copies/removes 1000 files each of
size 1MB to/from the file system respectively. All workloadsuse a cold file-system
cache.

the file system was left inconsistent, unusable, or both.

Recovery Using Membrane

Finally, we focused on file systems surrounded by Membrane. The results of the
experiments are shown in the rightmost column of Tables 4.4,4.5, and 4.6. In all
cases, for all file systems, faults were handled, applications did not notice faults,
and the file system remained in a consistent and usable state.

In summary, even in a limited and controlled set of fault-injection experiments,
we can easily realize the usefulness of Membrane in recovering from file system
crashes. In a standard or hardened environment, a file systemcrash is almost always
visible to the user and the process performing the operationis killed. Membrane,
on detecting a file system crash, transparently restarts thefile system and leaves it
in a consistent and usable state.

4.4.3 Performance

To evaluate the performance of Membrane, we run a series of both microbenchmark
and macrobenchmark workloads where ext2, VFAT, and ext3 arerun in a standard
environment and within the Membrane framework. The goal of our benchmarks is
to understand the overheads of running the above-mentionedfile systems on top of
Membrane during regular operations (i.e., measuring anticipation costs) and during
crash recovery.
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ext2 ext2+ o/h VFAT VFAT+ o/h ext3 ext3+ o/h

Benchmark Membrane % Membrane % Membrane %
Sort 142.2 142.6 0.3 146.5 146.8 0.2 152.1 152.5 0.3
OpenSSH 28.5 28.9 1.4 30.1 30.8 2.3 28.7 29.1 1.4
PostMark 46.9 47.2 0.6 43.1 43.8 1.6 478.2 484.1 1.2

Table 4.8:Macrobenchmarks. The table presents the performance (in seconds)
of different benchmarks running on both standard and restartable versions of ext2,
VFAT, and ext3. The sort benchmark (CPU intensive) sorts roughly 100MB of
text using the command-line sort utility. For the OpenSSH benchmark (CPU+I/O
intensive), we measure the time to copy, untar, configure, and make the OpenSSH
4.51 source code. PostMark (I/O intensive) parameters are:3,000 files (sizes 4KB
to 4MB), 60,000 transactions, and 50/50 read/append and create/delete biases.

Regular Operations

Micro-benchmarks help analyze file-system performance forfrequently performed
operations in isolation. We use sequential read/write, random read/write, create,
and delete operations as our micro benchmarks. These operations exercise the most
frequently accessed code paths in file systems. The caption in Table 4.7 describes
our micro-benchmark configuration in more detail.

We also use commonly-used macro-benchmarks to help analyzefile-system
performance. Specifically, we use the sort utility, Postmark [96], and OpenSSH [162].
The sort benchmark represents data-manipulation workloads, Postmark represents
I/O-intensive workloads, and OpenSSH represents user-desktop workloads. Ta-
ble 4.8 show the results of our macrobenchmark experiments.

From the tables, one can see that the performance overheads of our prototype
for both micro- and macro-benchmarks are quite minimal; in all cases, the over-
heads were between 0% and 5%.

Recovery Time

Beyond baseline performance under no crashes, we were interested in studying the
performance of Membrane during recovery. Specifically, howlong does it take
Membrane to recover from a fault? This metric is important ashigh recovery times
may be noticed by applications.

The recovery time in Membrane depends on the amount of dirty data, open ses-
sions (or file handles), and log records (i.e., completed operations after last check-
point). Dirty data denotes the number of dirty pages of recent checkpoint that has
not yet been written to the disk. Open sessions denote the number of file handles
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Data Recovery
(MB) time (ms)

0 8.6
10 12.9
20 13.2
40 16.1

(a)

Open Recovery
Sessions time (ms)

0 8.6
200 11.4
400 14.6
800 22.0

(b)

Log Recovery
Records time (ms)

0 8.6
1K 15.3
10K 16.8
100K 25.2

(c)

Table 4.9:Recovery Time. Tables a, b, and c show recovery time as a function
of dirty pages (at checkpoint), s-log, and op-log respectively for ext2 file system.
Dirty pages are created by copying new files. Open sessions are created by getting
handles to files. Log records are generated by reading and seeking to arbitrary
data inside multiple files. The recovery time was 8.6ms when all three states were
empty.

that need to be opened and re-attached to the file descriptor table of applications
after a restart. Log records denote the number of file system requests logged in the
op-log that need to be re-executed from the VFS layer during recovery.

We measured the recovery time in a controlled environment byvarying the
amount of state kept by Membrane. To vary the amount of dirty data, we execute
a write-intensive workload and forcefully create a checkpoint after the required
amount of data is written to the file system. To vary the numberof open sessions,
we simply open files in application (i.e., through the syscall layer) and crash the
file system when required number of file handles have been created. To vary the
amount of log records, we run the postmark benchmark and crash the file system
after the required number of log records were created. In allexperiments, the two
other parameters were maintained at 0.

Table 4.9 shows the result of varying the amount of dirty pages from the pre-
vious checkpoint, open sessions (i.e., s-log), and completed file system operations
which are not yet part of a checkpoint (i.e., op-log) for ext2file system. From the
table, we can see that the recovery time is less than 17 ms evenwhen the amount of
dirty data was varied between 0 to 40 MB. This gives the upper bound on the time
that would be needed to write back dirty data. It is importantto note that in our cur-
rent prototype, 40MB is the upper watermark before Membraneforcefully create a
new checkpoint to limit the amount of dirty data in memory. Itis also important to
note that the dirty pages are not synchronously written backto the disk and hence
does not incur a large overhead.

For session logs, the recovery time did not significantly vary with the number of
open file handles. Recovering open file handles include performing a path lookup,
creating a new file object, and associating the file object with the entry in the file
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Figure 4.5:Recovery Overhead.The figure shows the overhead of restarting ext2
while running random-read microbenchmark. The x axis represents the overall
elapsed time of the microbenchmark in seconds. The primary yaxis contains the
execution time per read operation as observed by the application in milliseconds.
A file-system crash was triggered at 34s, as a result the totalelapsed time increased
from 66.5s to 67.1s. The secondary y axis contains the numberof indirect blocks
read by the ext2 file system from the disk per second.

descriptor table of an application. Even when the number of open file handles
were varied between 0 and 800, the recovery time was still in the order of a few
milliseconds.

For log records, we can see that the recovery time does not increase linearly
with increase in the number of records. Log records used for this experiment con-
sisted of lookups, reads, creates, deletes, and a few writes. One might observe
larger recovery times depending on the type and number of logrecords that need to
be replayed.

In summary, from these experiments, we found that the recovery time grows
sub-linearly with the amount of state. Moreover, the recovery time is only a few
milliseconds in all the cases. Hence, application need not necessarily see any sig-
nificant performance drop that would be caused by the recovery process.

Figure 4.5 shows the results for performing recovery duringthe random-read
microbenchmark for the ext2 file system. From the figure, we can see that Mem-
brane restarts the file system within 10 ms from the point of crash. Subsequent
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read operations are slower than the regular case because theindirect blocks, that
were cached by the file system, are thrown away at recovery time in our current
prototype and have to be read back again after recovery (as shown in the graph).

In summary, both micro and macrobenchmarks show that the fault anticipation
in Membrane almost comes for free. Even in the event of a file system crash,
Membrane restarts the file system within a few milliseconds.

4.5 Summary

File systems fail. With Membrane, failure is transformed from a show-stopping
event into a small performance issue. The benefits are many: Membrane enables
file-system developers to ship file systems sooner, as small bugs will not cause
massive user headaches. Membrane similarly enables customers to install new file
systems, knowing that it won’t bring down their entire operation.

Membrane further encourages developers to harden their code and catch bugs as
soon as possible. This fringe benefit will likely lead to morebugs being triggered
in the field (and handled by Membrane, hopefully); if so, diagnostic information
could be captured and shipped back to the developer, furtherimproving file system
robustness.

We live in an age of imperfection, and software imperfectionseems a fact of life
rather than a temporary state of affairs. With Membrane, we can learn to embrace
that imperfection, instead of fearing it. Bugs will still continue to arise, but those
that are rare and hard to reproduce will remain where they belong, automatically
“fixed” by a system that can tolerate them.
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Chapter 5

Restartable User-level File
Systems

“Retrofitting reliability to an existing design is very difficult.”
– Butler Lampson

File System in USEr Space (FUSE) was designed to simplify thedevelopment
and deployment of file systems [192]. FUSE provides fault isolation by moving
file systems out of the kernel and running them in a separate address space. FUSE
also simplifies the file-system interface and minimizes the interaction with the op-
erating system components. Nearly 200 FUSE file systems havealready been im-
plemented [160, 192], indicating that the move towards user-level file systems is
significant.

Unfortunately, support for recovery in file systems using FUSE does not exist
today. The current solution is to crash the user-level file system on a fault, and
wait for the user (or administrator) to manually repair and restart the file system; in
the meantime, FUSE returns an error to applications if they attempt to access the
crashed file system. This solution is not useful when applications and users depend
on these file systems to access their data.

In this chapter, we explore the possibility of implementinga generic frame-
work inside the operating system and FUSE to restart user-level file systems. Such
a generic framework helps eliminate the need for any tailored solution to restart
individual user-level file systems on crashes. We also come up with a user-level
file-system model that represents some of the popular user-level file systems. We
believe this will help current and future file-system developers to modify and design
their file systems to work with Re-FUSE.

75
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Our solution to a generic framework is Restartable FUSE (Re-FUSE), a restartable
file system layer built as an extension to the Linux FUSE user-level file system in-
frastructure [159]. In our solution, we add a transparent restart framework around
FUSE which hides many file-system crashes from users; Re-FUSE simply restarts
the file system and user applications continue unharmed.

The rest of the chapter is organized as follows. Section 5.1 presents the FUSE
framework. Section 5.2 discusses the essentials of a restartable user-level file
system framework. Section 5.3 presents the design and implementation of Re-
FUSE.Section 5.4 evaluates the robustness and performanceof Re-FUSE.

5.1 FUSE

FUSE is a framework that enables users to create and run theirown file systems
as user-level processes [177]. In this section, we discuss the rationale for such a
framework and present its basic architecture.

5.1.1 Rationale

FUSE was implemented to bridge the gap between features thatusers want in a
file system and those offered in kernel-level file systems. Users want simple yet
useful features on top of their favorite kernel-level file systems. Examples of such
features are encryption, de-duplication, and accessing files inside archives. Users
also want simplified file-system interfaces to access systems like databases, web
servers, and new web services such as Amazon S3. The simplified file-system
interface obviates the need to learn new tools and languagesto access data. Such
features and interfaces are lacking in many popular kernel-level file systems.

Kernel-level file-system developers may not be open to the idea of adding all of
the features users want in file systems for two reasons. First, adding a new feature
requires a significant amount of development and debugging effort [199]. Second,
adding a new feature in a tightly coupled system (such as a filesystem) increases
the complexity of the already-large code base. As a result, developers are likely
only willing to include functionality that will be useful tothe majority of users.

FUSE enables file systems to be developed and deployed at userlevel and thus
simplifies the task of creating a new file system in a number of ways. First, pro-
grammers no longer need to have an in-depth understanding ofkernel internals
(e.g., memory management, VFS, and block devices). Second,programmers need
not understand how these kernel modules interact with others. Third, programmers
can easily debug user-level file systems using standard debugging tools such as
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gdb [63] and valgrind [123]. All of these improvements combine to allow develop-
ers to focus on the features they want in a particular file system.

In addition to Linux, FUSE has been developed for FreeBSD [40], Solaris [126],
and OS X [64] operating systems. Though most of our discussion revolves around
the Linux version of FUSE, the issues faced herein are likelyapplicable to FUSE
within other systems.

5.1.2 Architecture

FUSE consists of two main components: theKernel File-system Module(KFM)
and a user-space librarylibfuse (see Figure 5.1). The KFM acts as a pseudo file
system and queuesapplication requeststhat arrive through the VFS layer. The lib-
fuse layer exports a simplified file-system interface that each user-level file system
must implement and acts as a liaison between user-level file systems and the KFM.

A typical application request is processed as follows. First, the application is-
sues a system call, which is routed through VFS to the KFM. TheKFM queues this
application request (e.g., to read a block from a file) and puts the calling thread to
sleep. The user-level file system, through the libfuse interface, retrieves the request
off of the queue and begins to process it; in doing so, the user-level file system
may issue a number of system calls itself, for example to reador write the local
disk, or to communicate with a remote machine via the network. When the request
processing is complete, the user-level file system passes the result back through
libfuse, which places it within a queue, where the KFM can retrieve it. Finally, the
KFM copies the result into the page cache, wakes the application blocked on the
request, and returns the desired data to it. Subsequent accesses to the same block
will be retrieved from the page cache, without involving theFUSE file system.

Unlike kernel file systems, where the calling thread executes the bulk of the
work, FUSE has adecoupledexecution model, in which the KFM queues appli-
cation requests and a separate user-level file system process handles them. As we
will see in subsequent sections, this decoupled model is useful in the design of
Re-FUSE. In addition, FUSE uses multi-threading to improveconcurrency in user-
level file systems. Specifically, the libfuse layer allows user-level file-systems to
create worker threads to concurrently process file-system requests; as we will see
in subsequent sections, such concurrency will complicate Re-FUSE.

The caching architecture of FUSE is also of interest. Because the KFM pre-
tends to be a kernel file system, it must create in-memory objects for each user-level
file system object accessed by the application. Doing so improves performance
greatly, as in the common case, cached requests can be serviced without consulting
the user-level file system.
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Figure 5.1: FUSE Framework. The figure presents the FUSE framework. The
user-level file system (in solid white box) is a server process that uses libfuse to
communicate with the Kernel-level FUSE Module (KFM). The client process is the
application process invoking operations on the file system.File-system requests
are processed in the following way: (1) the application sends a request through the
KFM via the VFS layer; (2) the request gets tagged and is put inside the request
queue; (3) the user-level file-system worker thread dequeues the request; (4) the
worker services the request and returns the response; (5) the response is added
back to the queue; (6) finally, the KFM copies the data into thepage cache before
returning it to the application.
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5.2 User-level File Systems

In this section, we discuss the essentials of a restartable user-level file system frame-
work. We discuss both our assumptions of the fault model as well as assumptions
we make about typical FUSE file systems. We conclude by discussing some chal-
lenges a restartable system must overcome.

5.2.1 The User-level File-System Model

To design a restartable framework for FUSE, we must first understand how user-
level file systems are commonly implemented; we refer to these assumptions as our
reference modelof a user-level file system.

It is infeasible to examine all FUSE file systems to obtain the“perfect” ref-
erence model. Thus, to derive a reference model, we instead analyze six diverse
and popular file systems. Table 5.1 presents details on each of the six file systems
we chose to study. NTFS-3g (2009.4.4) and ext2fuse (0.8.1) each are kernel-like
file systems “ported” to user space. AVFS (0.9.8) allows programs to look inside
archives (such as tar and gzip) and TagFS (0.1) allows users to organize documents
using tags inside existing file systems. Finally, SSHFS (2.2) and HTTPFS (2.06)
allow users to mount remote file systems or websites through the SSH and HTTP
protocols, respectively. We now discuss the properties of the reference file-system
model.

• Simple Threading Model: A single worker thread is responsible for pro-
cessing a file-system request from start to finish, and only works on a single
request at any given time. Amongst the reference-model file systems, only
NTFS-3g is single-threaded (i.e., a worker thread to service all requests) by
default; the rest all operate in multi-threaded mode (i.e.,multiple worker
threads to concurrently process file system requests). All reference-model
file systems adhere to the simple threading model.

• Request Splitting: Each request to a user-level file system is eventually
translated into one or more system calls. For example, an application-level
write request to a NTFS-3g file-system is translated to a sequence of block
reads and writes where NTFS-3g reads in the meta-data and data blocks of
the file and writes them back after updating them.

• Access Through System Calls:Any external calls that the user-level file
system needs to make are issued through the system-call interface. These
requests are serviced by either the local system (e.g., the disk) or a remote
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File System Category LOC Downloads

NTFS-3g block-based 32K n/a

ext2fuse block-based 19K 40K

AVFS pass-through 39K 70K

TagFS pass-through 2K 400

SSHFS network-based 4K 93K

HTTPFS network-based 1K 8K

Table 5.1:Reference Model File Systems.The table shows different aspects of the
reference-model file systems. Category column indicates the underlying communi-
cation mechanisms used by user-level file systems to persistdata. LOC column
indicates the lines of code in each of the file system. Downloads column indicates
the download count for the user-level file system mentioned in the user-level file
system websites as of September 1st, 2010. Various definitions have been used to
compress the description. Block-based denotes that file systems use the raw block-
device interface to store data; pass-through denotes that user-level file system is
running on top of a kernel-level file system and stores data inthe kernel-level file
system. Network-based denotes that the user-level file system uses sockets to com-
municate with the underlying data access mechanism to storedata.

server (e.g., a web server); in either case, system calls aremade by the user-
level file system in order to access such services.

• Output Determinism: For a given request, the user-level file system always
performs the same sequence of operations. Thus, on replay ofa particular
request, the user-level file system outputs the same values as the original
invocation [2].

• Synchronous Writes: Both dirty data and meta-data generated while serv-
ing a request are immediately written back to the underlyingsystem. Unlike
kernel-level file systems, a user-level file system does not buffer writes in
memory; doing so makes a user-level file system stateless, a property adhered
to by many user-level file systems in order to afford a simplerimplementa-
tion.

Our reference model clearly does not describe all possible user-level file-system
behaviors. The FUSE framework does not impose any rules or restrictions on how
one should implement a file system; as a result, it is easy to deviate from our refer-
ence model, if one desires. We discuss this issue further at the end of Section 5.3.
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5.2.2 Challenges

FUSE in its current form does not tolerate any file-system mistakes. On a user-
level file system crash, the kernel cleans up the resources ofthe killed file-system
process, which forces FUSE to abort all new and in-flight requests of the user-level
file system and return an error (a “connection abort”) to the application process.
The application is thus left responsible for handling failures from the user-level file
system. FUSE also prevents any subsequent operations on thecrashed file system
until a user manually restarts it. As a result, the file systemremains unavailable
to applications during this process. Three main challengesexist in restarting user-
level file systems; we now discuss each in detail.

Generic Recovery Mechanism

Currently there are hundreds of user-level file systems and most of them do not have
in-built crash-consistency mechanisms. Crash consistency mechanisms such as
journaling or snapshotting could help restore file-system state after a crash. Adding
such mechanisms would require significant implementation effort, not only for
user-level file-systems but also to the underlying data-management system. Thus,
any recovery mechanism should not depend upon the user-level file system itself in
order to perform recovery.

Synchronized State

Even if a user-level file system has some in-built crash-consistency mechanism,
leveraging such a mechanism could still lead to a disconnectbetween application
perceived file-system state and the state of the recovered file system. This discrep-
ancy arises because crash-consistency mechanisms group file-system operations
into a single transaction and periodically commit them to the disk; they are de-
signed only for power failures and not for soft crashes. Hence, on restart, a crash-
consistency mechanism only ensures that the file system is restored back to the last
known consistent state, which results in a loss of updates that occurred between the
last checkpoint and the crash. As applications are not killed on a user-level file-
system crash, the file-system state recovered after a crash may not be the same as
that perceived by applications. Thus, any recovery mechanism must ensure that the
file system and application eventually realize the same viewof file system state.
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Figure 5.2:SSHFS Create Operation. The figure shows a simplified version of
SSHFS processing a create request. The number within the gray circle indicates
the sequence of steps SSHFS performs to complete the operation. The FUSE, ap-
plication process, and network components of the OS are not shown for simplicity.

Residual State

The non-idempotent nature of system calls in user-level filesystems can leaveresid-
ual stateon a crash. This residual state prevents file systems from recreating the
state of partially-completed operations. Both undo or redoof partially completed
operations through the user-level file system thus may not work in certain situa-
tions. The create operation in SSHFS is a good example of suchan operation.
Figure 5.2 shows the sequence of steps performed by SSHFS during a create re-
quest. SSHFS can crash either before file create (Step 4) or before it returns the
result to the FUSE module (Step 5). Undo would incorrectly delete a file if it was
already present at the remote host if the crash happened before Step 4; redo would
incorrectly return an error to the application if it crashedbefore Step 5. Thus, any
recovery mechanism for user-level file systems must properly handle residual state.

5.3 Re-FUSE: Design and Implementation

Re-FUSE is designed to transparently restart the affected user-level file system
upon a crash, while applications and the rest of the operating system continue to
operate normally. In this section, we first present an overview of our approach. We
then discuss how Re-FUSE anticipates, detects, and recovers from faults. We con-
clude with a discussion of how Re-FUSE leverages many existing aspects of FUSE
to make recovery simpler, and some limitations of our approach.
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5.3.1 Overview

The main challenge for Re-FUSE is to restart the user-level file system without
losing any updates, while also ensuring the restart activity is both lightweight and
transparent. File systems arestateful, and as a result, both in-memory and on-disk
state needs to be carefully restored after a crash.

Unlike existing solutions, Re-FUSE takes a different approach to restoring the
consistency of a user-level file system after a file-system crash. After a crash, most
existing systems rollback their state to a previous checkpoint and attempt to restore
the state by re-executing operations from the beginning [31, 140, 165]. In contrast,
Re-FUSE does not attempt to rollback to a consistent state, but rather continues
forward from the inconsistent state towards a new consistent state. Re-FUSE does
so by allowing partially-completed requests to continue executing from where they
were stopped at the time of the crash. This action has the sameeffect as taking a
snapshot of the user-level file system (including on-going operations) just before
the crash and resuming from the snapshot during the recovery.

Most of the complexity and novelty in Re-FUSE comes in the fault anticipa-
tion component of the system. We now discuss this piece in greater detail, before
presenting the more standard detection and recovery protocols in our system.

5.3.2 Fault Anticipation

In anticipation of faults, Re-FUSE must perform a number of activities in order
to ensure it can properly recover once the said fault arises.Specifically, Re-FUSE
must track the progress of application-level file-system requests in order to continue
executing them from their last state once a crash occurs. Theinconsistency in file-
system state is caused by partially-completed operations at the time of the crash;
fault anticipation must do enough work during normal operation in order to help
the file system move to a consistent state during recovery.

To create light-weight continuous snapshots of a user-level file system, Re-
FUSE fault anticipation uses three different techniques: request tagging, system-
call logging, and uninterruptible system calls. Re-FUSE also optimizes its perfor-
mance through page versioning.

Request Tagging

Tracking the progress of each file-system request is difficult in the current FUSE
implementation. The decoupled execution model of FUSE combined with request
splitting at the user-level file system makes it hard for Re-FUSE to correlate an
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application request with the system calls performed by a user-level file system to
service said application request (see Sections 5.1.2 and 5.2.1 for details).

Request taggingenables Re-FUSE to correlate application requests with the
system calls that each user-level file system makes on behalfof the request. As the
name suggests, request tagging transparently adds a request ID to the task structure
of the file-system process (i.e., worker thread) that services it.

Re-FUSE instruments the libfuse layer to automatically setthe ID of the appli-
cation request in the task structure of the file-system thread whenever it receives a
request from the KFM. Re-FUSE adds an additional attribute to the task structure
to store the request ID. Any system call that the thread issues on behalf of the re-
quest thus has the ID in its task structure. On a system call, Re-FUSE inspects the
tagged request ID in the task structure of the process to correlate the system call
with the original application request. Re-FUSE also uses the tagged request ID in
the task structure of the file-system process to differentiate system calls made by
the user-level file system from other processes in the operating system. Figure 5.3
presents these steps in more detail.

System-Call Logging

Re-FUSE checkpoints the progress of individual application requests inside the
user-level file system by logging the system calls that the user-level file system
makes in the context of the request. On a restart, when the request is re-executed
by the user-level file system, Re-FUSE returns the results from recorded state to
mimic its execution.

The logged state contains the type, input arguments, and theresponse (return
value and data), along with a request ID, and is stored in a hash table called the
syscall request-response table. This hash table is indexed by the ID of the applica-
tion request. Figure 5.3 shows how system-call logging takes place during regular
operations.

Re-FUSE maintains the number of system calls that a file-system process makes
to differentiate between user-level file-system requests to the same system call with
identical parameters. For example, on a create request, NTFS-3g reads the same
meta-data block multiple times between other read and writeoperations. Without
a sequence number, it would be difficult to identify its corresponding entry in the
syscall request-response table. Additionally, the sequence number also serves as a
sanity check to verify that the system calls happen in the same order during replay.
Re-FUSE removes the entries of the application request fromthe hash table when
the user-level file system returns the response to the KFM.
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Figure 5.3:Request Tagging and System-call Logging.The figure shows how Re-
FUSE tracks the progress of individual file-system request.When KFM queues the
application requests(denoted by R with a subscript). Re-FUSE tracks the progress
of the request in the following way: (1) the request identifier is transparently at-
tached to the task structure of the worker thread at the libfuse layer; (2) the user-
level file system worker thread issues one or more system calls (denoted by S with
a subscript) while processing the request; (3 and 4) Re-FUSE (at the system call
interface) identifies these calls through the request ID in the caller’s task structure
and logs the input parameters along with the return value; (5) the KFM, upon re-
ceiving the response from the user-level file system for a request, deletes its entries
from the log.
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Non-interruptible System Calls

The threading model in Linux prevents this basic logging approach from working
correctly. Specifically, the threading model in Linux forces all threads of a process
to be killed when one of the thread terminates (or crashes) due to a bug. Moreover,
the other threads are killed independent of whether they areexecuting in user or
kernel mode. Our logging approach only works if the system call issued by the user-
level file system finishes completely, as a partially-completed system call could
leave some residual state inside the kernel, thus preventing correct replay of in-
flight requests (see Section 3.3.3 for details).

To remedy this problem, Re-FUSE introduces the notion ofnon-interruptible
system calls. Such a system call provides the guarantee that if a system call starts
executing a request, it continues until its completion. Of course, the system call
can still complete by returning an error, but the worker thread executing the system
call cannot be killed prematurely when one of its sibling threads is killed within
the user-level file-system. In other words, by using non-interruptible system calls,
Re-FUSE allows a user-level file-system thread to continue to execute a system call
to completion even when another user-level file-system thread is terminated due to
a crash.

Re-FUSE implements non-interruptible system calls by changing the default
termination behavior of a thread group in Linux. Specifically, Re-FUSE modifies
the termination behavior in the following way: when a threadabruptly terminates,
Re-FUSE allows other threads in the group to complete whatever system call they
are processing until they are about to return the status (anddata) to the user. Re-
FUSE then terminates said threads after logging their responses (including the data)
to the syscall request-response table.

Re-FUSE eagerly copies input parameters to ensure that the crashed process
does not infect the kernel. Lazy copying of input parametersto a system call in
Linux could potentially corrupt the kernel state as non-interruptible system calls
allow other threads to continue accessing the process state. Re-FUSE prevents ac-
cess to corrupt input arguments by eagerly copying in parameters from the user
buffer into the kernel and also by skippingCOPY FROM USERandCOPY TO USER

functions after a crash. It is important to note that the process state is never accessed
within a system call except for copying arguments from the user to the kernel at the
beginning. Moreover, non-interruptible system calls are enforced only for user-
level file system processes (i.e., enforced only for processes that have a FUSE re-
quest ID set in their task structure). As a result, other application processes remain
unaffected by non-interruptible system calls.
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Performance Optimizations

Logging responses of read operations has high overheads in terms of both time and
space as we also need to log the data returned with each read request. To reduce
these overheads, instead of storing the data as part of the log records, Re-FUSE
implementspage versioning, which can greatly improve performance. Re-FUSE
first tracks the pages accessed (and also returned) during each read request and then
marks them as copy-on-write. The operating system automatically creates a new
version whenever a subsequent request modifies the previously-marked page. The
copy-on-write flag on the marked pages is removed when the response is returned
back from the user-level file system to the KFM layer. Once theresponse is returned
back, the file-system request is removed from the request queue at the KFM layer
and need not be replayed back after a crash.

Page versioning does not work for network-based file systems, which use socket
buffers to send and receive data. To reduce the overheads of logging read opera-
tions, Re-FUSE also caches the socket buffers of the file-system requests until the
request completes.

5.3.3 Fault Detection

Re-FUSE detects faults in a user-level file-system through file-system crashes. As
discussed earlier, Re-FUSE only handles faults that are both transient and fail-stop.
Unlike kernel-level file systems, detection of faults in a user-level file system is
simple; Re-FUSE inspects the return value and the signal attached to the killed
file-system process to differentiate between regular termination and a crash.

Re-FUSE currently only implements a lightweight fault-detection mechanism.
Fault detection can be further hardened in user-level file systems by applying tech-
niques used in other systems [39, 121, 200]. Such techniquescan help to automat-
ically add checks (by code or binary instrumentation) to crash file systems more
quickly when certain types of bugs are encountered (e.g., out-of-bounds memory
accesses).

5.3.4 Fault Recovery

The recovery subsystem is responsible for restarting and restoring the state of the
crashed user-level file system. To restore the in-memory state of the crashed user-
level file system, Re-FUSE leverages the information about the file-system state
available through the KFM. Recovery after a crash mainly consists of the follow-
ing steps: cleanup, re-initialize, restore the in-memory state of the user-level file
system, and re-execute the in-flight file-system requests atthe time of the crash
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(see Section 3.3.3 for details). The decoupled execution model in the FUSE pre-
serves application state on a crash. Hence, application state need not be restored.
We now explain the steps in the recovery process in detail.

The operating system automatically cleans up the resourcesused by a user-
level file system on a crash. The file system is run as a normal process with no
special privileges by the FUSE. On a crash, like other killeduser-level processes,
the operating system cleans up the resources of the file system, obviating the need
for explicit state clean up.

Re-FUSE holds an extra reference on the FUSE device file object owned by
the crashed process. This file object is the gateway to the request queue that was
being handled by the crashed process and KFM’s view of the filesystem. Instead
of doing a new mount operation, the file-system process sendsa restart message to
the KFM to attach itself to the old instance of the file system in KFM. This action
also informs the KFM to initiate the recovery process for theparticular file system.

The in-memory file-system state required to execute file-system requests is re-
stored using the state cached inside the kernel (i.e., the VFS layer). Re-FUSE then
exploits the following property: an access on a user-level file-system object through
the KFM layer recreates it. Re-FUSE performs a lookup for each of the object
cached in the VFS layer, which recreates the corresponding user-level file-system
object in memory. Re-FUSE also uses the information returned in each call to point
the cached VFS objects to the newly created file-system object. It is important to
note that lookups do not recreate all file-system objects butonly those required to
re-execute both in-flight and new requests. To speed up recovery, Re-FUSE looks
up file-system objects lazily.

Finally, Re-FUSE restores the on-disk consistency of the user-level file-system
by re-executing in-flight requests. To re-execute the crashed file-system requests,
a copy of each request that is available in the KFM layer is putback on the re-
quest queue for the restarted file system. For each replayed request, the FUSE
request ID, sequence number of the external call, and input arguments are matched
with the entry in the syscall request-response table and if they match correctly, the
cached results are returned to the user-level file system. Ifthe previously encoun-
tered fault is transient, the user-level file system successfully executes the request
to completion and returns the results to the waiting application.

On an error during recovery, Re-FUSE falls back to the default FUSE behavior,
which is to crash the user-level file system and wait for the user to manually restart
the file system. An error could be due to a non-transient faultor a mismatch in one
or more input arguments in the replayed system call (i.e., violating our assumptions
about the reference file-system model). Before giving up on recovering the file
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system, Re-FUSE dumps useful debugging information about the error for the file-
system developer.

5.3.5 Leveraging FUSE

The design of FUSE simplifies the recovery process in a user-level file system for
the following four reasons. First, in FUSE, the file-system is run as a stand-alone
user-level process. On a file-system crash, only the file-system process is killed and
other components such as FUSE, the operating system, local file system, and even
a remote host are not corrupted and continue to work normally.

Second, the decoupled execution model blocks the application issuing the file-
system request at the kernel level (i.e., inside KFM) and a separate file-system
process executes the request on behalf of the application. On a crash, the decoupled
execution model preserves application state and also provides a copy of file-system
requests that are being serviced by the user-level file system.

Third, requests from applications to a user-level file system are routed through
the VFS layer. As a result, the VFS layer creates an equivalent copy of the in-
memory state of the file system inside the kernel. Any access (such as a lookup)
to the user-level file system using the in-kernel copy recreates the corresponding
in-memory object.

Finally, application requests propagated from KFM to a user-level file system
are always idempotent (i.e., this idempotency is enforced by the FUSE interface).
The KFM layer ensures idempotency of operations by changingall relative argu-
ments from the application to absolute arguments before forwarding it to the user-
level file system. The idempotent requests from the KFM allowrequests to be
re-executed without any side effects. For example, the readsystem call does not
take the file offset as an argument and uses the current file offset of the requesting
process; the KFM converts this relative offset to an absolute offset (i.e., an offset
from beginning of the file) during a read request.

5.3.6 Limitations

Our approach is obviously not without limitations. First, one of the assumptions
that Re-FUSE makes for handling non-idempotency is that operations execute in
the same sequence every time during replay. If file systems have some internal
non-determinism, additional support would be required from the remote (or host)
system to undo the partially-completed operations of the file system. For example,
consider block allocation inside a file system. The block allocation process is de-
terministic in most file systems today; however, if the file system randomly picked
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a block during allocation, the arguments to the subsequent replay operations (i.e.,
the block number of the bitmap block) would change and thus could potentially
leave the file system in an inconsistent state.

Re-FUSE does not currently support all I/O interfaces. For example, file sys-
tems cannot use mmap to write back data to the underlying system as updates to
mapped files are not immediately visible through the system-call interface. Sim-
ilarly, page versioning does not work in direct-I/O mode; Re-FUSE requires the
data to be cached within the page cache.

Multi-threading can also limit the applicability of Re-FUSE. For example, multi-
threading in block-based file systems could lead to race conditions during replay
of in-flight requests and hence data loss after recovery. Different threading models
could also involve multiple threads to handle a single request. For such systems, the
FUSE request ID needs to be explicitly transferred between the (worker) threads so
that the operating system can identify the FUSE request ID for which the corre-
sponding system call is issued.

The file systems in our reference model do not cache data in user space, but
user-level file systems certainly could do so to improve performance (e.g., to reduce
the disk or network traffic). For such systems, the assumption about the completion
of requests (by the time the response is written back) would be broken and result
in lost updates after a restart. One solution to handle this issue is to add a commit
protocol to the request-handling logic, where in addition to sending a response
message back, the user-level file system should also issue a commit message after
the write request is completed. Requests in the KFM could be safely thrown away
from the request queue only after a commit message is received from the user-
level file system. In the event of a crash, all cached requestsfor which the commit
message has not been received will be replayed to restore file-system state. For
multi-threaded file systems, Re-FUSE would also need to maintain the execution
order of requests to ensure correct replay. Moreover, if a user-level file system
internally maintains a special cache (for some reason), forcorrect recovery, the
file system would need to to explicitly synchronize the contents of the cache with
Re-FUSE.

5.3.7 Implementation Statistics

Our Re-FUSE prototype is implemented in Linux 2.6.18 and FUSE 2.7.4. Table 5.2
shows the code changes done in both FUSE and the kernel proper. For Re-FUSE,
around 3300 and 1000 lines of code were added to the Linux kernel and FUSE,
respectively. The code changes in libfuse include request tagging, fault detection,
and state restoration; changes in KFM center around supportfor recovery. The
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Component Original Added Modified
libfuse 9K 250 8
KFM 4K 750 10
Total 13K 1K 18

FUSE Changes

Component Original Added Modified
VFS 37K 3K 0
MM 28K 250 1
NET 16K 60 0
Total 81K 3.3K 1

Kernel Changes

Table 5.2:Implementation Effort. The table presents the code changes required
to transform FUSE and Linux 2.6.18 into their restartable counterparts.

code changes in the VFS layer correspond to the support for system-call logging,
and modifications in the MM and NET modules correspond to pageversioning and
socket-buffer caching respectively.

5.4 Evaluation

We now evaluate Re-FUSE in the following three categories: generality, robustness,
and performance. Generality helps to demonstrate that our solution can be easily
applied to other file systems with little or no change. Robustness helps show the
correctness of Re-FUSE. Performance results help us analyze the overheads during
regular operations and during a crash to see if they are acceptable.

All experiments were performed on a machine with a 2.2 GHz Opteron pro-
cessor, two 80GB WDC disks, and 2GB of memory running Linux 2.6.18. We
evaluated Re-FUSE with FUSE (2.7.4) using NTFS-3g (2009.4.4), AVFS (0.9.8),
and SSHFS (2.2) file systems. For SSHFS, we use public-key authentication to
avoid typing the password on restart.

5.4.1 Generality

To show Re-FUSE can be used by many user-level file systems, wechose NTFS-
3g, AVFS, and SSHFS. These file systems are different in theirunderlying data
access mechanism, reliability guarantees, features, and usage. Table 5.3 shows the
code changes required in each of these file systems to work with Re-FUSE.

From the table, we can see that file-system specific changes required to work
with Re-FUSE are minimal. To each user-level file system, we have added less
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File System Original Added Modified
NTFS-3g 32K 10 1
AVFS 39K 4 1
SSHFS 4K 3 2

Table 5.3:Implementation Complexity. The table presents the code changes re-
quired to transform NTFS-3g, AVFS and SSHFS into their restartable counterparts.

than 10 lines of code, and modified a few more. Some of these lines were added
to daemonize the file system and to restart the process in the event of a crash. A
few further lines were added or modified to make recovery workproperly. We now
discuss the changes in individual file systems.

NTFS-3g: NTFS-3g reads a few key metadata pages into memory during initial-
ization, just after the creation of the file system, and uses these cached pages to
handle subsequent requests. However, any changes to these key metadata pages
are immediately written back to disk while processing requests. On a restart of
the file-system process, NTFS-3g would again perform the same initialization pro-
cess. However, if we allow the process to read the current version of the metadata
pages, it could potentially access inconsistent data and may thus fail. To avoid this
situation, we return the oldest version of the metadata page(i.e., through page ver-
sioning) on restart, as the oldest version points to the version that existed before
the handling of a particular request (note that NTFS-3g works in single-threaded
mode).

AVFS: AVFS caches file handles from open requests to help speedup subsequent
accesses in the underlying file systems. On a restart, the cached file handles are
thrown away, this prevent requests from being properly executed through AVFS.
To make AVFS work with Re-FUSE, we simply increment the reference count of
open files and cache the file descriptor so that we can return the same file handle
when it is reopened again after a restart.

SSHFS: SSHFS internally generates its own request IDs to match the responses
from the remote host with waiting requests. The request IDs are stored inside
SSHFS and are lost on a crash. After restart, on replay of an in-flight request,
SSHFS generates new request IDs which could be different than the old ones. The
mismatch in request IDs would prevent system-call logging from operating cor-
rectly, as all parameters need to be exactly matched for SSHFS to process the re-
sponse. To make SSHFS work correctly with Re-FUSE, we made Re-FUSE uses
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the FUSE request ID tagged in the worker thread along with thesequence number
to match new request IDs with the old ones. Once requests are matched, Re-FUSE
correctly returns the cached response. Also, to mask the SSHFS crash from the
remote server, Re-FUSE holds an extra reference count on thenetwork socket, and
re-attaches it to the new process that is created. Without this action, upon a restart,
SSHFS would start a new session, and the cached file handle would not be valid in
the new session.

In summary, Re-FUSE represents a generic approach to achieve user-level file
system restartability; existing file systems can work with Re-FUSE with minimal
changes of adding a few lines of code.

5.4.2 Robustness

To analyze the robustness of Re-FUSE, we use fault injection. We employ both
controlled and random fault-injection to show the inability of current file systems
to tolerate faults and how Re-FUSE helps them.

The injected faults are fail-stop and transient. These faults try to mimic some
of the possible crash scenarios in user-level file systems. We first run the fault in-
jection experiments on a vanilla user-level file system running over FUSE and then
compare the results by repeating them over the adapted user-level file system run-
ning over Re-FUSE both with and without kernel modifications. The experiments
without the kernel modifications are denoted byRestartand those with the ker-
nel changes are denoted byRe-FUSE. We include the restart column to show that,
without the kernel support, simple restart and replay of in-flight operations does
not work well for FUSE.

Controlled Fault Injection

We employ controlled fault injection to understand how user-level file systems react
to failures. In these experiments, we exercise different file-system code paths (e.g.,
create(),mkdir(), etc.) and crash the file system by injecting transient faults
(such as a null-pointer dereference) in these code paths. Weperformed a total of
60 fault-injection experiments for all three file systems; we present the user-visible
results.

User-visible results help analyze the impact of a fault bothat the application and
the file-system level. We chooseapplication state, file-system consistency, andfile-
system stateas the user-visible metrics of interest. Application stateindicates how
a fault affects the execution of the application that uses the user-level file system.
File-system consistency indicates if a potential data losscould occur as a result of a
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fault. File-system state indicates if a file system can continue servicing subsequent
requests after a fault.

Tables 5.4, 5.5, and 5.6 summarizes the results of our fault-injection experi-
ments. The caption explains how to interpret the data in the table. We now discuss
the major observations and the conclusions of our fault-injection experiments.
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create fusecreate × × × e × √ √ √ √

mkdir fusecreate × × × e × √ √ √ √
symlink fusecreate × × × e × √ √ √ √
link link × × × e × √ √ √ √
rename link × × × e × √ √ √ √
open fuseopen ×

√ × √ √ √ √ √ √
read fuseread ×

√ × √ √ √ √ √ √
readdir fusereaddir ×

√ × √ √ √ √ √ √
readlink fusereadlink ×

√ × √ √ √ √ √ √
write fusewrite × × × √ × √ √ √ √
unlink delete × × × e × √ √ √ √
rmdir inodesync × × × e × √ √ √ √
truncate fusetruncate × × × √ × √ √ √ √
utime inodesync ×

√ × √ √ √ √ √ √

Table 5.4: NTFS-3g Fault Study. The table shows the affect of fault injections
on the behavior of NTFS-3g. Each row presents the results of asingle experiment,
and the columns show (in left-to-right order) the intended operation, the file system
function that was fault injected, how it affected the application, whether the file
system was consistent after the fault, and whether the file system was usable for
other operations. Various symbols are used to condense the presentation. For
application behavior, “

√
”: application observed successful completion of the operation; “ ×”:

application received the error “software caused connection abort”; “e”: application incorrectly

received an error.
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Regular Restart Re-Fuse
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create opencommon ×
√ × e

√ √ √ √ √

mkdir mkdir ×
√ × e

√ √ √ √ √
symlink symlink ×

√ × e
√ √ √ √ √

rename rename ×
√ × e

√ √ √ √ √
open opencommon ×

√ × √ √ √ √ √ √
read syncread ×

√ × √ √ √ √ √ √
readdir getdir ×

√ × √ √ √ √ √ √
readlink readlink ×

√ × √ √ √ √ √ √
write write ×

√ × √ √ √ √ √ √
unlink unlink ×

√ × e
√ √ √ √ √

rmdir rmdir ×
√ × e

√ √ √ √ √
truncate truncate ×

√ × √ √ √ √ √ √
chmod chmod ×

√ × √ √ √ √ √ √
stat getattr ×

√ × √ √ √ √ √ √

Table 5.5:SSHFS Fault Study. The table shows the affect of fault injections on
the behavior of SSHFS. Each row presents the results of a single experiment, and
the columns show (in left-to-right order) the intended operation, the file system
function that was fault injected, how it affected the application, whether the file
system was consistent after the fault, and whether the file system was usable for
other operations. Various symbols are used to condense the presentation. For
application behavior, “

√
”: application observed successful completion of the operation; “ ×”:

application received the error “software caused connection abort”; “e”: application incorrectly

received an error.
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Regular Restart Re-Fuse
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create mknod × × × e × √ √ √ √

mkdir mkdir × × × e × √ √ √ √
symlink symlink × × × e × √ √ √ √
link link × × × e × √ √ √ √
rename rename × × × e × √ √ √ √
open open ×

√ × √ √ √ √ √ √
read read ×

√ × √ √ √ √ √ √
readdir readdir ×

√ × √ √ √ √ √ √
readlink readlink ×

√ × √ √ √ √ √ √
write write × × × √ × √ √ √ √
unlink unlink × × × e × √ √ √ √
rmdir rmdir × × × e × √ √ √ √
truncate truncate × × × √ × √ √ √ √
chmod chmod ×

√ × √ √ √ √ √ √
stat getattr ×

√ × √ √ √ √ √ √

Table 5.6: AVFS Fault Study. The table shows the affect of fault injections on
the behavior of AVFS. Each row presents the results of a single experiment, and
the columns show (in left-to-right order) the intended operation, the file system
function that was fault injected, how it affected the application, whether the file
system was consistent after the fault, and whether the file system was usable for
other operations. Various symbols are used to condense the presentation. For
application behavior, “

√
”: application observed successful completion of the operation; “ ×”:

application received the error “software caused connection abort”; “e”: application incorrectly

received an error.
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Vanilla OS, FUSE, and File Systems

First, we analyze the vanilla versions of the file systems running on vanilla
FUSE and a vanilla Linux kernel. The results are shown in the leftmost result
columns in Tables 5.4, 5.5, and 5.6.

For NTFS-3g, in all experiments, the application always received a connection
abort error after the fault injection and was killed as it could not handle the error
from the file system. In all experiments, the file system was unusable after a fault
injection. Finally, the file system was only consistent for 36% of the fault-injection
experiments. The inconsistency was caused due to partiallycompleted operations
inside the file system (see request splitting in Section 5.2.1 for details).

For SSHFS, in all experiments, the application received a connection abort error
and the file system was unusable after a fault injection. Unlike NTFS-3g, the file
system was always consistent after fault injection. By design, SSHFS atomically
updates the changes to the remote host. The remote host is unaffected by the fault,
as faults are localized within the user-level file system (see Section?? for details).

For AVFS, in all experiments, application received a connection abort error
and the file system was unusable after a fault injection. The file system was only
consistent in 40% of the experiments. This is because unlikeSSHFS, not all file
system requests are atomic. Hence, some of the partially completed file system
requests resulted in the underlying system being inconsistent.

Overall, we observe that the vanilla versions of user-levelfile systems and
FUSE do a poor job in hiding failures from applications. In all experiments, the
user-level file system is unusable after the fault; as a result, applications have to
prematurely terminate their requests after receiving an error (a “software-caused
connection abort”) from FUSE. Moreover, in 40% of the cases,crashes lead to
inconsistent file system state.

Simple Restart

Second, we analyze the usefulness of fault-detection and simple restart at the
KFM without any explicit support from the operating system. The second result
columns (denoted by Restart) of Tables 5.4, 5.5, and 5.6 shows the result.

For NTFS-3g, in 50% of the fault injection experiments, an error was incor-
rectly returned to the application on a request retry after arestart. The file system
was consistent in 38% of the experiments; the percentage of consistent file-system
state is the same as that of the vanilla NTFS-3g file system. Finally, unlike the
vanilla file systems, the restart versions of the file system were usable after all fault
injection experiments.
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For SSHFS, in 43% of the experiments, an error was incorrectly returned to the
application on a request retry after a restart. In all experiments, the file system was
consistent and usable after a fault injection. The simple restart mechanism added
to FUSE was sufficient to restart the crashed file system and enabled it to service
subsequent requests.

For AVFS, in 47% of the experiments, an error was incorrectlyreturned to the
application on a requet retry after a restart. The file systemwas always usable after
the fault injection experiments. But, in 40% of the fault injection experiments, the
file system was left in an inconsistent state.

Overall, we observe that a simple restart of the user-level file system and replay
of in-flight requests at the KFM layer ensures that the application completes the
failed operation in the majority of the cases (around 60%). It still cannot, however,
re-execute a significant amount (around 40%) of partially-completed operations
due to the non-idempotent nature of the particular file system operation. Moreover,
an error is wrongly returned to the application and the crashes leave the file system
in an inconsistent state.

Restart Using Re-FUSE

Finally, we analyze the usefulness of Re-FUSE that includesrestarting the
crashed user-level file system, replaying in-flight requests, and has support from
the operating system for re-executing non-idempotent operations (i.e., all the sup-
port described in Section 5.3). The results of the experiments are shown in the
rightmost columns of Tables 5.4, 5.5, 5.6. From the table, wecan see that all faults
are handled properly, applications successfully completethe operation, and the file
system is always left in a consistent state.

Random Fault Injection

In order to stress the robustness of our system, we use randomfault injection. In the
random fault-injection experiments, we arbitrarily crashthe user-level file system
during different workloads and observe the user-visible results. The sort, Postmark,
and OpenSSH macro-benchmarks are used as workloads for these experiments;
each is described further below. We perform the experimentson the vanilla versions
of the user-level file systems, FUSE and Linux kernel, and on the adapted versions
of the user-level file systems that run with Re-FUSE.

We use three commonly-used macro-benchmarks to help analyze file-system
robustness (and later, performance). Specifically, we utilize the sort utility, Post-
mark [96], and OpenSSH [162]. The sort benchmark representsdata-manipulation
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File System Injected Faults Sort OpenSSH Postmark
+ FUSE (Survived) (Survived) (Survived)

NTFS-3g 100 0 0 0
SSHFS 100 0 0 0
AVFS 100 0 0 0

Table 5.7:Random Fault Injection in FUSE. The table shows the affect of ran-
domly injected crashes on the three file systems running on FUSE. The second
column refers to the total number of random (in terms of the crash point in the
code) crashes injected into the file system during the span oftime it is serving a
macro-benchmark. The crashes are injected by sending the signal SIGSEGV to the
file system process periodically. The right-most three columns indicate the number
of survived crashes by the reinforced file systems during each macro-benchmark.

File System Injected Faults Sort OpenSSH Postmark
+ Re-FUSE (Survived) (Survived) (Survived)

NTFS-3g 100 100 100 100
SSHFS 100 100 100 100
AVFS 100 100 100 100

Table 5.8:Random Fault Injection in Re-FUSE. The table shows the affect of
randomly injected crashes on the three file systems supported with Re-FUSE. The
details of the fault injection and data interpretation are in Table 5.7.

workloads, Postmark represents I/O-intensive workloads,and OpenSSH represents
user-desktop workloads.

Tables 5.7 and 5.8 present the result of our study. From Table5.8, we see that
Re-FUSE ensures that the application continues executing through the failures, thus
making progress. We also found that a vanilla user-level filesystem with no support
for fault handling cannot tolerate crashes (shown in the Table 5.7).

In summary, both from controlled and random fault injectionexperiments, we
see the usefulness of Re-FUSE in recovering from user-levelfile system crashes. In
a standard environment, a user-level file system is unusableafter the crash and ap-
plications using the user-level file system are killed. Moreover, in many cases, the
file system is left in an inconsistent state. In contrast, Re-FUSE, upon detecting a
user-level file system crash, transparently restarts the crashed user-level file system
and restores it to a consistent and usable state. It is important to understand that
even though Re-FUSE recovers cleanly from both controlled and random faults,
it is still limited in its applicability (i.e., Re-FUSE onlyworks for faults that are
both fail-stop and transient and for file systems that strictly adhere to the reference
file-system model)
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5.4.3 Performance

Though fault-tolerance is our primary goal, we also evaluate the performance of
Re-FUSE in the context of regular operations and recovery time. Performance
evaluation enables us to understand the overhead of runningthe system in the ab-
sence and presence of faults. Specifically, we measure the overhead of our system
during regular operations and also during user-level file system crashes to see if a
user-level file system running on Re-FUSE has acceptable overheads.

Regular Operations

We use both micro- and macro-benchmarks to evaluate the overheads during reg-
ular operation. Micro-benchmarks help analyze file-systemperformance for fre-
quently executed operations in isolation. We use sequential read/write, random
read/write, create, and delete operations as our micro benchmarks. These opera-
tions exercise the most frequently accessed code paths in file systems. The caption
in Table 5.9 describes our micro-benchmark configuration inmore detail. We also
use the previously-described macro-benchmarks sort, Postmark, and OpenSSH; the
caption in Table 5.10 describes the configuration parameters for our experiments.

Tables 5.9 and 5.10 show the results of micro- and macro-benchmarks, respec-
tively. From the tables, we can see that for both micro- and macro-benchmarks,
Re-FUSE has minimal overhead, often less than 3%. The overheads are small
due to in-memory logging and our optimization through page versioning (or socket
buffer caching in the context of SSHFS). The overheads of running NTFS-3g on
Re-FUSE are noticeable in some of the write-intensive micro-benchmark exper-
iments due to page versioning. These results show that the additional reliability
Re-FUSE achieves comes with negligible overhead for commonfile-system work-
loads, thus removing one important barrier of adoption for Re-FUSE.
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ntfs ntfs+ o/h sshfs sshfs+ o/h avfs avfs+ o/h
Benchmark Re-FUSE % Re-FUSE % Re-FUSE %
Sequential read 9.2 9.2 0.0 91.8 91.9 0.1 17.1 17.2 0.6

Sequential write 13.1 14.2 8.4 519.7 519.8 0.0 17.9 17.9 0.0

Random read 150.5 150.5 0.0 58.6 59.5 1.5 154.4 154.4 0.0

Random write 11.3 12.4 9.7 90.4 90.8 0.4 53.2 53.7 0.9

Create 20.6 23.2 12.6 485.7 485.8 0.0 17.1 17.2 0.6

Delete 1.4 1.4 0.0 2.9 3.0 3.4 1.6 1.6 0.0

Table 5.9: Microbenchmarks. This table compares the execution time (in sec-
onds) for various benchmarks for restartable versions of ntfs-3g, sshfs, avfs (on
Re-FUSE) against their regular versions on the unmodified kernel. Sequential
reads/writes are 4 KB at a time to a 1-GB file. Random reads/writes are 4 KB
at a time to 100 MB of a 1-GB file. Create/delete copies/removes 1000 files each of
size 1MB to/from the file system respectively. All workloadsuse a cold file-system
cache.

ntfs ntfs+ o/h sshfs sshfs+ o/h avfs avfs+ o/h
Benchmark Re-FUSE % Re-FUSE % Re-FUSE %
Sort 133.5 134.2 0.5145.0 145.2 0.1129.0 130.3 1.0
OpenSSH 32.5 32.5 0.0 55.8 56.4 1.1 28.9 29.3 1.4
PostMark 112.0 113.0 0.9 5683 5689 0.1141.0 143.0 1.4

Table 5.10:Macrobenchmarks. The table presents the performance (in seconds)
of different benchmarks running on both standard and restartable versions of ntfs-
3g, sshfs, and avfs. The sort benchmark (CPU intensive) sorts roughly 100MB of
text using the command-line sort utility. For the OpenSSH benchmark (CPU+I/O
intensive), we measure the time to copy, untar, configure, and make the OpenSSH
4.51 source code. PostMark (I/O intensive) parameters are:3000 files (sizes 4KB
to 4MB), 60000 transactions, and 50/50 read/append and create/delete biases.
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Vanilla Re-FUSE

Total Total Restart

File System Time (s) Time (s) Time (ms)

NTFS-3g 133.5 134.45 65.54

SSHFS 145.0 145.4 255.8

AVFS 129.0 130.7 6.0

Table 5.11:Restart Time in Re-FUSE.The table shows the impact of a single
restart on the restartable versions of the file systems. The benchmark used is sort
and the restart is triggered approximately mid-way throughthe benchmark.

Recovery Time

We now measure the overhead of recovery time in Re-FUSE. Recovery time is
the time Re-FUSE takes to restart and restore the state of thecrashed user-level
file system. To measure the recovery-time overhead, we ran the sort benchmark
ten times and crashed the file system half-way through each run. Sort is a good
benchmark for testing recovery as it makes many I/O system calls, and reads and
updates in-memory file-system state.

Table 5.11 shows the elapsed time and the average time Re-FUSE spent in
restoring the crashed user-level file system state. The restoration process includes
restart of the file-system process and restoring its in-memory state. From the table,
we can see that the restart time is on the order of a few milliseconds. The appli-
cation also does not see any observable increase in its execution time due to the
file-system crash.

In summary, both micro- and macro-benchmark results show that the perfor-
mance overheads during regular operations are minimal. Even in the event of a
file system crash, Re-FUSE restarts the user-level file system within a few hundred
milliseconds.

5.5 Summary

Software imperfections are common and are a fact of life especially for code that
has not been well tested. Even though user-level file systemscrashes are isolated
from the operating system by FUSE, the reliability of individual file systems has
not necessarily improved. File systems still remain unavailable to applications after
a crash. Re-FUSE embraces the fact that failures sometimes occur and provides a
framework to transparently restart crashed file systems.
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We develop a number of new techniques to enable efficient and correct user-
level file system restartability. In particular, request tagging allows Re-FUSE to
differentiate between concurrently-serviced requests; system-call logging enables
Re-FUSE to track (and eventually, replay) the sequence of operations performed
by a user-level file system; non-interruptible system callsensure that user-level
file-system threads move to a reasonable state before file system recovery begins.
Through experiments, we demonstrate that our techniques are reasonable in their
performance overheads and effective at detection and recovery from a certain class
of faults.

It is unlikely developers will ever build the “perfect” file system; Re-FUSE
presents one way to tolerate these imperfections.
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Chapter 6

Reliability through Reservation

“Act as if it were impossible to fail.”
– Dorothea Brande

Memory is one of the important resources that is widely used within the file
system and also across other operating-system components.Moreover, in a com-
plex system such as Linux, memory allocations can happen in avariety of ways
(e.g., kmalloc, kmem cache alloc, etc.). Previous studies have shown that
memory-allocation failure can lead to catastrophic results in file systems [50, 71,
120, 197].

In this chapter, we explore the possibility of improving thereliability of file sys-
tems through resource reservation. We take a new approach tosolving the problem
presented by memory-allocation failures by following a simple mantra:the most
robust recovery code is recovery code that never runs at all. In other words, our
goal is to eliminate the recovery code that deals with memory-allocation failures to
the largest possible extent.

There are a few challenges in doing it this way. First, we needa mechanism to
identify all possible memory allocation calls during each system call. Second, we
need to know the type and parameters of the objects that need to be allocated. Third,
seamlessly pre-allocate and return the corresponding objects at runtime. Four, safe
way to clean up any unused pre-allocated objects at the end ofeach system call.

Our approach is calledAnticipatory Memory Allocation (AMA). The basic idea
behind AMA is simple. First, using both a static analysis tool and domain knowl-
edge, the developer determines a conservative estimate of the total memory alloca-
tion demand of each call into the kernel subsystem of interest. Using this informa-
tion, the developer then augments the code to pre-allocate the requisite amount of
memory at run-time, immediately upon entry into the kernel subsystem. The AMA
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run-time then transparently redirects existing memory-allocation calls to use mem-
ory from the pre-allocated chunk. Thus, when a memory allocation takes place
deep in the heart of the kernel subsystem, it is guaranteed never to fail.

The rest of this chapter is organized as follows. First, in Section 6.1, we present
a background on memory allocation in Linux. Then in Section 6.2, we present our
study of how Linux file systems react to memory failure. Then we give an overview
of our approach in Section 6.3. We present the design and implementation of AMA
in Section 6.4 and Section 6.5, respectively. Finally, in Section 6.6 we evaluate
AMA’s robustness and performance.

6.1 Linux Memory Allocators

We provide some background on kernel memory allocation. We describe the many
different ways in which memory is explicitly allocated within the kernel. Our dis-
cussion revolves around the Linux kernel (with a focus on filesystems), although in
our belief the allocation types shown here likely to exist inother modern operating
systems.

6.1.1 Memory Zones

At the lowest level of memory allocation within Linux is a buddy-based allocator
of physical pages [25]. The buddy-based allocator uses low-level routines such as
alloc pages() andfree pages() to request and return pages, respectively.
These functions serve as the basis for the allocators used for kernel data structures
(described below), although they can be called directly if so desired.

6.1.2 Kernel Allocators

Most dynamic memory requests in the kernel use the Linuxslab allocator, which is
based on Bonwick’s original slab allocator for Solaris [22](a newer SLUB allocator
provides the same interfaces but is internally simpler). The premise behind the
slab allocator is that certain objects are repeatedly created and destroyed by the
kernel; the allocator thus keeps separate caches for a rangeof allocation sizes (from
32 bytes to 128 KB, in powers of 2), and thus can readily recycle freed memory
and avoid fragmentation. One simply calls the generic memory allocation routines
kmalloc() andkfree() to use these facilities.

For particularly popular objects, specialized caches can be explicitly created.
To create such a cache, one callskmem cache create(), which (if success-
ful) returns a reference to the newly-created object cache;subsequent calls to
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kmem
cache mempool alloc

kmalloc alloc vmalloc create pages
btrfs 93 7 3 0 1
ext2 8 1 0 0 0
ext3 12 1 0 0 0
ext4 26 10 1 0 0
jfs 18 1 2 1 0
reiser 17 1 5 0 0
xfs 11 1 0 1 1

Table 6.1:Usage of Different Allocators. The table shows the number of differ-
ent memory allocators used within Linux file systems. Each column presents the
number of times a particular routine is found in each file system.

kmem cache alloc() are passed this reference and return memory for the spe-
cific object. Hundreds of these specialized allocation caches exist in a typical sys-
tem (see/proc/slabinfo); a common usage for a file system, for example, is
an inode cache.

Beyond these commonly-used routines, there are a few other ways to request
memory in Linux. Amemory poolinterface allows one to reserve memory for
use in emergency situations. Finally, thevirtual malloc interface requests in-kernel
pages that are virtually (but not necessarily physically) contiguous.

To demonstrate the diversity of allocator usage, we presenta study of the pop-
ularity of these interfaces within a range of Linux file systems. Table 6.1 presents
our results. As one can see, although the generic interfacekmalloc() is most
popular, the other allocation routines are used as well. Forkernel code to be robust,
it must handle failures from all of these allocation routines.

6.1.3 Failure Modes

When calling into an allocator, flags determine the exact behavior of the alloca-
tor, particularly in response to failure. Of greatest import to us is the use of the
GFP NOFAIL flag, which a developer can use when they know their code can-

not handle an allocation failure; using the flag is the only way to guarantee that
an allocator will either return successfully or not return at all (i.e., keep trying for-
ever). However, this flag is rarely used. As lead Linux kerneldeveloper Andrew
Morton said [119]: “ GFP NOFAIL should only be used when we have no way
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of recovering from failure. ... Actually, nothing in the kernel should be using
GFP NOFAIL. It is there as a marker which says ’we really shouldn’t be doing

this but we don’t know how to fix it’.” In all other uses of kernel allocators, failure
is thus a distinct possibility.

6.2 Bugs in Memory Allocation

Memory-allocation failures are an issues in many systems, as developers do not
always handle rare events like allocation failures. Earlier work has repeatedly
found that memory-allocation failure is often mishandled [49, 197]. In Yanget al.’s
model-checking work, one key to finding bugs is to follow the code paths where
memory allocation has failed [197].

We now perform a brief study of memory-allocation failure handling within
Linux file systems. We use fault injection to fail calls to thevarious memory allo-
cators and determine how the code reacts as the number of suchfailures increases.
Our injection framework picks a certain allocation call (e.g., kmalloc()) within
the code and fails it probabilistically; we then vary the probability and observe how
the kernel reacts as an increasing percentage of memory-allocation calls fail. For
the workload, we created a micro-benchmark that performs a mix of file-system
operations (such as read, write, create, delete, open, close, and lookup). Table 6.2
presents our results, which sums the failures seen in 15 runsper file system, while
changes the probability of an allocation request failing for 0%, 10% and 50% of
the time.

We report the outcomes in two categories: process state and file-system state.
The process state results are further divided into two groups: the number of times
(in 15 runs) that a running process received an error (such asENOMEM), and the
number of times that a process was terminated abnormally (i.e., killed). The file
system results are split into two categories as well: a countof the number of times
that the file system became unusable (i.e., further use of thefile system was not
possible after the trial), and the number of times the file system became inconsistent
as a result, possible losing user data.

From the table, we can make the following observations. First, we can see that
even a simple, well-tested, and slowly-evolving file systemsuch as Linux ext2 still
does not handle memory-allocation failures very well; we take this as evidence that
doing so is challenging. Second, we observe that all file systems have difficulty
handling memory-allocation failure, often resulting in anunusable or inconsistent
file system.

An example of how a file-system inconsistency can arise is found in Figure 6.1.
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Process State File-System State
Error Abort Unusable Inconsistent

btrfs0 0 0 0 0
btrfs10 0 14 15 0
btrfs50 0 15 15 0
ext20 0 0 0 0
ext210 10 5 5 0
ext250 10 5 5 0
ext30 0 0 0 0
ext310 10 5 5 4
ext350 10 5 5 5
ext40 0 0 0 0
ext410 10 5 5 5
ext450 10 5 5 5
jfs0 0 0 0 0
jfs10 15 0 2 5
jfs50 15 0 5 5
reiserfs0 0 0 0 0
reiserfs10 10 4 4 0
reiserfs50 10 5 5 0
xfs0 0 0 0 0
xfs10 13 1 0 3
xfs50 10 5 0 5

Table 6.2: Fault Injection Results. The table shows the reaction of the Linux
file systems to memory-allocation failures as the probability of a failure increases.
We randomly inject faults into the three most-used allocation calls: kmalloc(),
kmem cache alloc(), and alloc pages(). For each file system and each
probability (shown as subscript), we run a micro benchmark 15 times and report
the number of runs in which certain failures happen in each column. We categorize
all failures into process state and file-system state, in which ’Error’ means that file
system operations fail (gracefully), ’Abort’ indicates that the process was termi-
nated abnormally, ’Unusable’ means the file system is no longer accessible, and
’Inconsistent’ means file system metadata has been corrupted and data may have
been lost. Ideally, we expect the file systems to gracefully handle the error (i.e.,
return error) or retry the failed allocation request. Aborting a process, inconsistent
file-system state, and unusable file system are unacceptableactions on an memory
allocation failure.
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empty_dir() [file: namei.c]
if (...|| !(bh = ext4_bread(..., &err)))
...
return 1; // XXX: should have returned 0

ext4_rmdir() [file: namei.c]
retval = -ENOTEMPTY;
if (!empty_dir(inode))
goto end_rmdir;

retval = ext4_delete_entry(handle, dir, de, bh);
if (retval)
goto end_rmdir;

Figure 6.1: Improper Failure Propagation. The code shown in the figure is
from the ext4 file system, and shows a case where a failed low-level allocation
(in ext4 bread()) is not properly handled, which eventually leads toan inconsistent
file system.

In this example, while trying to remove a directory from the file system (i.e., the
ext4 rmdir function), the routine first checks if the directory is emptyby calling
empty dir(). This routine, in turn, callsext4 bread() to read the directory
data. Unfortunately, due to our fault injection,ext4 bread() tries to allocate
memory but fails to do so, and thus the call toext4 bread() returns an error
(correctly). The routineempty dir() incorrectly propagates this error, simply
returning a 1 and thus accidentally indicating that the directory is empty and can
be deleted. Deleting a non-empty directory not only leads toa hard-to-detect file-
system inconsistency (despite the presence of journaling), but also could render
inaccessible a large portion of the directory tree.

Finally, a closer look at the code of some of these file systemsreveals a third
interesting fact: in a file system under active development (such as btrfs), there
are many places within the code where memory-allocation failure is never checked
for; our inspection has yielded over 20 places within btrfs such as this. Such trivial
mishandling is rarer inside more mature file systems.

Overall, our results hint at a broader problem: developers write code as if mem-
ory allocation will never fail; only later do they (possibly) go through the code and
attempt to “harden” it to handle the types of failures that might arise. Proper han-
dling of such errors, as seen in the ext4 example, is a formidable task, and as a
result, such hardening sometimes remains “softer” than desired.
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Summary

Kernel memory allocation is complex, and handling failuresstill proves challeng-
ing even for code that is relatively mature and generally stable. We believe these
problems are fundamental given the way current systems are designed; specifically,
to handle failure correctly, adeep recoverymust take place, where far downstream
in the call path, one must either handle the failure, or propagate the error up to the
appropriate error-handling location while concurrently making sure to unwind all
state changes that have taken place on the way down the path. Earlier work has
shown that the simple act of propagating an error correctly in a complex file system
is challenging [71]; doing so and correctly reverting all other state changes presents
further challenges. Although deep recovery is possible, webelieve it is usually
quite hard, and thus error-prone. More sophisticated bug-finding tools could be
built, and further bugs unveiled; however, to truly solve the problem, an alternate
approach to deep recovery is likely required.

6.3 Overview

We now present an overview ofAnticipatory Memory Allocation (AMA), a novel
approach to solve the memory-allocation failure-handlingproblem. The basic idea
is simple: first, we analyze the code paths of a kernel subsystem to determine what
its memory requirements are. Second, we augment the code with a call to pre-
allocate the necessary amounts. Third, we transparently redirect allocation requests
during run-time to use the pre-allocated chunks of memory.

Figure 6.2 shows a simple example of the transformation. In the figure, a simple
entry-point routinef1() calls one otherdownstreamroutine,f2(), which in turn
calls f3(). Each of these routines allocates some memory during their normal
execution, in this case 100 bytes byf2() and 25 bytes byf3().

With AMA, we analyze the code paths to discover the worst-case allocation
possible; in this example, the analysis is simple, and the result is that two memory
chunks, of size 100 and 25 bytes, are required. Then, before calling intof2(), one
calls into the anticipatory memory allocator to pre-allocate chunks of 100 and 25
bytes. The modified run-time then redirects all downstream allocation requests to
use this pre-allocated pool. Thus the calls to allocate 100 and 25 bytes inf2() and
f3() (respectively) will use memory already allocated by AMA, and are guaran-
teed not to fail.

The advantages of this approach are many. First, memory-allocation failures
never happen downstream, and thus there is no need to handle said failures; the
complex unwinding of kernel state and error propagation arethus avoided entirely.
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void f2() {
void *p = malloc(100);
f3();

}

void f3() {
void *q = malloc(25);

}

int f1() {
// AMA: Pre-allocate 100- and 25-byte chunks
f2();
// AMA: Free any unused chunks

}

Figure 6.2:Simple AMA Example. The code presents a simple example of how
AMA is used. In the unmodified case, routinef1() callsf2(), which callsf3(),
each of which allocate some memory (and perhaps incorrectlyhandle their failure).
With AMA,f1() pre-allocates the full amount needed; subsequent calls to allocate
memory are transparently redirected to use the pre-allocated chunks instead of
calling into the real allocators, and any remaining memory is freed.

Second, because allocation failure can only happen in only one place in the code
(at the top), it is easy to provide a unified handling mechanism; for example, if the
call to pre-allocate memory fails, the developer could decide to immediately return
a failure, retry, or perhaps implement a more sophisticatedexponential backoff-
and-retry approach, all excellent examples of theshallow recoveryAMA enables.
Third, very little code change is required; except for the calls to pre-allocate and
perhaps free unused memory, the bulk of the code remains unmodified, as the run-
time transparently redirects downstream allocation requests to use the pre-allocated
pool.

Unfortunately, code in real systems is not as simple as that found in the figure,
and indeed, the problem of determining how much memory needsto be allocated
given an entry point into a complex code base is generally undecidable. Thus, the
bulk of our challenge is transforming the code and gaining certainty that we have
done so correctly and efficiently. To gain a better understanding of the problem, we
must choose a subsystem to focus upon, and transform it to useAMA.
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void ext2 init block alloc info(struct inode *inode)
{

struct ext2 inode info *ei = EXT2 I(inode);
struct ext2block alloc info *block i = ei→i block alloc info;
block i = kmalloc(sizeof(*block i), GFP NOFS);
...

}

Figure 6.3:A Simple Call. This code is a good example of a simple call in the ext2
file system. The memory allocation routine kmalloc allocates an object (blocki)
that is equal to the size of ext2block alloc info structure. This size is determined
at the compile time and does not change across invocations.

6.3.1 A Case Study: Linux ext2-mfr

The case study we use is the Linux ext2 file system. Although simpler than its
modern journaling cousins (i.e., ext3 and ext4), ext2 is a real file system and has
enough complex memory-allocation behavior (as described below) to demonstrate
the intricacies of developing AMA for a real kernel subsystem.

We describe our effort to transform the Linux ext2 file systeminto a memory-
robust version of itself, which we call Linux ext2-mfr (i.e., a version of ext2 that
is Memory-Failure Robust). In our current implementation,the transformation re-
quires some human effort and is aided by a static analysis tool that we have de-
veloped. The process could be further automated, thus easing the development of
other memory-robust file systems; we leave such efforts to future work.

We now highlight the various types of allocation requests that are made, from
simpler to more complex. By doing so, we are showing what workneeds to be
done to be able to correctly pre-allocate memory before calling into ext2 routines,
and thus shedding light on the types of difficulties we encountered during the trans-
formation process.

Simple Calls

Most of the memory-allocation calls made by the kernel are ofa fixed size. Allo-
cating file system objects such as dentry, file, inode, and page have pre-determined
sizes. For example, file systems often maintain a cache of inode objects, and thus
must have memory allocated for them before being read from disk. Figure 6.3
shows one example of such a call from ext2.
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struct dentry *d alloc(..., struct qstr *name) {
...
if (name→len > DNAME INLINE LEN-1) {
dname = kmalloc(name→len + 1, GFP KERNEL);
if (!dname)

return NULL;
...

}
}

Figure 6.4:A Parameterized and Conditional Call. This code represents a sim-
plified version of the dentry allocation function, which is agood example of both
parameterized and conditional call. The size of the object (dname) that needs to
be allocated depends on the input parameter (name) and the allocation will only
happen if the condition (name→len > DNAME INLINE LEN-1) holds true.

Parameterized and Conditional Calls

Some allocated objects have variable lengths (e.g., a file name and extended at-
tributes) and the exact size of the allocation is determinedat run-time; sometimes
allocations are not performed due to conditionals. Figure 6.4 shows how ext2 al-
locates memory for a directory entry, which uses a length field (plus one for the
end-of-string marker) to request the proper amount of memory. This allocation is
only performed if the name is too long and requires more spaceto hold it.

Loops

In many cases, file systems allocate objects inside a loop or inside nested loops. In
ext2, the upper bound of the loop execution is determined by the object passed to
the individual calls. For example, allocating pages to search for directory entries
are done inside a loop. Another good example is searching fora free block within
the block bitmaps of the file system. Figure 6.5 shows the pageallocation code
during directory lookups in ext2.

Function Calls

Of course, a file system is spread across many functions, and hence any attempt to
understand the total memory allocation of a call graph givenan entry point must
be able to follow all such paths, sometimes into other major kernel subsystems.
For example, one memory allocation request in ext2 is invoked 21 calls deep; this
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ext2 find entry (struct inode * dir, ...)
{

unsigned long npages = dir pages(dir);
unsigned long n = 0;
do {
page = ext2 get page(dir, n,..); // allocate a page
...
if (ext2 match entry (...));

goto found;
...
n++;

} while (n != npages); // worst case: n = npages
found:
return entry;

}

Figure 6.5:Loop Calls. This is a code snippet from the ext2 file system that belongs
to the directory entry search function. In the worst case, the number of pages that
need to be allocated before the entry is found (if present) depends on the size of the
directory (dir) that is being searched.

example path starts atsys open, traverses through some link-traversal and lookup
code, and ends with a call tokmem cache alloc.

Recursions

A final example of an in-kernel memory allocation is one that is performed within
a recursive call. Some portions of file systems are naturallyrecursive (e.g., path-
name traversal), and thus perhaps it is no surprise that recursion is commonplace.
Figure 6.6 shows the block-freeing code that is called when afile is truncated or
removed in ext2; in the example,ext2 free branches calls itself to recurse
down indirect-block chains and free blocks as need be.

6.3.2 Summary

To be able to pre-allocate enough memory for a call, one must handle parameter-
ized calls, conditionals, loops, function calls, and recursion. If file systems only
contained simple allocations and minimal amounts of code, pre-allocation would
be rather straightforward.
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static void
ext2 free branches(struct inode *inode, ..., int depth){

if (depth--) {
...
// allocate a page and buffer head
bh = sb bread(inode→i sb, ..);
...
ext2 free branches(inode,

( le32*) bh→b data,
( le32*) bh→b data + addr per block,
depth);

} else
ext2 free data(inode, ...);

}

Figure 6.6: Recursion. This code snippet is an example of memory allocation
invocation inside a recursion. The function shown here is the ext2free branches,
which frees any triple-, double-, and single-indirect blocks associated with a data
block that is being freed in the ext2 file system. The termination condition for the
recursion is the depth of the branch (i.e., the input parameter depth), which also
determines the number of buffer heads and pages that need to be pre-allocated to
avoid any allocation failures while executing this function.

6.4 Static Transformation

We now present the static-analysis portion of AMA, in which we develop a tool,the
AMAlyzer, to help decide how much memory to pre-allocate at each entrypoint into
the kernel subsystem that is being transformed (in this case, Linux ext2). The AM-
Alyzer takes in the entire relevant call graph and produces askeletal version, from
which the developer can derive the proper pre-allocation amounts. After describing
the tool, we present two novel optimizations we employ, cache peeking and page
recycling, to reduce memory demands. We end the section witha discussion of the
limits of our current approach.

We build the AMAlyzer on top of CIL [122], a tool that allows usto read-
ily analyze kernel source code. CIL does not resolve function pointers automati-
cally, which we require for our complete call graph, and hence we perform a small
amount of extra work to ensure we cover all calls made in the context of the file
system; because of the limited and stylized use of function pointers within the ker-
nel, this process is straightforward. The AMAlyzer in its current form is comprised
of a few thousand lines of OCaml code.
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6.4.1 The AMAlyzer

We now describe the AMAlyzer in more detail. AMA consists of two phases.
In the first phase, the tool searches through the entire subsystem to construct the
allocation-relevant call graph (i.e., the complete set of downstream functions that
contain kernel memory-allocation requests). In the secondphase, a more complex
analysis determines which variables and state are relevantto allocation calls, and
prunes away other irrelevant code. The result is a skeletal form of the subsystem in
question, from which the pre-allocation amounts are readily derived.

Phase 1: Allocation-Relevant Call Graph

We start our analysis with the entire call graph (shown in Figure 6.7). The relevant
portion of the call graph for ext2 (and all related components of the kernel) con-
tains nearly 2000 nodes (one per relevant function) and roughly 7000 edges (calls
between functions) representing roughly 180,000 lines of kernel source code. Even
for a relatively-simple file system such as ext2, the task of manually computing the
pre-allocation amount would be daunting, without automated assistance.

The first step of our analysis prunes the entire call graph andgenerates what
we refer to as theallocation-relevant call graph (ARCG). The ARCG contains only
nodes and edges in which a memory allocation occurs, either within a node of the
graph or somewhere downstream of it.

We perform a Depth First Search (DFS) on the call graph to generate ARCG.
An additional attribute namelycalls memoryallocation (CMA), is added to each
node (i.e., function) in the call graph to speed up the ARCG generation. The CMA
attribute is set on two occasions. First, when a memory allocation routine is en-
countered during the DFS. Second, a node has its CMA set if at least one of the
node’s children has its CMA attribute set.

At the end of the DFS, the functions that do not have the CMA attribute set are
safely deleted from the call graph. The remaining nodes in the call graph constitute
the ARCG. Figure 6.8 shows the ARCG for the ext2 file system.

Phase 2: Loops and Recursion

At this point, the tool has reduced the number of functions that must be examined.
In this part of the analysis, we add logic to handle loops and recursions, and where
possible, to help identify their termination conditions. The AMAlyzer searches for
all for, while, andgoto-based loops, and walks through each function within
such a loop to find either direct calls to kernel memory allocators or indirect calls
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Figure 6.7:The ext2 Call Graph. The figure plots the call graph for the ext2 file
system. The gray nodes at the top represent entry points intothe file system (such
assys open()), and the black dots at the bottom are different memory allocators
(such askmalloc()). The dots in the middle represent functions in ext2 and the
kernel, and lines between such dots (i.e., functions) indicate a function call.



119

Figure 6.8:The ext2 Allocation-Relevant Call Graph.The figure plots the ARCG
for the ext2 file system. The larger gray nodes represent entry points into the file
system, and the black nodes are different memory allocatorscalled by ext2 either
directly or indirectly. The smaller gray nodes represent functions in ext2 and the
kernel, and dotted lines between such functions indicate the presence of a loop.
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through other routines. To identify goto-based loops, AMA uses the line num-
bers of the labels that the goto statements point to. To identify both recursions
and function-call based loops, AMA performs a DFS on the ARCGand for every
function encountered during the search, it checks if the function has been explored
before. Once these loops are identified, the tool searches for and outputs the ex-
pressions that affect termination.

Phase 3: Slicing and Backtracking

The goal of this next step is to perform a bottom-up crawl of the graph, and produce
a minimized call graph with only the memory-relevant code left therein. We use a
form of backward slicing [190] to achieve this end.

In our current prototype, the AMAlyzer only performs a bottom-up crawl until
the beginning of each function. In other words, the slicing is done at the function
level and developer involvement is required to perform backtracking. To backtrack
until the beginning of a system call, the developer has to manually use the output
of slicing for each function (including the dependent inputvariables that affect the
allocation size/count) and invoke the slicing routine on its caller functions. The
caller functions are identified using the ARCG.

6.4.2 AMAlyzer Summary

As we mentioned above, the final output is a skeletal graph which can be used by
the developer to arrive at the final pre-allocations with thehelp of slicing support
in the AMAlyzer. For ext2-mfr, the reduction in code is dramatic: from nearly
200,000 lines of code across 2000 functions (7000 function calls) down to less
than 9,000 lines across 300 functions (400 function calls),with all relevant vari-
ables highlighted. Arriving upon the final pre-allocation amounts then becomes a
straightforward process.

Table 6.3 summarizes the results of our efforts. In the table, we present the pa-
rameterized memory amounts that must be pre-allocated for the 13 most-relevant
entry points into the file system. From the table, we can see that number of allo-
cated objects depend on the input paramenters (such asNameLength), format-time
parameters (such asWorst(Bitmap)), and size of files or directories that are cur-
rently being accessed (such asSize(ParentDir)).
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Entry point Pre-allocation required
truncate() (Worst(Bitmap) + Worst(Indirect)) × (PageSize + BufferHead)
lookup() (1 + Size(ParentDir)) × (PageSize + BufferHead) + Inode + Dentry + NameLength+

NamesCache

lookuphash() (1 + Size(ParentDir)) × (PageSize + BufferHead) + Inode + Dentry + NameLength + Filp

sysopen() lookup() + lookuphash() + (4 + Depth(Inode) + Worst(Bitmap)) × PageSize+
(5 + Depth(Inode) + Worst(Bitmap)) × BufferHead + Inode + truncate()

sysread() (count + ReadAhead + Worst(Bitmap) + Worst(Indirect)) × (PageSize + BufferHead)
syswrite() (count + Worst(Bitmap)) × (PageSize + BufferHead) + sizeof(ext2 block allocinfo)
mkdir() lookup() + lookuphash() + (Depth(ParentInode) + 4) × PageSize+

(Depth(Inode) + 8) × BufferHead

unlink() lookup() + lookuphash() + (1 + Depth(Inode)) × (PageSize + BufferHead)
rmdir() lookup() + lookuphash() + (3 + Depth(Inode)) × (PageSize + BufferHead)
access() lookup() + NamesCache

chdir() lookup() + NamesCache

chroot() lookup() + NamesCache

statfs() lookup() + NamesCache

Table 6.3:Pre-Allocation Requirements for ext2-mfr. The table shows the worst-case memory requirements of the
various system calls in terms of the kmemcache, kmalloc, and page allocations. The following types of kmemcache are
used: NamesCache (4096 bytes),BufferHead (52 bytes),Inode (476 bytes),Filp (128 bytes), andDentry (132
bytes). ThePageSize is constant at 4096 bytes. The other terms used above include: Count: the number of blocks
read/written,ReadAhead: the number of read-ahead blocks,Worst(Bitmap): the number of bitmap blocks that needs
to be read,Worst(Indirect): the number of indirect blocks to be read for that particularblock, Depth(inode): the
maximum number of indirect blocks to be read for that particular inode, andSize(inode): the number of pages in the
inode.
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6.4.3 Optimizations

As we transformed ext2 into ext2-mfr, we noticed a number of opportunities for
optimization, in which we could reduce the amount of memory pre-allocated along
some paths. We now describe two novel optimizations.

Cache Peeking

The first optimization,cache peeking, can greatly reduce the amount of pre-allocated
memory. An example is found in code paths that access a file block (such as a
sys read()). To access a file block in a large file, it is possible that a triple-
indirect, double-indirect, and indirect block, inode, andother blocks may need to
be accessed to find the address of the desired block and read itfrom disk.

With repeated access to a file, such blocks are likely to be in the page cache.
However, the pre-allocation code must account for the worstcase, and thus in the
normal case must pre-allocate memory to potentially read those blocks. This pre-
allocation is often a waste, as the blocks will be allocated,remain unused during
the call, and then finally be freed by AMA.

With cache peeking, the pre-allocation code performs a small amount of extra
work to determine if the requisite pages are already in cache. If so, it pins them
there and avoids the pre-allocation altogether; upon completion, the pages are un-
pinned.

The pin/unpin is required for this optimization to be safe. Without this step, it
would be possible that a page gets evicted from the cache after the pre-allocation
phase but before the use of the page, which would lead to an unexpected memory
allocation request downstream. In this case, if the requestthen failed, AMA would
not have served its function in ensuring that no downstream failures occur.

Cache peeking works well in many instances as the cached datais accessible at
the beginning of a system call and does not require any new memory allocations.
Even if cache peeking requires additional memory, the memory allocation calls
needed for cache peeking can be easily performed as part of the pre-allocation
phase.

Page Recycling

A second optimization we came upon was the notion ofpage recycling. The idea for
the optimization arose when we discovered that ext2 often uses far more pages than
needed for certain tasks (such as file/directory truncates,searches on free/allocated
entries inside block bitmaps and large directories).
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For example, consider truncate. In order to truncate a file, one must read every
indirect block (and double indirect block, and so forth) into memory to know which
blocks to free. In ext2, each indirect block is read into memory and given its own
page; the page holding an indirect block is quickly discarded, after ext2 has freed
the blocks pointed to by that indirect block.

To reduce this cost, we implement page recycling. With this approach, the pre-
allocation phase allocates the minimal number of pages thatneed to be in memory
during the operation. For a truncate, this number is proportional to the depth of
the indirect-block tree, instead of the size of the entire tree. Instead of allocating
thousands of blocks to truncate a file, we only allocate a few (for the triple-indirect,
a double indirect, and an indirect block). When the code has finished freeing the
current indirect block, we recycle that page for the next indirect block instead of
adding the page back to the LRU page cache, and so forth. In this manner, substan-
tial savings in memory is made possible.

6.4.4 Limitations and Discussion

We now discuss some of the limitations of our anticipatory approach. Not all pieces
are yet automated; instead, the tool currently helps turn the intractable problem of
examining 180,000 lines of code into a tractable one providing a lot of assistance
in finding the correct pre-allocations. Further work is required in slicing and back-
tracking to streamline this process, but is not the focus of our current effort: rather
our goal here is to demonstrate the feasibility of the anticipatory approach.

The anticipatory approach could fail requests in cases where normal execution
would successfully complete. Normal execution need not always take the worst
case (or longest) path. As a result, normal execution might be able to complete
with fewer memory allocations than the anticipatory approach. In contrast, the
anticipatory approach must always allocate memory for the worst case scenario, as
it cannot afford to fail on a memory allocation call after thepre-allocation phase.

Cache peeking can only be used when sufficient information isavailable at the
time of allocation to determine if the required data is in thecache. For file systems,
sufficient information is available at the beginning of a system call, which allows
cache peeking to avoid pre-allocation with little implementation effort. More im-
plementation effort could be required in other systems to determine if the required
data is in its cache.
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6.5 The AMA Run-Time

The final piece of AMA is the runtime component. There are two major pieces
to consider. First is the pre-allocation itself, which is inserted at every relevant
entry point in the kernel subsystem of interest, and the subsequent cleanup of pre-
allocated memory. Second is the use of the pre-allocated memory, in which the
run-time must transparently redirect allocation requests(such askmalloc()) to
use the pre-allocated memory. We discuss these in turn, and then present the other
run-time decision a file system such as Linux ext2-mfr must make: what to do when
a pre-allocation request fails?

6.5.1 Pre-allocating and Freeing Memory

For pre-allocation, we require that file systems implement asingle new VFS-level
call, which we callvfs get mem requirements(). This call takes as argu-
ments information about which call is about to be made, any relevant arguments
about the current operation (such as the file position) and state of the file system,
and then returns a structure to the caller (in this case, the VFS layer) that describes
all of the necessary allocations that must take place. The structure is referred to as
theanticipatory allocation description (AAD).

The VFS layer unpacks the AAD, allocates memory chunks (perhaps using dif-
ferent allocators) as need be, and links them into the task structure of the calling
process for downstream use (described further below). Withthe pre-allocated mem-
ory in place, the VFS layer then calls the desired routine (such asvfs read()),
which then utilizes the pre-allocated memory during its execution. When the op-
eration completes, a generic AMA cleanup routine is called to free any unused
memory.

To give a better sense of this code flow, we provide a simplifiedexample from
theread() system call code path in Figure 6.9. Without the AMA additions, the
code simply looks up the current file position (i.e., where to read from next), calls
into vfs read() to do the file-system-specific read, updates the file offset, and
returns. As described in the original VFS paper [100], this code is generic across
all file systems.

With AMA, two extra steps are required, as shown in the figure.First, the
VFS layer checks if the underlying file system is using AMA, and if so, calls the
file system’svfs get mem requirements() routine to determine the pending
call’s memory requirements. The VFS layer then allocates the needed memory
using the AAD returned from thevfs get mem requirements(). All of this
work is neatly encapsulated by theAMA CHECK AND ALLOCATE() call in the
figure.
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SYSCALL DEFINE3(read, ...) {
...
loff t pos = file pos read(file);
err = AMA CHECK AND ALLOCATE(file, AMASYS READ, pos, count);
if (err)

...
ret = vfs read(file, buf, count, &pos);
file pos write(file, pos);
...
AMA CLEANUP();

}

int AMA CHECK AND ALLOCATE(..., int syscallno, ...) {
struct relevant arguments *ra;
struct anticipatory allocation description *aad;
...
err = sb->vfsget mem requirements(syscallno, ra, aad);

if (err)
return err;

else
return allocatememory(aad);

}

Figure 6.9:A VFS Read Example. This code snippet shows how pre-allocation
happens during a read system call. Pre-allocation happens at the beginning of
a system call and the call continues executing only if the pre-allocation (i.e., the
AMA CHECK AND ALLOCATE function) succeeds.

Second, after the call is complete, a cleanup routineAMA CLEANUP() is called.
This call is required because the AMAlyzer provides us with aworst-case estimate
of possible memory usage, and hence not all pre-allocated memory is used during
the course of a typical call into the file system. In order to free this unused memory,
the extra call toAMA CLEANUP() is made.

6.5.2 Using Pre-allocated Memory

Central to our implementation istransparency; we do not change the specific file
system (ext2) or other kernel code to explicitly use or free pre-allocated mem-
ory. File systems and the rest of the kernel thus continue to use regular memory-
allocation routines and pre-allocated memory is returned back during such alloca-
tion calls.
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To support this transparency, we modified each of the kernel allocation routines
as follows. Specifically, when a process calls into ext2-mfr, the pre-allocation code
(in AMA CHECK AND ALLOCATE() above) sets a new flag within the per-task
task structure. Thisanticipatory flagis then checked upon each entry into any
kernel memory-allocation routine. If the flag is set, the routine attempts to use
pre-allocated memory and returns one of the pre-allocated chunks; if the flag is
not set, the normal allocation code is executed (and failureis a possibility). Calls
to kfree() and other memory-releasing routines operate as normal, andthus we
leave those unchanged.

Allocation requests are matched with the pre-allocated objects using the pa-
rameters passed to the allocation call at runtime. The parameters passed to the
allocation call aresize, order (or the cachep pointer), andthe GFP flag. The type
of the desired memory object is inferred through the invocation of the allocation
call at runtime. The size (for kmalloc and vmalloc) or order (for alloc pages) helps
to exactly match the allocation request with the pre-allocated object. For cache
objects, the cachep pointer help identify the correct pre-allocated object.

One small complication arises during interrupt handling. Specifically, we do
not wish to redirect memory allocation requests to use pre-allocated memory when
requested by interrupt-handling code. Thus, when interrupted, we take care to
save the anticipatory flag of the currently-running processand restore it when the
interrupt handling is complete.

6.5.3 What If Pre-Allocation Fails?

Adding pre-allocation into the code raises a new policy question: how should the
code handle the failure of the pre-allocation itself? We believe there are a number
of different policy alternatives, which we now describe:

• Fail-immediate. This policy immediately returns an error to the caller (such
as ENOMEM).

• Retry-forever (with back-off). This policy simply keeps retrying forever,
perhaps inserting a delay of some kind (e.g., exponential) between retry re-
quests to reduce the load on the system and control better theload on the
memory system. Also, such delays could help make progress ina heavily
contended system.

• Retry-alternate (with back-off). This form of retry also requests memory
again, but uses an alternate code path that uses less memory than the original
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through page/memory recycling and thus is more likely to succeed. This
retry can also back-off as need be.

Using AMA to implement these policies is superior to the existing approach,
as it enablesshallow recovery, immediately upon entry into the subsystem. For
example, consider the fail-immediate option above. Clearly this policy could be
implemented in the traditional system without AMA, but in our opinion doing so
is prohibitively complex. To do so, one would have to ensure that the failure was
propagated correctly all the way through the many layers of the file system code,
which is difficult [71, 151]. Further, any locks acquired or other state changes made
would have to be undone. Deep recovery is difficult and error-prone; shallow re-
covery is the opposite.

Another benefit that the shallow recovery of AMA permits is a unified pol-
icy [69]. The policy, whether failing immediately, retrying, or some combination,
is specified in one or a few places in the code. Thus, the developer can easily decide
how the system should handle such a failure and be confident that the implementa-
tion meets that desire.

A third benefit of our approach: file systems could expose somecontrol over
the policy to applications [7, 51]. Whereas most applications may not be prepared
to handle such a failure, a more savvy application (such as a file server or database)
could set the file system to fail-fast and thus enable better control over failure han-
dling.

Pre-allocation failure is not a panacea, however. Depending on the installation
and environment, the code that handles pre-allocation failures will possibly run
quite rarely, and thus may not be as robust as normal-case code. Although we
believe this to be less of a concern for pre-allocation recovery code (because it is
small, simple, and usually correct “by inspection”), further efforts could be applied
to harden this code. For example, some have suggested constant “fire drilling” [27]
as a way to ensure operators are prepared to handle failures;similarly, one could
regularly fail kernel subsystems (such as memory allocators) to ensure that this
recovery code is run.

6.6 Analysis

We now analyze Linux ext2-mfr. We measure its robustness under memory-allocation
failure, as well as its baseline performance. We further study its space overheads,
exploring cases where our estimates of memory-allocation needs could be overly
conservative, and whether the optimizations introduced earlier are effective in re-
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Process State File-System State
Error Abort Unusable Inconsistent

ext2-mfr10 0 0 0 0
ext2-mfr50 0 0 0 0
ext2-mfr99 0 0 0 0

Table 6.4:Fault Injection Results: Retry. The table shows the reaction of the
Linux ext2-mfr file system to memory failures as the probability of a failure in-
creases. The file system uses a “retry-forever” policy to handle each failure. A
detailed description of the experiment is found in Table 6.2.

ducing these overheads. All experiments were performed on a2.2 GHz Opteron
processor, with two 80GB WDC disks, 2GB of memory, running Linux 2.6.32.

6.6.1 Robustness

Our first experiment with ext2-mfr reprises our earlier fault injection study found
in Table 6.2. In this experiment, we set the probability thatthe memory-allocation
routines will fail to 10%, 50%, and 99%, and observe how ext2-mfr behaves both
in terms of how processes were affected as well as the overallfile-system state. For
this experiment, the retry-forever (without any back-off)policy is used. Table 6.4
reports our results.

As one can see from the table, ext2-mfr is highly robust to memory allocation
failure. Even when 99 out of 100 memory-allocation calls fail, ext2-mfr is able to
retry and eventually make progress. This application nevernotices that the failures
are occurring, and file system usability and state remain intact.

6.6.2 Performance

In our next experiment, we study the performance overheads of using AMA. We
utilize both simple microbenchmarks as well as application-level tests to gauge the
overheads incurred in ext2-mfr due to the extra work of memory pre-allocation and
cleanup. Table 6.5 presents the results of our study.

From the table, we can see that the performance of our relatively-untuned
prototype is excellent across both microbenchmarks as wellas application-level
workloads. In all cases, the extra work done by the AMA runtime to pre-allocate
memory, redirect allocation requests transparently, and subsequently free unused
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ext2 ext2-mfr Overhead
Workload (secs) (secs) (%)
Sequential Write 13.46 13.69 1.71
Sequential Read 9.04 9.05 0.11
Random Writes 11.58 11.67 0.78
Random Reads 146.33 151.03 3.21
Sort 129.64 136.50 5.29
OpenSSH 48.30 49.80 3.11
PostMark 55.90 59.60 6.62

Table 6.5:Baseline Performance.The baseline performance of ext2 and ext2-mfr
(without optimizations) are compared. The first four tests are microbenchmarks:
sequential read and write either read or write 1-GB file in itsentirety; random read
and write read or write 100 MB of data over a 1-GB file. Note thatrandom-write
performance is good because the writes are buffered and thuscan be scheduled
when written to disk. The three application-level benchmarks: are a command-line
sort of a 100MB text file; the OpenSSH benchmark which copies,untars, configures,
and builds the OpenSSH 4.5.1 source code; and the PostMark benchmark run for
60,000 transactions over 3000 files (from 4KB to 4MB) with 50/50 read/append
and create/delete biases. All times are reported in seconds, and are stable across
repeated runs.

memory has a minimal cost. With further streamlining, we feel confident that the
overheads could be reduced even further.

6.6.3 Space Overheads and Cache Peeking

We now study the space overheads of ext2-mfr, both with and without our cache-
peeking optimization. The largest concern we have about conservative pre-allocation
is that excess memory may be allocated and then freed; although we have shown
there is little time overhead involved (Table 6.5), the extra space requested could in-
duce further memory pressure on the system, (ironically) making allocation failure
more likely to occur. We run the same set of microbenchmarks and application-
level workloads, and record information about how much memory was allocated
for both ext2 and ext2-mfr; we also turn on and off cache-peeking for ext2-mfr.
Table 6.6 presents our results.

From the table, we make a number of observations. First, our unoptimized ext2-
mfr does indeed conservatively pre-allocate a noticeable amount more memory than
needed in some cases. For example, during a sequential read of a 1 GB file, normal
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ext2-mfr
ext2 ext2-mfr (+peek)

Workload (GB) (GB) (GB)
Sequential Write 1.01 1.01 (1.00x) 1.01 (1.00x)
Sequential Read 1.00 6.89 (6.87x) 1.00 (1.00x)
Random Write 0.10 0.10 (1.05x) 0.10 (1.00x)
Random Read 0.26 0.63 (2.41x) 0.28 (1.08x)
Sort 0.10 0.10 (1.00x) 0.10 (1.00x)
OpenSSH 0.02 1.56 (63.29x) 0.07 (3.50x)
PostMark 3.15 5.88 (1.87x) 3.28 (1.04x)

Table 6.6: Space Overheads.The total amount of memory allocated for both
ext2 and ext2-mfr is shown. The workloads are identical to those described in the
caption of Table 6.5.

ext2 allocates roughly 1 GB (mostly to hold the data pages), whereas unoptimized
ext2-mfr allocates nearly seven times that amount. The file is being read one 4-KB
block at a time, which means on average, the normal scan allocates one block per
read whereas ext2-mfr allocates seven. The reason for theseexcess pre-allocations
is simple: when reading a block from a large file, it ispossiblethat one would
have to read in a double-indirect block, indirect block, andso forth. However, as
those blocks are already in cache for these reads, the conservative pre-allocation
performs a great deal of unnecessary work, allocating spacefor these blocks and
then freeing them immediately after each read completes; the excess pages are not
needed.

With cache peeking enabled, the pre-allocation space overheads improve sig-
nificantly, as virtually all blocks that are in cache need notbe allocated. Cache
peeking clearly makes the pre-allocation quite space-effective. The only workload
which does not approach the minimum is OpenSSH. OpenSSH, however, places
small demand on the memory system in general and hence is not of great concern.

6.6.4 Page Recycling

We also study the benefits of page recycling. In this experiment, we investigate the
memory overheads that arise during truncate. Figure 6.10 plots the results.
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Figure 6.10:Space Costs with Page Recycling.The figure shows the measured
space overheads of page recycling during the truncate of a file. The file size is
varied along the x-axis, and the space cost is plotted on the y-axis (both are log
scales).

In the figure, we compare the space overheads of standard ext2, ext2-mfr (with-
out cache peeking or page recycling), and ext2-mfr with pagerecycling (without
cache peeking). As one can see from the figure, as the file system grows, the space
overheads of both ext2 and ext2-mfr converge, as numerous pages are allocated for
indirect blocks. Page recycling obviates the need for theseblocks, and thus uses
many fewer pages than even standard ext2.

6.6.5 Conservative Pre-allocation

We also were interested in whether, despite our best efforts, ext2-mfr ever under-
allocated memory in the pre-allocation phase. Thus, we ran our same set of work-
loads (i.e., all performance benchmarks) and checked for the same. To identify
under-allocated memory, we add a check inside each memory allocation function
(such as kmalloc); the check reports an error when objects are not found in the
pre-allocated pool during a file-system request. In no run during these experiments
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and other stress-tests did we ever encounter an under-allocation, giving us further
confidence that our static transformation of ext2 was properly done.

6.6.6 Policy Alternatives

We also were interested in seeing how hard it is to use a different policy to react
to allocation failures. Table 6.7 shows the results of our fault-injection experiment,
but this time with a “fail-fast” policy which immediately returns to the user should
the pre-allocation attempt fail.

Process State File-System State
Error Abort Unusable Inconsistent

ext2-mfr10 15 0 0 0
ext2-mfr50 15 0 0 0
ext2-mfr99 15 0 0 0

Table 6.7: Fault Injection Results: Fail-Fast. The table shows the reaction of
Linux ext2-mfr using a fail-fast policy file system. A detailed description of the
experiment is found in Table 6.2.

The results show the expected outcome. In this case, the process running the
workload immediately returns theENOMEM error code; the file system remains con-
sistent and usable. By changing only a few lines of code, an entirely different
failure-handling behavior can be realized.

6.7 Summary

It is common sense in the world of programming that code that is rarely run rarely
works. Unfortunately, some of the most important code in systems falls into this
category, including any code that is run during a “recovery”. If the problem that
leads to the recovery code being enacted is rare enough, the recovery code itself is
unlikely to be battle tested, and is thus prone to failure.

In this chapter, we presented Anticipatory Memory Allocation (AMA), a new
approach to avoiding memory-allocation failures deep within the kernel. By pre-
allocating the worst-case allocation immediately upon entry into the kernel, AMA
ensures that requests further downstream will never fail, in those places within the
code where handling failure has proven difficult over the years. The small bits of
recovery code that are scattered throughout the code need never run, and system
robustness is improved by design.
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As we build increasingly complex systems, we should consider new methods
and approaches that help build robustness into the system bydesign. AMA presents
one method (early resource allocation) to handle one problem (memory-allocation
failure), but we believe that the approach could be applied more generally. We
believe that the only true manner in which to have working recovery code is to
have none at all.
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Chapter 7

Related Work

Reliability has been a major focus of computer systems designers since the early
days of computers. Initially, hardware failures were orders of magnitude more
frequent then they are today [46, 185]. Due to the advances inhardware reliability
mechanisms, software has now become the dominant source of system failures [66].

In this thesis, we developed recovery techniques to improvethe reliability of file
systems through restartability and resource reservation.We now look at previous
work that has similar goals of restartability and resource reservation and discuss
how our techniques differ from them.

The rest of the chapter is organized as follows. First, in Section 7.1, we review
previous work on improving reliability by restarting components on failures. We
then look at previous work on improving reliability throughfailure avoidance via
pre-allocation of resources in Section 7.2.

7.1 Reliability through Restartability
Restarting components on failures has been a popular methodto survive software
failure. We now look at solutions designed to restart kernel- and user-level compo-
nents on failures.

7.1.1 Restartable OS Components

We now discuss previous systems designed to increasing operating system fault
resilience via a restartable approach. We classify previous approaches along two
axes:overheadandstatefulness.

We classify fault isolation techniques that incur little overhead aslightweight
and more costly mechanisms asheavyweight. Heavyweight mechanisms are not
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likely to be adopted by file systems, which have been tuned forhigh performance
and scalability [23, 82, 170], especially when used in server environments.

We also classify techniques based on how much system state they are designed
to recover after failure. Techniques that assume the failedcomponent has little in-
memory state are referred to asstateless; most device driver recovery techniques are
stateless. Techniques that can handle components with in-memory and persistent
storage arestateful; when recovering from file-system failure, stateful techniques
are required. We now discuss the previous systems in detail.

The renaissance in building isolated OS subsystems is foundin Swift et al.’s
work on Nooks and subsequently shadow drivers [171, 172]. InNooks, the authors
use memory-management hardware to build an isolation boundary around device
drivers; not surprisingly, such techniques incur high overheads [171]. The shadow
driver work shows how recovery can be transparently achieved by restarting failed
drivers and diverting clients by passing them error codes and related tricks. How-
ever, such recovery is relatively straightforward: only a simple reinitialization must
occur before reintegrating the restarted driver into the OS; such an approach cannot
be directly applied to file systems.

Device driver isolation can also be obtained through Virtual Machine Monitors
(VMM) [52, 104]. In Xen, Fraser et al. show that it is possibleto isolate and share
device drivers across operating systems by running device drivers in separate vir-
tual machines [52]. In L4, LeVasseur et al. went a step further and show that it is
possible to isolate and still run unmodified drivers in theiroriginal operating sys-
tems in a virtual machine [104]. In both approaches, communication to the device
driver happens through the VMM. In the event of an error, onlythe virtual machine
running the buggy device driver is affected. To restart a failed driver, the VMM
starts a new virtual machine and initializes the failed device driver to a predefined
state. The disadvantages of a VMM-based approach are that one needs to run sep-
arate instances of virtual machines for each device driver,the restart mechanism is
stateless, and isolation and data copying costs are high.

Isolation and restart of buggy device drivers have also beenperformed using
microkernel-based approaches [79, 80, 88, 103, 194]. In Minix, the device driver is
run as a user-mode process by encapsulating it in a private address space that is
protected by the MMU hardware. Faults in a device driver do not impact other op-
erating system components, as the driver is run in a separateaddress space. Upon
a driver failure, Minix simply reincarnates the failed driver to service subsequent
requests. Moreover, in a subsequent work, Herder et al. alsoimplemented param-
eterized policy scripts to provide flexibility in the way drivers are restarted after a
failure [80].
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Nexus is another microkernel-based approach, where drivers are executed as
user-level processes [194]. Nexus uses a global, trusted reference validation mech-
anism [4], device safety specification, and device-specificreference monitor. In
Nexus, the safety specification is compiled with the reference monitor. Upon a
transition from (or to) the driver, the reference monitor leverages the safety speci-
fications to check driver interactions for permissible and normal behavior.

CuriOS, a recent microkernel-based operating system, alsoaims to be resilient
to subsystem failure [42]. CuriOS achieves this end throughclassic microker-
nel techniques (i.e., address-space boundaries between servers) with an additional
twist: instead of storing session state inside a service, CuriOS places such state
in an additional protection domain where it can remain safe from a buggy ser-
vice. However, the added protection is expensive. Frequentkernel crossings, as
would be common for file systems in data-intensive environments, would dominate
performance [141]. As far as we can discern, CuriOS represents one of the few
systems that attempt to provide failure resilience for morestateful services such as
file systems. In the paper there is a brief description of an “ext2 implementation”;
unfortunately it is difficult to understand exactly how sophisticated this file service
is or how much work is required to recover from failures.

In summary, the advantage of micro-kernel-based approaches is that the shared
state between drivers and the operating system is small; such small state simplifies
recovery by a large extent. The drawback of the micro-kernel-based approaches is
that they work well only for stateless systems such as network, block, and char-
acter drivers and cannot be applied to stateful components such as file systems.
Moreover, most of the commodity operating systems are monolithic kernels and
not microkernels [28, 171].

SafeDrive takes a different approach to fault resilience [200]. Instead of address-
space based protection, SafeDrive automatically adds assertions into device drivers.
When an assert is triggered (e.g., due to a null pointer or an out-of-bounds index
variable), SafeDrive enacts a recovery process that restarts the driver and thus sur-
vives the would-be failure. Because the assertions are added in a C-to-C trans-
lation pass and the final driver code is produced through the compilation of this
code, SafeDrive is lightweight and induces relatively low overheads. However, the
SafeDrive recovery machinery does not handle stateful subsystems; as a result the
driver will be in an initial state after recovery. Thus, while currently well-suited for
a certain class of device drivers, SafeDrive recovery also cannot be applied directly
to file systems.

EROS is a capability-based operating system designed to support security and
reliability needs of active systems [156]. EROS provides restartability through
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Heavyweight Lightweight
Nooks/Shadow[171,172]∗ SafeDrive[200]∗

Stateless Xen[52], Minix[79,80] Singularity[103]
L4[104], Nexus[194]

Stateful
CuriOS[42]

Membrane∗
EROS[156]

Table 7.1: Summary of Approaches. The table performs a categorization of
previous approaches that handle OS subsystem crashes. Approaches that use ad-
dress spaces or full-system checkpoint/restart are too heavyweight; other language-
based approaches may be lighter weight in nature but do not solve the stateful
recovery problem as required by file systems. Finally, the table marks (with an as-
terisk) those systems that integrate well into existing operating systems, and thus do
not require the widespread adoption of a new operating system or virtual machine
to be successful in practice.

three principles: no kernel allocation, atomicity of operations, and a stateless ker-
nel. No kernel allocations ensures that the OS does not explicitly allocate or free
resources. Atomicity of operations guarantees that all operations are either com-
pleted in bounded time or not executed at all. Finally, the stateless kernel, ensures
that all of the kernel state resides in user-allocated storage. In EROS, checkpoint of
the entire system is taken periodically, which can be used inthe event of an failure.
The advantage of this approach is that the entire system can be restored back upon
failures. This approach has two major drawbacks: first, one needs to rewrite the
entire operating system and other components to adhere to the design principles
of EROS; second, the overheads of checkpointing the entire operating-system state
are prohibitively expensive to be deployed in commodity systems.

The results of our classification are presented in Table 7.1.From the table, we
can see that many systems use methods that are simply too costly for file systems;
placing address-space boundaries between the OS and the filesystem greatly in-
creases the amount of data copying (or page remapping) that must occur and thus
is untenable. We can also see that fewer lightweight techniques have been devel-
oped. Of those, we know of none that work for stateful subsystems such as file
systems.

7.1.2 Restartable User-level Components

In the context of restarting user-level components, there has been some significant
advances in the past few decades. We now discuss the prior work done in restarting
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user-level components and their relevance and applicability to stateful components
such as user-level file systems.

Simple, whole program restart was proposed as a first attemptto handle soft-
ware failures [65, 164]. Restart of an entire program helps programs to survive
failures caused due to non-deterministic bugs. The advantage of these solutions is
that the restart mechanism is simple and straight forward. The drawback of simple
restart is that it is stateless and lossy; requests that arrive between a crash and a
restart are discarded in these systems.

Software rejuvenation, an alternative solution to whole program restart, was
proposed to reduce the down-time periods of services (or applications) [21, 60,
101]. Software rejuvenation is a proactive approach instead of the commonly used
reactive approach. The key idea of software rejuvenation isto periodically rejuve-
nate (or restart) to a fresh state even if there are no failures, thus eliminating any
residual or corrupt in-memory state. The goal of software rejuvenation is to handle
corrupt states that could eventually result in resource leaks or deadlocks. Software
rejuvenation is not applicable for user-level file systems as the restart mechanism
could result in lost updates and have noticeable downtime.

Microreboot was proposed to avoid entire program restarts [30, 31, 129]. The
idea of microreboot is a fine-grain restart approach, where individual application
components are selectively restarted on a failure. Microreboot accomplishes selec-
tive restart by separating process recovery from data recovery. The advantage of
microreboot is that the restart times are significantly lower than an entire program
restart. The microreboot mechanism has a few drawbacks: first, microreboot works
only for stateless components where the application state needs to be recorded in
specialized state stores; second, requests need to be idempotent without any side
effects; finally, frequently-used resources should be leased. In other words, appli-
cations and services must be redesigned and rewritten to work with microreboot
mechanisms.

Many general checkpoint and restart mechanisms were proposed to survive fail-
ures in the past [24, 47, 144]. The common approach taken in these solution is to
checkpoint the program state, rollback the program state onfailure, and then re-
execute the program after recovery. The checkpoint refers to a consistent state that
the system can trust, and can be recorded on disk [34, 91, 105,187], non-volatile
memory [108], or in remote memory [3, 134, 201]. Additional support (such as
logging) is needed to deal with messages and in-flight operations [20, 91, 109, 110].
The drawback of these approaches is that they are primarily designed to work with
distributed systems, require application rewrite, or both; hence, these approaches
are not applicable for stand-alone user-level file systems.
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Rx, a checkpoint restart mechanism, was proposed to tolerate application fail-
ures statefully [140]. Rx has similar goals as Re-FUSE but isdifferent in its im-
plementation. Rx checkpoints the process state using COW-based techniques and
records the application-specific state (such as file handles). On an error, Rx restarts
the crashed application and changes the environment (such as allocated memory)
in the hope that the failure does not happen again. Though Rx statefully restores
the in-memory state of user-level processes, it does not have any mechanisms to
restore the on-disk state of processes and is left as future work.

N-version programming is another popular approach to tolerating failures [9,
10, 15, 147]. The idea is very simple; different instances ofthe software are con-
currently run within the same system. The diversity in the software implementation
helps to avoid the same failure in all instances. As long as there are sufficient run-
ning instances to determine the majority, the system can continue operating even in
the presence of failures. The advantage of this approach is that one need not build
any checkpoint-restart or any other heavy-weight mechanisms. Recovery blocks
is a variant of N-version programming where multiple versions of the same block
exist [86, 143]. A block is a unit of execution, and a variant of a block would only
be executed if the original blocks encounters an error during its execution. Another
related approach to N-version programming is the multi-process model, where the
same application instance in run multiple times [175]. Unfortunately, N-version
systems and its variants are too expensive to be deployed in the real world. More-
over, such systems have to pay significant performance and storage costs.

In summary, there has been a great deal of work on restarting user-level pro-
cesses on failures. Unfortunately, these solutions cannotbe directly applied to user-
level file systems, as recovery mechanisms in file systems need to be stateful and
lightweight.

7.2 Reliability Through Reservation

Eager reservation of resources helps prevent allocation failures in systems. We now
look at the related work that deals with improving reliability of systems through
pre-allocation or reservation of resources. We also compare and contrast the related
work with our anticipatory memory allocation approach.

A large body of related work is found in the programming languages commu-
nity on heap usage analysis, wherein researchers have developed static analyses to
determine how much heap (or stack) space a program will use [1, 26, 35, 36, 84, 85,
180, 184]. Determination of heap space enables one to preallocate memory, thus
avoiding memory allocation failures during later stages ofprogram execution. The
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general use-case suggested for said analyses is in the embedded domain, where
memory and time resources are generally quite constrained [35]. Whereas many of
the analyses focus on functional or garbage-collected languages, and thus are not
directly applicable to our problem domain (i.e., languagesthat are procedural and
require explicit memory management), we do believe that some of the more recent
work in this space could be applicable to anticipatory memory allocation. In partic-
ular, Chinet al.’s work on analyzing low-level code [35] and the live heap analysis
implemented by Albertet al. [1] are promising candidates for further automating
the AMA transformation process.

The more general problem of handling memory bugs has also been investigated
in great detail [8, 17, 44, 140, 146]. Berger and Zorn providean excellent discussion
of the range of common problems, including dangling pointers, double frees, and
buffer overruns [17]. Many interesting and novel solutionshave been proposed,
including rolling back and trying again with a small change to the environment
(e.g., more padding) [140], using multiple randomized heaps and voting to deter-
mine correctness [17], and even returning “made up” values when out-of-bounds
memory is accessed [146]. The problem we tackle is both narrower and broader
at once: narrower in that one could view the poor handling of an allocation failure
as just one class of memory bug; broader in that true recoveryfrom such a failure
in a complex code base is quite intricate and reaches beyond the scope of typical
solutions to these classic memory bugs.

Our approach of using static analysis to predict memory requirements is similar
in spirit to that taken by Garbervetsky et al [59]. Their approach helps to come up
with estimates of memory allocation within a given region. Whereas, AMA helps to
come up with the estimate of memory allocation for the entirefile-system operation.
Moreover, their system does not consider the allocations done by native methods or
internal allocation performed by the runtime system, and does not handle recursive
calls. In contrast, AMA estimates the allocations done by the kernel along with
handling recursive calls inside file systems.

Finally, the AMA approach to avoiding memory-allocation failure is reminis-
cent of the banker’s algorithm [45] and other deadlock-avoidance techniques. In-
deed, with AMA, one could build a sort of “memory scheduler” that avoids memory
over-commitment by delaying some requests until other frees have taken place.
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Chapter 8

Future Work and Conclusions

“Program testing can be used to show the presence of bugs, butnever
to show their absence!” – Edsger Dijkstra

A great deal of research has been done in the design and implementation of
local file systems to improve various aspects of it. For example, performance [57,
114, 117, 149], scalability [113, 170], consistency management [53, 56, 155, 182],
and indexing support [62] are a few areas that have had significant amount of in-
novation in the recent past. However, some of the critical aspects of file system
design and implementation have not been improved at all. In particular, recovery
in file systems has been ignored to a large extent.

Recovery is a critical component in file systems, as it is the component that
deals with faults within the file system or in other components that the file system
interacts with. Unfortunately, the recovery component in file systems is not robust
due to the presence of numerous bugs. Researchers have developed many tools in
the last decade that use language-based support [71, 92], software engineering [48,
106], model checking [50, 197], static analysis [49, 195], fault injection [13, 15, 69,
138], and symbolic execution [196] to identify bugs in the file system code; most
of the bugs identified by these tools are in the recovery component of such systems.

Even though many tools can detect bugs in the file system code they cannot
guarantee that file systems are free from them [49]. Moreover, previous works
have also shown that even when file system developers are aware of the problems,
they do not know how to reproduce, react, or fix them [71, 72, 138]. Hence, we
believe that the right approach is to accept the fact that failures are inevitable in file
systems; we must learn to cope with failures and not just hopeto avoid them.

In this dissertation, we explored two different approachesto improving the re-
liability of commodity file systems: restartability and reservation. These two ap-
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proaches help file systems to survive faults and hence, failures within itself and in
other components that they interact with. First, we introduced Membrane, an oper-
ating system framework to support restartable kernel-level file systems (Chapter 4).
Then, we introduced Re-FUSE, a framework built inside the operating system and
FUSE to restart user-level file systems on crashes (Chapter 5). Finally, we pre-
sented AMA, a mechanism that combined static analysis, dynamic analysis, and
domain knowledge, to simplify recovery code that dealt withmemory allocation
failures in file systems (Chapter 6).

In this chapter, we first summarize our solutions and results(Section 8.1). We
then list a set of lessons learned from years of researching file system reliability
(Section 8.2). Finally, we outline future directions whereour work can possibly be
extended (Section 8.3).

8.1 Summary

This dissertation focused on developing recovery techniques to improve file system
reliability and is mainly divided in two parts: reliabilitythrough restartability and
reliability through reservation. We focus on local file systems due to their ubiqui-
tous presence and the new challenges they present. We now summarize the results
in both parts.

8.1.1 Reliability Through Restartability

The first part of this dissertation is about improving file system reliability through
restartability. In this work, we focus on reliability of kernel-level and user-level file
systems and developed frameworks to statefully restart them upon failures.

Kernel-level File Systems

For kernel-level file systems, we designed and implemented ageneric framework
(Membrane) inside operating systems to support restartability. Membrane enabled
kernel-level file systems to tolerate a wide range of fail-stop faults by selectively
restarting the failed file system in a transparent and stateful way. The transpar-
ent and stateful restart of kernel-level file systems allowsapplications to continue
executing requests in file systems even in the presence of failures.

Lightweight and stateful restart of kernel-level file systems was difficult to
implement with existing techniques. To solve this problem,we came up with
three novel techniques: Generic COW-based checkpointing,page stealing, and a



145

skip/trust unwind protocol. Our generic COW-based checkpointing mechanism en-
abled low-cost snapshots of file system-state that served asrecovery points after
a crash with minimal support from existing file systems. The page stealing tech-
nique greatly reduced logging overheads of write operations, which would other-
wise have increased the time and space overheads. Finally, the skip/trust unwind
protocol prevented file-system-induced damage to itself and other kernel compo-
nents on failures through careful unwind of in-kernel threads via both the crashed
file system and kernel proper.

We evaluated Membrane with the ext2, VFAT, and ext3 file systems. Through
experimentation,we showed that Membrane enabled existingfile systems to crash
and recover from a wide range of fault scenarios. We also showed that Mem-
brane has less than 5% overhead across a set of file system benchmarks. Moreover,
Membrane achieved these goals with little or no intrusiveness to existing file sys-
tems: only 5 lines of code were added to make ext2, VFAT, and ext3 restartable.
Finally, Membrane improved robustness with complete application transparency;
even though the underlying file system had crashed, applications continued to run.

User-level File Systems

For user-level file systems, we designed and implemented a generic framework (Re-
FUSE) inside the operating system and FUSE to support restartability. Re-FUSE
enabled user-level file systems to tolerate a wide range of fail-stop and transient
faults through statefully restart of the entire user-levelfile system on failures. Re-
FUSE also ensured that the applications were oblivious to file-system failures and
could continue executing requests in user-level file systems even during recovery.

In Re-FUSE, we added three new techniques to statefully restart user-level file
systems. The first was request tagging, which differentiated activities that were
being performed on the behalf of concurrent requests; the second was system-call
logging, which carefully tracked the system calls issued bya user-level file sys-
tem and cached their results; the third was non-interruptible system calls, which
ensured that no user-level file-system thread was terminated in the midst of a sys-
tem call. Together, these three techniques enabled Re-FUSEto recover correctly
from a crash of a user-level file system by simply re-issuing the calls that the FUSE
file system was processing when the crash took place. Additional performance
optimizations, including page versioning and socket buffering, were employed to
lower the performance overheads.

We evaluated Re-FUSE with three popular file systems, NTFS-3g, SSHFS,
and AVFS, which differ in their data-access mechanisms, on-disk structures, and
features. Less than ten lines of code were added to each of these file systems to
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make them restartable, showing that the modifications required to use Re-FUSE
are minimal. We tested these file systems with both micro- andmacro-benchmarks
and found that performance overheads during normal operations are minimal. The
average performance overhead was less than 2% and the worst-case performance
overhead was 13%. Moreover, recovery time after a crash is small, on the order of
a few hundred milliseconds in our tests.

Overall, we showed that Re-FUSE successfully detects and recovers from a
wide range of fail-stop and transient faults. By doing so, Re-FUSE increases system
availability, as many faults no longer make the entire file system unavailable for
long periods of time. Re-FUSE thus removes one critical barrier to the deployment
of future file-system technology.

8.1.2 Reliability Through Reservation

The second part of this dissertation is about improving file system reliability through
reservation. The reservation was done for in-memory objects that could be allo-
cated while executing file system requests. We focused on kernel-level file systems
and developed Anticipatory Memory Allocation (AMA), a mechanism to eliminate
the scattered recovery code for memory-allocation failures inside operating sys-
tems. As part of AMA, we added few lines of recovery code (around 200) inside
a single function to deal with pre-allocation failures. In other words, we showed
that it is possible to perform shallow recovery for memory-allocation failures dur-
ing file system requests. We also added flexible, unified recovery policies (retry
forever and fail-fast) on top of it.

To identify and reserve all the in-memory objects required to satisfy file-system
requests, we use a combination of static analysis, dynamic analysis, and domain
knowledge in file systems. We also added two novel optimizations,cache peeking
andpage recyclingto reduce the space overheads of AMA. Cache peeking avoids
pre-allocation of cached objects by peeking into the in-memory cache before exe-
cution and page recycling reuses one or more of the pre-allocated pages during a
request, and thus reduces the space overheads.

We demonstrated the benefits of AMA by applying it to the Linuxext2 file
system and built a memory-failure robust version of ext2 called ext2-mfr. Through
experimentation, we showed that ext2-mfr is robust to memory-allocation failure;
even for a memory-allocation failure probability of .99, the ext2-mfr is able to ei-
ther retry and eventually make progress or fail-quickly andreturn error depending
on the specified failure policy. In all cases, AMA ensured that file system and
the operating system are consistent and usable. We also showed that ext2-mfr has
less with 7% performance overheads and 8% space overheads for commonly-used
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micro- and macro-benchmarks. Further, little code change is required, thus demon-
strating the ease of transforming a significant subsystem.

Overall, we showed that AMA achieves its goal of tolerating memory-allocation
failure, and thus altogether avoids of one important class of recovery bug commonly
found in kernel code.

8.2 Lessons Learned

In this section, we present a list of general lessons we learned while working on
this dissertation.

• Recovery as a first class citizen.Traditionally, systems have been designed
and built with performance as the main goal. As a result, recovery features
are not designed carefully and are added as an after thought.For example,
we have shown that, in btrfs, a newly evolving file system, allnecessary
recovery components needed to handle memory-allocation failure have not
yet been built (Section 6.2). We have also observed that, in the file systems,
recovery features are scattered and buried deep within the code. The complex
designs combined with the bias for performance make both theintent and the
realization of recovery in file systems difficult to evolve.

• Hardened operating-system interfaces.Operating systems consist of many
components, and these components need to interact with one another to com-
plete application requests. Unfortunately, many of these components blindly
trust each other, and as a result, the interface between these layers is not
hard as it should be. For example, in Membrane, we showed thatthe operat-
ing system does not check parameters and return values from file systems at
many places; this resulted in corruption of operating-system state.

To build robust operating systems, we need to clearly specify the intent (or
semantics) of each operation, its input and output parameters, and expected
return values [88]. The operating-system proper or its components should use
such information to check and validate the parameter duringits interaction
with other components to prevent bugs from silently corrupting its state.

• Interfaces to support fault injection. For easier reliability testing, systems
should provide suitable interfaces that enable a variety offault-injection sce-
narios. For our reliability experiments, such interfaces would have helped
greatly. In our experience, to perform our fault-injectionexperiments, we
had to change a considerable amount of operating system and file system
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code. More specifically, we had to modify different file system components
(such as namespace management), virtual file system layer, memory man-
agement layer, block driver layer, and the journaling layerto return failures
during our fault injection experiments.

8.3 Future Work

In terms of future work, our vision is to build highly-reliable and highly-available
systems. This section outlines various directions for thisvision.

8.3.1 Reliability through Automation

Reliability research in the last decade has shown time and again that recovery code
in systems is insufficient, missing, or incorrect [37, 49, 68, 71, 138, 151, 171, 195–
197]. From our own experience in building recovery techniques in the operating
system, we believe that the right approach to improving operating system reliability
is to automate the recovery process to the largest possible extent. The automation
would help eliminate the need for manual implementation of recovery code in oper-
ating systems. More importantly, automation could be independent of components
(such as file systems, device drivers, etc.) and resources (such as memory, I/O,
etc.).

Previous research that had similar goals built transactional support inside op-
erating systems [75, 124, 135, 136]. In these solutions, thetransactional support
tracks the changes performed during request execution; on an error, the transac-
tional mechanism automatically reverts all recent changes. There are a few draw-
backs of these approaches that make them less attractive in commodity systems.
First, these system are heavyweight. Second, they still rely on programmers to
correctly invoke and implement all of the transactional code. Third, they do not
handle all possible errors; for example, memory-allocation failures or I/O errors
during transactions are not handled in TxOS [136]. Finally,they require wide-scale
changes to the operating-system code.

Unlike previous approaches, we would like to explore the possibility of build-
ing transactional support outside the operating system. Specifically, we would like
to explore the possibility of leveraging the support available in hardware transac-
tional memory to automate the recovery process in operatingsystems [118]. Our
vision of hardware-assisted recovery is as follows. First,during regular opera-
tions, the hardware could automatically log the changes done in the context of a
request [81, 118, 142]; to prevent corruption, the hardwarecould restrict the operat-
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ing system from accessing the memory locations of the logs. Second, for atomicity
and isolation, the hardware could eagerly detect and resolve conflicts on updates
to shared operating system data structures [118]. Third, onan error, the hardware
would automatically revert the actions of the request usingits log and either retry
the request or directly return an error back to the application with little support from
the operating system [150]. Finally, to optimize the recovery time overheads, we
would like to explore the possibility of adding support for implicit (at the function
boundary) and explicit checkpoints (requested by the operating system).

There are many advantages of automating recovery using a hardware-based
mechanism. First, a large portion of the recovery code no longer needs to be imple-
mented by operating system developers and would be automated in the hardware
layer. Second, the recovery process is transparent to the applications and the oper-
ating system. Third, it is possible to get near-native performance, as fault anticipa-
tion and recovery can be performed at the hardware layer. Fourth, it is easy for the
operating system to implement flexible recovery policies ontop a hardware layer.
Finally, detection of errors at the operating-system levelcould be an optimization
and not an requirement for many error scenarios (e.g., null pointer exception).

8.3.2 Other Data Management Systems

While we limit the focus of this dissertation to local file systems, several of the
issues we discuss here such as fault-tolerance and recoveryare applicable to other
data management systems such as distributed file systems anddatabase manage-
ment systems. The solutions developed in this dissertationcould be applied to
other systems to improve their reliability. First, the skip/trust unwind protocol
could help recover and cleanup systems that have intricate interactions between
components (or layers). Second, non-interruptible systemcalls could be used in
multi-threaded systems that require stronger atomicity guarantees. Third, the static
analysis technique and runtime support developed in AMA could be used to esti-
mate and pre-allocate memory in systems (such as databases)that perform many
dynamic memory allocations.

8.4 Closing Words

“Simplicity is prerequisite for reliability.”
– Edsger Dijkstra

Availability is important in all systems and data availability is of utmost im-
portance. File systems will become more powerful and complex in the future, and
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reliability of file systems will directly determine data availability. In this disserta-
tion, we have adhered to three important principles that helped us face the colossal
challenge of building practical recovery techniques to improve file system reliabil-
ity.

First, simplicity should be the pursuit in achieving reliable systems. Recovery
code in operating systems is complex, difficult to get right,and is in the order of
thousands of lines of code written in a low-level language such as C. To make
things worse, the recovery code is scattered all over the operating system and file
system, making it hard to reason or verify either manually orusing sophisticated
techniques such as static analysis. As Dijkstra said (quoted above), we aimed at
designing simple recovery mechanisms such that they are easy to reason about and
verify.

Second,reliability need not come at the cost of performance. File systems have
been tuned for high performance and scalability [23, 82, 170], hence, heavyweight
reliability techniques are not likely to be adopted by them.In all our solutions, we
made a conscious effort to minimize the performance overheads through our design
and added optimizations, when possible, to reduce the overheads further.

Third, favor generality over particularity. There are a gamut of user-level and
kernel-level file systems that exist today. Solutions that are tailored to a particular
system tend to be limited in their applicability and requirewide scale design and
code changes; hence, are not widely adopted in commodity systems. In all our
solutions, we favor generality and backward compatibility, in the hope that devel-
opers will adopt our recovery techniques to improve the reliability of commodity
operating systems and file systems.
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