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CS 537
Lecture 2

Computer Architecture and Operating
Systems

Michael Swift
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Administrivia

• First reading assignment is up on web
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What you should learn

• How do architectural trends impact operating
systems?

• How does architecture support OS functionality?
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• Processing power
– doubling every 18 months
– 60% improvement each year
– factor of 100 every decade

Even coarse architectural trends
impact tremendously the design of systems
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• Primary memory capacity
– same story, same reason (Moore’s Law)

• 1978:  512K of VAX-11/780 memory for $30,000
• today:
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• Disk capacity, 1975-1989
– doubled every 3+ years
– 25% improvement each year
– factor of 10 every decade
– Still exponential, but far less rapid than processor

performance

• Disk capacity since 1990
– doubling every 12 months
– 100% improvement each year
– factor of 1000 every decade
– 10x as fast as processor performance!
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• Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

• Today, 1 GB (a billion bytes) costs $1 from Dell
(except you have to buy in increments of 20 GB)
– => 1 TB costs $1K, 1 PB costs $1M

• In 3 years, 1 GB will cost $.10
– => 1 TB for $100, 1 PB for $100K
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• Optical bandwidth today
– Doubling every 9 months
– 150% improvement each year
– Factor of 10,000 every decade
– 10x as fast as disk capacity!
– 100x as fast as processor performance!!

• What are some of the implications of these trends?
– Just one example:  We have always designed systems so

that they “spend” processing power in order to save “scarce”
storage and bandwidth!

– What else?
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How do arch. trends impact OS design?
• Human:computer ratio

– Batch - time sharing - personal computers - embedded / pervasive
computing

– Single job  - time shared - internetworked
• Programmer:processor cost ratio

– assembly to C to Java to Perl languages
– command line to GUI to pen / voice interfaces

• Networking
– Isolation to dialup to LAN to WAN

• OS must devote more effort to communications
– Disconnected to wired to wireless

• OS must manage connectivity more
– Isolated to shared to attacked

• OS must provide more security / protection
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More trends

• Disk size: data size
– Deleting is not as important
– Extra space is available for metadata
– Finding data is as important as storing it

• Disk speed: memory speed
– Important apps don’t page
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Processor Trends

• CPU performance improved 52% per year from 1986-
2002

• From 2002-2006, performance improved less than
20% per year

• Modern trend: multi-core, multi-threading
– Pentium 4: hyperthreading
– Core II Duo: 2 cores
– Sun Niagara II: 8 cores,  8 threads per core

• Single thread performance has stopped growing
• All future performance gains from compilers, OS,

multithreading
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Low-level architecture support for OS

• Operating system functionality is dictated, at least in
part, by the underlying hardware architecture
– includes instruction set  (synchronization, I/O, …)
– also hardware components like MMU or DMA controllers

• Architectural support can vastly simplify (or
complicate!) OS tasks
– e.g.: early PC operating systems (DOS, MacOS) lacked

support for virtual memory, in part because at that time PCs
lacked necessary hardware support

– e.g.: virtual machines arrived on PCs 25 years after they
arrived on mainframes because X86 processors lacked
support for virtualization
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Architectural features affecting OS’s

• These features were built primarily to support OS’s:
– timer (clock) operation
– synchronization instructions (e.g., atomic test-and-set)
– memory protection
– I/O control operations
– interrupts and exceptions
– protected modes of execution (kernel vs. user)
– protected instructions
– system calls (and software interrupts)
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Protected instructions
• some instructions are restricted to the OS

– known as protected or privileged instructions
• e.g., only the OS can:

– directly access I/O devices (disks, network cards)
• why?

– manipulate memory state management
• page table pointers, TLB loads, etc.
• why?

– manipulate special ‘mode bits’
• interrupt priority level
• why?

– halt instruction
• why?
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OS protection
• So how does the processor know if a protected

instruction should be executed?
– the architecture must support at least two modes of

operation: kernel mode and user mode
• VAX, x86 support 4 protection modes
• why more than 2?

– mode is set by status bit in a protected processor register
• user programs execute in user mode
• OS executes in kernel mode   (OS == kernel)

• Protected instructions can only be executed in the
kernel mode
– what happens if user mode executes a protected

instruction?
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Crossing protection boundaries
• So how do user programs do something privileged?

– e.g., how can you write to a disk if you can’t do I/O
instructions?

• User programs must call an OS procedure
– OS defines a sequence of system calls
– how does the user-mode to kernel-mode transition happen?

• There must be a system call instruction, which:
– causes an exception (throws a software interrupt), which

vectors to a kernel handler
– passes a parameter indicating which system call to invoke
– saves caller’s state (regs, mode bit) so they can be restored
– OS must verify caller’s parameters (e.g., pointers)
– must be a way to return to user mode once done
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A kernel crossing illustrated

User process System Call

Trap
Mode bit = 0

Save Caller’s state Execute system call Restore state

Return
Mode bit = 1

Resume process
User Mode

Mode bit = 1

Kernel Mode
Mode bit = 0
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System call details

• How does the kernel
know which system
call?
– In a register

• Where are the
parameters?
– in a register
– on the stack
– in a memory block

 # system call handler stub
ENTRY(system_call)
        pushl %eax                      # save orig_eax
        SAVE_ALL
        GET_THREAD_INFO(%ebp)
        cmpl $(nr_syscalls), %eax
        jae syscall_badsys
        syscall_call:
        call *sys_call_table(,%eax,4)
        movl %eax,EAX(%esp)             # store the return value

<open>:        push   %ebx
<open+1>:      mov    0x10(%esp),%edx
<open+5>:      mov    0xc(%esp),%ecx
<open+9>:      mov    0x8(%esp),%ebx
<open+13>:     mov    $0x5,%eax
<open+18>:     int    $0x80
<open+20>:     pop    %ebx
<open+21>:     cmp    $0xfffff001,%eax
<open+26>:     jae    0x2a189d <open+29>
<open+28>:     ret    
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System call issues

• What would happen if kernel didn’t save state?
• Why must the kernel verify arguments?
• How can you reference kernel objects as arguments

or results to/from system calls?
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What functions are system calls?
• Process control

– Create process, allocate memory
• File management

– Create, read, delete file
• Device management

– Open device, read/write device, mount device
• Information maintenance

– Get time, get system data/parameters
• Communications

– Create/delete channel, send/receive message

• Programmers generally do not use system calls directly
– They use runtime libraies (e.g. Java, C)
– Why?
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Memory protection

• OS must protect user programs from each other
– maliciousness, ineptitude

• OS must also protect itself from user programs
– integrity and security
– what about protecting user programs from OS?

• Simplest scheme: base and limit registers
– are these protected?

Prog A

Prog B

Prog C

base reg
limit reg

base and limit registers
are loaded by OS before

starting program
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More sophisticated memory protection

• coming later in the course
• paging, segmentation, virtual memory

– page tables, page table pointers
– translation lookaside buffers (TLBs)
– page fault handling
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OS control flow

• after the OS has booted, all entry to the kernel
happens as the result of an event
– event immediately stops current execution
– changes mode to kernel mode, event  handler is called

• kernel defines handlers for each event type
– specific types are defined by the architecture

• e.g.: timer event, I/O interrupt, system call trap
– when the processor receives an event of a given type, it

• transfers control to handler within the OS
• handler saves program state (PC, regs, etc.)
• handler functionality is invoked
• handler restores program state, returns to program
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Interrupts and exceptions

• Two main types of events: interrupts and exceptions
– exceptions are caused by software executing instructions

• e.g., the x86 ‘int’ instruction
• e.g., a page fault, write to a read-only page
• an expected exception is a “trap”, unexpected is a “fault”

– interrupts are caused by hardware devices
• e.g., device finishes I/O
• e.g., timer fires
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I/O control
• Issues:

– how does the kernel start an I/O?
• special I/O instructions
• memory-mapped I/O

– how does the kernel notice an I/O has finished?
• polling
• interrupts

• Interrupts are basis for asynchronous I/O
– device performs an operation asynch to CPU
– device sends an interrupt signal on bus when done
– in memory, a vector table contains list of addresses of kernel

routines to handle various interrupt types
• who populates the vector table, and when?

– CPU switches to address indicated by vector specified by interrupt
signal
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Timers

• How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
– use a hardware timer that generates a periodic interrupt
– before it transfers to a user program, the OS loads the timer

with a time to interrupt
• “quantum”: how big should it be set?

– when timer fires, an interrupt transfers control back to OS
• at which point OS must decide which program to schedule next
• very interesting policy question: we’ll dedicate a class to it

• Should the timer be privileged?
– for reading or for writing?
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Synchronization
• Interrupts cause a wrinkle:

– may occur any time, causing code to execute that interferes
with code that was interrupted

– OS must be able to synchronize concurrent processes
• Synchronization:

– guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically

– one method: turn off interrupts before the sequence, execute
it, then re-enable interrupts

• architecture must support disabling interrupts
– another method:  have special complex atomic instructions

• read-modify-write
• test-and-set
• load-linked store-conditional
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“Concurrent programming”

• Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”
– modern “event-oriented” application programming is a

middle ground

• Arises from the architecture
• Can be sugar-coated, but cannot be totally

abstracted away
• Huge intellectual challenge

– Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming


