CS 537
Lecture 2
Computer Architecture and Operating
Systems
Michael Swift

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Administrivia

« First reading assignment is up on web

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

What you should learn

* How do architectural trends impact operating
systems?

* How does architecture support OS functionality?

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Even coarse architectural trends
impact tremendously the design of systems

» Processing power
— doubling every 18 months
— 60% improvement each year
— factor of 100 every decade

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

* Primary memory capacity
— same story, same reason (Moore’s Law)
* 1978: 512K of VAX-11/780 memory for $30,000

« today:
™ USA
Desktops Notebooks Software & Peripherals Service & Support Purchase Help
Memory ©@Help Me Choose

(268 Dual Channel DDR SDRAM at 400MHz [add $446]
" 4GB Dual Channel DDR SDRAM at 400MHz [add $2,184]
€ 512MB Dual Channel DDR SDRAM at 400MHz

" 168 Dual Channel DDR SDRAM at 400MHz [add $142]
& FREE UPGRADE! 1024MB DOR SDRAM st 400MHz

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

+ Disk capacity, 1975-1989
— doubled every 3+ years
— 25% improvement each year
— factor of 10 every decade
— Still exponential, but far less rapid than processor
performance
+ Disk capacity since 1990
— doubling every 12 months
— 100% improvement each year
— factor of 1000 every decade
— 10x as fast as processor performance!

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

+ Only a few years ago, we purchased disks by the
megabyte (and it hurt!)

+ Today, 1 GB (a billion bytes) costs $1 from Dell
(except you have to buy in increments of 20 GB)
— =>1 TB costs $1K, 1 PB costs $1M

¢ In 3 years, 1 GB will cost $.10
— =>1TB for $100, 1 PB for $100K

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

+ Optical bandwidth today
— Doubling every 9 months
— 150% improvement each year
— Factor of 10,000 every decade
— 10x as fast as disk capacity!
— 100x as fast as processor performance!!

» What are some of the implications of these trends?

— Just one example: We have always designed systems so
that they “spend” processing power in order to save “scarce”
storage and bandwidth!

— What else?

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Archive @he NewHork Times

HOME SEARCH | »Go 1o Advanced SearchiAtshive = mowotR conren [mor |
HELP

Past30Days ~| © Welcome, lazowska

This g is prirt.ready, anitis aticle wil remain avaible for 90 days. Instructions for Saving | Aot his Service | Purchase Histor

May 26,2003, Monday

BUSINESS/FINANCIAL DESK

TECHNOLOGY; From PlayStation to Supercomputer for $50,000
By JOHN MARKOFF (NYT) 913 words

As perhaps the clearest evidence yet of the computing power of sophisticated but inexpensive video-game consoles, the National Center for
Supercomputing Applications at the University of Linois at Urbana- Champaign has assembled a supercomputer from an army of Sony
PlayStation 2's.

‘The resulting system, with components purchased at retail prices, cost a little more than $50,000. The center's researchers believe the system
may be capable of a half trillion operations a second, wel within the definition of supercomputer, although it may not rank among the world's
500 fastest supercomputers.

Perhaps the most striking aspect of the project, which uses the open source Linug operating system, is that the only hardware engineering
involved was placing 70 of the individual game machines in a rack and plugging them together with a high-speed Hewlett-Packard network
switch, The center's scientists bought 100 machines, but are holding 30 in reserve, possibly for high-resolution display application.

"It took a lot of time because you have to cut all of these things out of the plastic packaging," said Craig Steffen, a senior research scientist at the.
center, who is one of four scientists working part time on the project.

The scientists are taking advantage of a standard component of the Sony video-game console that was originally intended to move and transform
piszels rapidly on a television screen to produce lifelike graphics. The chip is not the PlayStation 2's MIPS microprocessor, but rather graphics
co-processor known as the Emotion Engine. That custom designed silicon chip is capable of producing up to 6.5 billion mathematical operations
a second.

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

How do arch. trends impact OS design?

« Human:computer ratio
— Batch - time sharing - personal computers - embedded / pervasive
computing
— Single job - time shared - internetworked
« Programmer:processor cost ratio
— assembly to C to Java to Perl languages
— command line to GUI to pen / voice interfaces
« Networking
— Isolation to dialup to LAN to WAN
+ OS must devote more effort to communications
— Disconnected to wired to wireless
« OS must manage connectivity more
— lIsolated to shared to attacked
« OS must provide more security / protection

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

More trends

+ Disk size: data size

— Deleting is not as important

— Extra space is available for metadata

— Finding data is as important as storing it
+ Disk speed: memory speed

— Important apps don’t page

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Processor Trends

+ CPU performance improved 52% per year from 1986-
2002

» From 2002-2006, performance improved less than
20% per year

* Modern trend: multi-core, multi-threading
— Pentium 4: hyperthreading
— Core Il Duo: 2 cores
— Sun Niagara Il: 8 cores, 8 threads per core

+ Single thread performance has stopped growing

+ All future performance gains from compilers, OS,
multithreading

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Low-level architecture support for OS

» Operating system functionality is dictated, at least in
part, by the underlying hardware architecture
— includes instruction set (synchronization, /O, ...)
— also hardware components like MMU or DMA controllers

« Architectural support can vastly simplify (or
complicate!) OS tasks

— e.g.: early PC operating systems (DOS, MacOS) lacked
support for virtual memory, in part because at that time PCs
lacked necessary hardware support

— e.g.: virtual machines arrived on PCs 25 years after they
arrived on mainframes because X86 processors lacked
support for virtualization

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Architectural features affecting OS’s

» These features were built primarily to support OS’s:
— timer (clock) operation
— synchronization instructions (e.g., atomic test-and-set)
— memory protection
— 1/O control operations
— interrupts and exceptions
— protected modes of execution (kernel vs. user)
— protected instructions
— system calls (and software interrupts)

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Protected instructions

+ some instructions are restricted to the OS
— known as protected or privileged instructions
* e.g., only the OS can:
— directly access I/O devices (disks, network cards)
* why?
— manipulate memory state management
« page table pointers, TLB loads, etc.
* why?
— manipulate special ‘mode bits’
« interrupt priority level
« why?
— halt instruction
* why?

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

OS protection

* So how does the processor know if a protected
instruction should be executed?
— the architecture must support at least two modes of
operation: kernel mode and user mode
* VAX, x86 support 4 protection modes
« why more than 2?
— mode is set by status bit in a protected processor register
« user programs execute in user mode
« OS executes in kernel mode (OS == kernel)
» Protected instructions can only be executed in the
kernel mode

— what happens if user mode executes a protected
instruction?

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Crossing protection boundaries

So how do user programs do something privileged?
— e.g., how can you write to a disk if you can’t do I/O
instructions?
User programs must call an OS procedure
— OS defines a sequence of system calls
— how does the user-mode to kernel-mode transition happen?
There must be a system call instruction, which:

— causes an exception (throws a software interrupt), which
vectors to a kernel handler

— passes a parameter indicating which system call to invoke
saves caller’s state (regs, mode bit) so they can be restored
— OS must verify caller's parameters (e.g., pointers)

— must be a way to return to user mode once done

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

A kernel crossing illustrated

User Mode

User process }—»{ System Call ‘ rocelitig

|
Trap Kernel Mode Return
Mode bit = 0 Mode bit = 0 Mode bit = 1

|

Save Caller's stateHExecute system caIIH Restore state

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

System call details

<open>: push %ebx
HOW doeS the kernel <open+1>: mov 0x10(%esp) ,%edx
know which System <open+5>: mov Oxc(%esp) ,%ecx
<open+9>: mov 0x8(%esp) ,%ebx
call? <open+13>: mov $0x5, %eax
. <open+18>: int $0x80
- In aregister <open+20>: pop %ebx
<open+21>: cmp. $oxfffffool,%eax
Where are the <open+26>: jae 0x2a189d <open+29>
parameters? <open+28>: ret
—ina register # system call handler stub
ENTRY(system_call)
— on the stack pushl %eax # save orig_eax
SAVE_ALL

— in.a memory block GET_THREAD_INFO(%ebp)

cmpl $(nr_syscalls), %eax

jae syscall_badsys

syscall_call:

call *sys_call_table(,%eax,4)

movl %eax,EAX(%esp) # store the return value

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

System call issues

» What would happen if kernel didn’t save state?
+ Why must the kernel verify arguments?

» How can you reference kernel objects as arguments
or results to/from system calls?

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

What functions are system calls?

Process control

— Create process, allocate memory
File management

— Create, read, delete file
Device management

— Open device, read/write device, mount device
Information maintenance

— Get time, get system data/parameters
Communications

— Create/delete channel, send/receive message

Programmers generally do not use system calls directly
— They use runtime libraies (e.g. Java, C)
— Why?

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Memory protection

+ OS must protect user programs from each other
— maliciousness, ineptitude

» OS must also protect itself from user programs
— integrity and security
— what about protecting user programs from OS?

+ Simplest scheme: base and limit registers
— are these protected?

Prog A
¥ basereg base and limit registers
ProgB | | limitreg are loaded by OS before
starting program
Prog C

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

More sophisticated memory protection

coming later in the course

paging, segmentation, virtual memory
— page tables, page table pointers

— translation lookaside buffers (TLBs)

— page fault handling

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

OS control flow

after the OS has booted, all entry to the kernel
happens as the result of an event

— event immediately stops current execution

— changes mode to kernel mode, event handler is called

kernel defines handlers for each event type

— specific types are defined by the architecture
< e.g.: timer event, I/O interrupt, system call trap

— when the processor receives an event of a given type, it
« transfers control to handler within the OS
« handler saves program state (PC, regs, etc.)
« handler functionality is invoked
< handler restores program state, returns to program

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Interrupts and exceptions

« Two main types of events: interrupts and exceptions
— exceptions are caused by software executing instructions
« e.g., the x86 ‘int’ instruction
« e.g., a page fault, write to a read-only page
« an expected exception is a “trap”, unexpected is a “fault”
— interrupts are caused by hardware devices
« e.g., device finishes I/O
« e.g., timer fires

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

I/O control

Issues:
— how does the kernel start an 1/0?
« special I/O instructions
« memory-mapped I/O
— how does the kernel notice an /O has finished?
« polling
« interrupts
Interrupts are basis for asynchronous 1/0
— device performs an operation asynch to CPU
— device sends an interrupt signal on bus when done
— in memory, a vector table contains list of addresses of kernel
routines to handle various interrupt types
« who populates the vector table, and when?
— CPU switches to address indicated by vector specified by interrupt
signal

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Timers

» How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
— use a hardware timer that generates a periodic interrupt
— before it transfers to a user program, the OS loads the timer
with a time to interrupt
« “quantum”: how big should it be set?
— when timer fires, an interrupt transfers control back to OS
« at which point OS must decide which program to schedule next
« very interesting policy question: we’ll dedicate a class to it
+ Should the timer be privileged?

— for reading or for writing?

©2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Synchronization

* Interrupts cause a wrinkle:

— may occur any time, causing code to execute that interferes
with code that was interrupted

— OS must be able to synchronize concurrent processes

+ Synchronization:
— guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically
— one method: turn off interrupts before the sequence, execute
it, then re-enable interrupts
« architecture must support disabling interrupts
— another method: have special complex atomic instructions
« read-modify-write
« test-and-set
« load-linked store-conditional

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

“Concurrent programming”

Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”
— modern “event-oriented” application programming is a
middle ground
Arises from the architecture

Can be sugar-coated, but cannot be totally

abstracted away

Huge intellectual challenge

— Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

