
1

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 17

NTFS internals

Michael Swift

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 2

NTFS Recoverability
PC disk I/O in the old days: Speed was most important
NTFS changes this view – Reliability counts most:
• I/O operations that alter NTFS structure are implemented as atomic

transactions
– Change directory structure,
– extend files, allocate space for new files

• Transactions are either completed or rolled back
• NTFS uses redundant storage for vital FS information

– Contrasts with FAT / HPFS on-disk structures, which have single sectors
containing critical file system data

– Read error in these sectors -> volume lost

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 3

NTFS On-Disk Structure
• Volumes correspond to logical partitions on disk
• Fault tolerant volumes may span multiple disks

– Same block stored on separate disks for redundancy
• Volume consists of series of files + unallocated space

– FAT volume: some areas specially formatted for file system
– NTFS volume: all data are stored as ordinary files

• e.g. inodes stored in files

• NTFS refers internally to clusters
– Cluster factor: #sectors/cluster; varies with volume size;

(integral number of physical sectors; always a power of 2)
• Logical Cluster Numbers (LCNs):

– refer to physical location == block number in Unix
– LCNs are contiguous enumeration of all clusters on a volume

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 4

Master File Table
All data stored on a volume is contained in a
file

• MFT: Heart of NTFS volume structure
– Implemented as array of file records
– One row for each file on the volume

(including one row for MFT itself)
– Metadata files store file system structure

information
(hidden files; $MFT; $Volume...)

– More than one MFT record for highly
fragmented files

– Nfi.exe Utility from OEM Support Tools allows
to dump MFT content
(see support.microsoft.com/support/
kb/articles/Q253/0/66.asp)

MFT

MFT copy (partial)

Log file

Volume file

Attribute def. table

Root directory

Bitmap file

Boot file

Bad cluster file

User files and dirs.

...

NTFS
metadata

file

2

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 5

NTFS metadata
• NTFS writes to log file ($LogFile)

– Record all commands that change volume structure
• Root directory:

– When NTFS tries to open a file, it starts search in the root directory
– Once the file is found, NTFS stores the file‘s MFT file reference
– Subsequent read/write ops. may access file‘s MFT record directly

• Bitmap file ($Bitmap):
– stores allocation state volume; each bit represents one cluster

• Boot file ($Boot):
– Stores bootstrap code
– Has to be located at special disk address
– Represented as file by NTFS -> file ops. possible (!) (no editing)

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 6

NTFS metadata (contd.)
• Bad-cluster file ($BadClus)

– Records bad spots on the disk
• Volume file ($Volume)

– Contains: volume name, NTFS version
– Bit, which indicates whether volume is corrupted

• Attribute Definition Table ($AttrDef)
– Defines attribute types supported on the volume
– Indicates whether they can be indexed, recovered, etc.

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 7

File Records &
File Reference Numbers

• File on NTFS volume is identified by file reference
– File number == index in MFT
– Sequence number – used by NTFS for consistency checking;

incremented each time a reference is re-used
– Like inode numbers, but need not be allocated; just assigned

• File Records: File is collection of attribute/value pairs
– Unnamed data attribute
– Other attributes: filename, time stamp, security descriptor,...
– Each file attribute is stored as separate stream of bytes within a file

Sequence
number File number

063 47

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 8

File Records (contd.)
• NTFS doesn‘t read/write files:

– It reads/writes attribute streams
– Operations: create, delete, read (byte range), write (byte range)
– Read/write normally operate on unnamed data attribute

• Record in MFT contains set of attributes
– attributes are named
– can be stored in MFT or externally

Filename
Standard

information
Security

descriptor Data

Master File Table

MFT record for a small file

Windows optimization: Security descriptors
are stored in a central file and referenced
by each file record (saves disk space)

3

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 9

Standard Attributes for NTFS Files

List of attributes that make up the file and first reference of the
MFT record in which the attribute is located (for files which
require multiple MFT file records)

Attribute list

Three attributes used to implement filename allocation, bitmap
index for large directories (dirs. only)

Index root, index

Contents of the file; a file has one default unnamed data
attribute; directory has no default data attrib.

data

Specifies who owns the file and who can access itSecurity descriptor

Name in Unicode characters; multiple filename attributes
possible; short names for access by MS-DOS and 16-bin Win
applications

Filename

File attributes: read-only, archive, etc; time stamps;
creation/modification time; hard link count

Standard information

DescriptionAttribute

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 10

Attributes (contd.)
• Each attribute in a file record has a name and a value
• NTFS identifies attributes:

– Uppercase name starting with $: $FILENAME, $DATA
• Attribute‘s value: Byte stream

– The filename for $FILENAME
– The data bytes for $DATA

• Attribute names correspond to numeric typecodes
• File attributes in an MFT record are ordered by typecodes

– Some attribute types may appear more than once (e.g. Filename)

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 11

Filenames

• Name parsing, including wildcards, is handed by
NTFS
– In Linux, shell expands wildcards

• Directory traversal is handled by NTFS
– The kernel hands it a full pathname
– In Linux, an FS only expands one name at a time

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 12

Resident & Nonresident Attributes
• Small files:

– All attributes and values fit into MFT
– Attribute with value in MFT is called „resident“
– All attributes start with header (always resident)
– Header contains offset to attr. value and length of value
– Data is contained within data attribute

• Very efficient for small files - no extra seeks/reads

NTFS filenameStandard info Security desc. Data

MYFILE.DAT
„RESIDENT“

Offset: 8h
Length: 14h

header

value

4

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 13

Attributes (contd.)

• Small directory:
– index root attribute contains index of file references for files

and subdirectories

NTFS filenameStandard info Index rootSecurity desc. Empty
Index of files

file1, file2, file3,...

MFT file record for a small directory

• If file attribute does not fit into MFT:
• NTFS allocates separate cluster (run, extent) to store the values
• NTFS allocates additional runs if an attribute‘s value later grows
• Those attributes are called „non-resident“
• Header of non-resident attribute contains location info

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 14

Large files & directories

• Only attributes that can grow can be non-resident
• Filename & standard info are always resident
• Index of files for directories forms B+ tree

NTFS filenameStandard info Security desc. Data

MFT record for large file with 2 data runs

NTFS filenameStandard info Index rootSecurity desc. Bitmap

file4, file8

MFT file record for a large directory
with nonresident filename index

Index allocation

file1, file2, file3 file5, file6

Index of files
VCN-to-LCN

mappings

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 15

Large files (contd.)
• NTFS keeps track of runs by means of VCN

(Virtual Cluster Numbers)
– Logical Cluster Numbers represent an entire volume
– Virtual Cluster Numbers represent clusters belonging to one file
– Attribute lists may extend over multiple runs (not only data)

• The run of clusters is called an extent
– NTFS allocates new extents as necessary
– When there is no more space left in the MFT entry, then another MFT entry is allocated.

This design is effectively a list of extents, rather than the Unix tree of blocks.

NTFS filenameStandard info Security desc. Data

 DataData

VCN-to-LCN mappings for a
nonresident data attribute 415884

413550

Number of
clusters

Starting
LCN

Starting
VCN

VCN 0 1 2 3

LCN 1355 1356 1357 1358
 DataData

VCN 4 5 6 7

LCN 1588 1589 1590 1591
12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift 16

Differences from Unix

• File names are stored in directory and MFT for files
– Makes directory listings faster

• Extent-based vs. block based allocation
– Provides better on-disk locality

• Extended support for attributes/streams
– Files in NTFS need not be a single stream of bytes
– But nobody uses this …

5

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 17

NTFS Recovery Support
• Transaction-based logging scheme

– Avoids need to scan disk for errors
• Recovery is limited to file system data

– User data may become corrupted
– Why?
– What could you do about it?

• Design options for file I/O & caching:
– Careful write: VAX/VMS fs, other proprietary OS fs
– Lazy write: most UNIX fs, OS/2 HPFS

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 18

Recoverable File System
(Journaling File System)

• Safety of careful write fs / performance of lazy write fs
• Log file of metadata updates

– Optimization over lazy write: distance between cache flushes
increased

– No extra disk I/O to update fs data structures necessary:
all changes to fs structure are recorded in log file which can be
written in a single operation

• Log provided by “LFS” - log file service
– A transaction contains a list of metadata updates needed for an

operation
– All or none must execute to leave disk uncorrupted

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 19

Log File Regions

• NTFS calls LFS to read/write restart area
– Restart area: location of logging area to be used for recovery

• 2 copies for reliability
– Logging area: circularly reused
– LFS uses logical sequence numbers (LSNs) to identify log records

• NTFS never reads/writes transactions to log file directly; only LFS does
• During recovery:

– NTFS reads log forward; recorded transactions are redone
– NTFS reads log backward; undo all incompletely logged transactions

LFS restart area „infinite“ logging area

Copy 1 Copy 2 Log records

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 20

Operation of the LFS/NTFS

1. NTFS calls LFS to record in (cached) log file any transactions
that will modify volume structure

2. NTFS modifies the volume (also in the cache)
3. LFS flushes log file to disk
4. NTFS flushes volume changes

-> Transactions of unsuccessful modifications can be retrieved
from log file and un-/redone
Recovery begins automatically the first time a volume is used
after system is rebooted.

6

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 21

Log Record Types
• Update records (series of ...)

– Most common; each record contains:
– Redo information: how to reapply on subop. of a committed trans.
– Undo information: how to reverse a partially logged sub operation

• Last record commits the transaction (not shown here)

Log file records
... T1a T1b T1c

Redo: Allocate/initialize an MFT file record
Undo: Deallocate the file record

Redo: Add the filename to the index
Undo: Remove the filename from the index

Redo: Set bits 3-9 in the bitmap
Undo: Clear bits 3-9 in the bitmap

Recovery: redo committed/undo incompletely logged transact.Recovery: redo committed/undo incompletely logged transact.
12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift 22

Log Records (contd.)
• Physical vs. logical description of redo/undo actions:

– Delete file „a.dat“ vs. Delete byte range on disk
– NTFS writes update records with physical descriptions

• NTFS writes update records (usually several) for:
– Creating a file
– Deleting a file
– Extending a file
– Truncating a file
– Setting file information
– Renaming a file
– Changing security applied to a file

• Redo/undo ops. must be idempotent
(might be applied twice)

12/4/07 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift 23

Checkpoint Records
• NTFS periodically writes a checkpoint record

– Describes, what processing would be necessary to recover a
volume if a crash would occur immediately

– How far back in the log file must NTFS go to begin recovery
– LSN of checkpoint record is stored in restart area

Log file records
... LSN 2058 LSN 2059 LSN 2060

Checkpoint record

NTFS restart

