
1

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

CS 537
Lecture 2

Computer Architecture and Operating
Systems

Michael Swift

OS Tasks

•  What is the role of the OS regarding hardware?
•  What does the OS need from hardware to perform

this role?

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

Computer Hardware Organization

•  Computer-system operation
–  One or more CPUs, device controllers connect through

common bus providing access to shared memory
–  Concurrent execution of CPUs and devices competing for

memory cycles

Four Components of a Computer System

Device Device Device Device Device

CPU MEM

3

OS terminology

•  Marketing:
–  OS is what comes in the box from Microsoft or Apple

•  In this class:
–  OS is the code that provides exposes and manages

hardware
–  Kernel = the program that contains the OS

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Architectural features affecting OS’s

•  These features were built primarily to support OS’s:
–  timer (clock) operation
–  synchronization instructions (e.g., atomic test-and-set)
–  memory protection
–  I/O control operations
–  interrupts and exceptions
–  protected modes of execution (kernel vs. user)
–  protected instructions
–  system calls (and software interrupts)

4

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

OS control flow

•  after the OS has booted, all entry to the kernel
happens as the result of an event
–  event immediately stops current execution
–  changes mode to kernel mode, event handler is called

•  kernel defines handlers for each event type
–  specific types are defined by the architecture

•  e.g.: timer event, I/O interrupt, system call trap
–  when the processor receives an event of a given type, it

•  transfers control to handler within the OS
•  handler saves program state (PC, regs, etc.)
•  handler functionality is invoked
•  handler restores program state, returns to program

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Interrupts and exceptions

•  Two main types of events: interrupts and exceptions
–  exceptions are caused by software executing instructions

•  e.g., the x86 ‘int’ instruction
•  e.g., a page fault, write to a read-only page
•  an expected exception is a “trap”, unexpected is a “fault”

–  interrupts are caused by hardware devices
•  e.g., device finishes I/O
•  e.g., timer fires

5

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

An Interrupt illustrated

User process

Trap
Mode bit = 0

Save Caller’s state Execute Device
Driver Restore state

Return
Mode bit = 1

Resume process
User Mode

Mode bit = 1

Kernel Mode
Mode bit = 0

Device
Raise

Interrupt

Clear
Interrupt

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Protected instructions
•  some instructions are restricted to the OS

–  known as protected or privileged instructions
•  e.g., only the OS can:

–  directly access I/O devices (disks, network cards)
•  why?

–  manipulate memory state management
•  page table pointers, TLB loads, etc.
•  why?

–  manipulate special ‘mode bits’
•  interrupt priority level
•  why?

–  halt instruction
•  why?

6

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

OS protection
•  So how does the processor know if a protected

instruction should be executed?
–  the architecture must support at least two modes of

operation: kernel mode and user mode
•  x86 support 4 protection modes
•  MIPS, SPARC, ALPHA support 2
•  >hy more than 2?

–  mode is set by status bit in a protected processor register
•  user programs execute in user mode
•  OS executes in kernel mode (OS == kernel)

•  Protected instructions can only be executed in the
kernel mode
–  what happens if user mode executes a protected instruction?

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Crossing protection boundaries
•  So how do user programs do something privileged?

–  e.g., how can you write to a disk if you can’t do I/O
instructions?

•  User programs must call an OS procedure
–  OS defines a sequence of system calls
–  how does the user-mode to kernel-mode transition happen?

•  There must be a system call instruction, which:
–  causes an exception (throws a software interrupt), which

vectors to a kernel handler
–  passes a parameter indicating which system call to invoke
–  saves caller’s state (regs, mode bit) so they can be restored
–  OS must verify caller’s parameters (e.g., pointers)
–  must be a way to return to user mode once done

7

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

A kernel crossing illustrated

User process System Call

Trap
Mode bit = 0

Save Caller’s state Execute system call Restore state

Return
Mode bit = 1

Resume process
User Mode

Mode bit = 1

Kernel Mode
Mode bit = 0

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

System call details

•  How does the kernel
know which system
call?
–  In a register

•  Where are the
parameters?
–  in a register
–  on the stack
–  in a memory block

 # system call handler stub
ENTRY(system_call)
 pushl %eax # save orig_eax
 SAVE_ALL
 GET_THREAD_INFO(%ebp)
 cmpl $(nr_syscalls), %eax
 jae syscall_badsys
 syscall_call:
 call *sys_call_table(,%eax,4)
 movl %eax,EAX(%esp) # store the return value

<open>: push %ebx	
<open+1>: mov 0x10(%esp),%edx	
<open+5>: mov 0xc(%esp),%ecx	
<open+9>: mov 0x8(%esp),%ebx	
<open+13>: mov $0x5,%eax	
<open+18>: int $0x80	
<open+20>: pop %ebx	
<open+21>: cmp $0xfffff001,%eax	
<open+26>: jae 0x2a189d <open+29>	
<open+28>: ret 	

8

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

System call issues

•  What would happen if kernel didn’t save state?
•  Why must the kernel verify arguments?
•  How can you reference kernel objects as arguments

or results to/from system calls?
•  Why is a table of system calls in the kernel

necessary?

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

What functions are system calls?
•  Process control

–  Create process, allocate memory
•  File management

–  Create, read, delete file
•  Device management

–  Open device, read/write device, mount device
•  Information maintenance

–  Get time, get system data/parameters
•  Communications

–  Create/delete channel, send/receive message

•  Programmers generally do not use system calls directly
–  They use runtime libraies (e.g. Java, C)
–  Why?

9

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Memory protection

•  OS must protect user programs from each other
–  maliciousness, ineptitude

•  OS must also protect itself from user programs
–  integrity and security
–  what about protecting user programs from OS?

•  Simplest scheme: base and limit registers
–  are these protected?

Prog A

Prog B

Prog C

base reg
limit reg

base and limit registers
are loaded by OS before

starting program

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

More sophisticated memory protection

•  coming later in the course
•  paging, segmentation, virtual memory

–  page tables, page table pointers
–  translation lookaside buffers (TLBs)
–  page fault handling

10

I/O operations

•  I/O is moving data between main memory and a
device controller
–  E.g. network, disk, graphics

•  I/O devices and the CPU can execute concurrently.
•  A device driver for every device

–  Knows details of the device
–  Presents a uniform interface to the rest of OS

Accessing I/O Devices

•  Memory Mapped I/O
–  I/O devices appear as regular memory to CPU
–  Regular loads/stores used for accessing device
–  Hardware

•  Port I/O
–  CPU has separate bus for I/O devices
–  Special instructions are required

11

Polling I/O

•  Each device controller typically has:
–  Data-in register (for host to receive input from device)
–  Data-out (for host to send output to device)
–  Status register (read by host to determine device state)
–  Control register (written by host to invoke command)

Polling I/O handshaking:

•  To write data to a device:
–  Host repeatedly reads busy bit in status register until clear
–  Host sets write bit in command register and writes output in

data-out register
–  Host sets command-ready bit in control register

–  Controller notices command-ready bit, sets busy bit in status
register

–  Controller reads command register, notices write bit: reads
data-out register and performs I/O (magic)

–  Controller clears command-ready bit, clears the error bit (to
indicate success) and clears the busy bit (to indicate it’s
finished)

12

Polling I/O

•  What’s the problem?
–  CPU could spend most its time polling devices, while other

jobs go undone.

•  But devices can’t be left to their own devices for too
long
–  Limited buffer at device - could overflow if doesn’t get CPU

service.

•  Modern operating systems uses Interrupts to solve
this dilemma.
–  Interrupts: Notification from interface that device needs

servicing

Interrupts

•  CPU hardware has a interrupt-request line (a wire) it
checks after processing each instruction.

•  Device controller raises interrupt, CPU catches it,
interrupt handler dispatches and clears it.

•  Modern OS needs more sophisticated mechanism:
–  Ability to defer interrupt
–  Efficient way to dispatch interrupt handler
–  Multilevel interrupts to to distinguish between high and low

priority interrupts.

13

Even interrupts are sometimes to slow:

•  Device driver loads controller registers appropriately
•  Controller examines registers, executes I/O
•  Controller signals I/O completion to device driver

–  Using interrupts

•  High overhead for moving bulk data (i.e. disk I/O):
–  One interrupt per byte..

Direct Memory Access (DMA)

•  Transfer data directly between device and memory
–  No CPU intervention

•  Device controller transfers blocks of data
•  Interrupts when block transfer completed

–  As compared to when byte is completed

•  Very useful for high-speed I/O devices

14

Interrupt Timeline

Example I/O

CPU

Program
Memory

Instructions
and
Data

Instruction execution cycle

Data movement

Keyboard Device Driver
and

Keyboard Controller

I/O
 R

equest

Perform I/O

Read Data

Interrupt

D
ata

Disk Device Driver
and

Disk Controller

DMA

15

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Timers

•  How can the OS prevent runaway user programs
from hogging the CPU (infinite loops?)
–  use a hardware timer that generates a periodic interrupt
–  before it transfers to a user program, the OS loads the timer

with a time to interrupt
•  “quantum”: how big should it be set?

–  when timer fires, an interrupt transfers control back to OS
•  at which point OS must decide which program to schedule next
•  very interesting policy question: we’ll dedicate a class to it

•  Should the timer be privileged?
–  for reading or for writing?

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

Synchronization
•  Interrupts cause a wrinkle:

–  may occur any time, causing code to execute that interferes
with code that was interrupted

–  OS must be able to synchronize concurrent processes
•  Synchronization:

–  guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically

–  one method: turn off interrupts before the sequence, execute
it, then re-enable interrupts

•  architecture must support disabling interrupts
–  another method: have special complex atomic instructions

•  read-modify-write
•  test-and-set
•  load-linked store-conditional

16

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

“Concurrent programming”

•  Management of concurrency and asynchronous
events is biggest difference between “systems
programming” and “traditional application
programming”
–  modern “event-oriented” application programming is a

middle ground

•  Arises from the architecture
•  Can be sugar-coated, but cannot be totally

abstracted away
•  Huge intellectual challenge

–  Unlike vulnerabilities due to buffer overruns, which are just
sloppy programming

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

How do arch. trends impact OS design?
•  Human:computer ratio

–  Batch - time sharing - personal computers - embedded / pervasive
computing

–  Single job - time shared - internetworked
•  Programmer:processor cost ratio

–  assembly to C to Java to Perl languages
–  command line to GUI to pen / voice interfaces

•  Networking
–  Isolation to dialup to LAN to WAN

•  OS must devote more effort to communications
–  Disconnected to wired to wireless

•  OS must manage connectivity more
–  Isolated to shared to attacked

•  OS must provide more security / protection

