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CS 537 
Lecture 2 

Computer Architecture and Operating 
Systems 

Michael Swift 

OS Tasks 

•  What is the role of the OS regarding hardware? 
•  What does the OS need from hardware to perform 

this role? 
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Computer Hardware Organization 

•  Computer-system operation 
–  One or more CPUs, device controllers connect through 

common bus providing access to shared memory 
–  Concurrent execution of CPUs and devices competing for 

memory cycles 

Four Components of a Computer System 

Device Device Device Device Device 

CPU MEM 
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OS terminology 

•  Marketing:  
–  OS is what comes in the box from Microsoft or Apple 

•  In this class:  
–  OS is the code that provides exposes and manages 

hardware 
–  Kernel = the program that contains the OS 
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Architectural features affecting OS’s 

•  These features were built primarily to support OS’s: 
–  timer (clock) operation 
–  synchronization instructions (e.g., atomic test-and-set) 
–  memory protection 
–  I/O control operations 
–  interrupts and exceptions 
–  protected modes of execution (kernel vs. user) 
–  protected instructions 
–  system calls (and software interrupts) 
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OS control flow 

•  after the OS has booted, all entry to the kernel 
happens as the result of an event 
–  event immediately stops current execution 
–  changes mode to kernel mode, event  handler is called 

•  kernel defines handlers for each event type 
–  specific types are defined by the architecture 

•  e.g.: timer event, I/O interrupt, system call trap 
–  when the processor receives an event of a given type, it 

•  transfers control to handler within the OS 
•  handler saves program state (PC, regs, etc.) 
•  handler functionality is invoked 
•  handler restores program state, returns to program 
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Interrupts and exceptions 

•  Two main types of events: interrupts and exceptions 
–  exceptions are caused by software executing instructions 

•  e.g., the x86 ‘int’ instruction 
•  e.g., a page fault, write to a read-only page 
•  an expected exception is a “trap”, unexpected is a “fault” 

–  interrupts are caused by hardware devices 
•  e.g., device finishes I/O 
•  e.g., timer fires 
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An Interrupt illustrated 

User process 

Trap 
Mode bit = 0 

Save Caller’s state Execute Device 
Driver Restore state 

Return 
Mode bit = 1 

Resume process 
User Mode 

Mode bit = 1 

Kernel Mode 
Mode bit = 0 

Device 
Raise 

Interrupt 

Clear 
Interrupt 
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Protected instructions 
•  some instructions are restricted to the OS 

–  known as protected or privileged instructions 
•  e.g., only the OS can: 

–  directly access I/O devices (disks, network cards) 
•  why? 

–  manipulate memory state management 
•  page table pointers, TLB loads, etc. 
•  why? 

–  manipulate special ‘mode bits’ 
•  interrupt priority level 
•  why? 

–  halt instruction 
•  why? 
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OS protection 
•  So how does the processor know if a protected 

instruction should be executed? 
–  the architecture must support at least two modes of 

operation: kernel mode and user mode 
•  x86 support 4 protection modes 
•  MIPS, SPARC, ALPHA support 2 
•  >hy more than 2? 

–  mode is set by status bit in a protected processor register 
•  user programs execute in user mode 
•  OS executes in kernel mode   (OS == kernel) 

•  Protected instructions can only be executed in the 
kernel mode 
–  what happens if user mode executes a protected instruction? 

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and 
Remzi Arpaci-Dussea, Michael Swift 

Crossing protection boundaries 
•  So how do user programs do something privileged? 

–  e.g., how can you write to a disk if you can’t do I/O 
instructions? 

•  User programs must call an OS procedure 
–  OS defines a sequence of system calls 
–  how does the user-mode to kernel-mode transition happen? 

•  There must be a system call instruction, which: 
–  causes an exception (throws a software interrupt), which 

vectors to a kernel handler 
–  passes a parameter indicating which system call to invoke 
–  saves caller’s state (regs, mode bit) so they can be restored 
–  OS must verify caller’s parameters (e.g., pointers) 
–  must be a way to return to user mode once done 
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A kernel crossing illustrated 

User process System Call 

Trap 
Mode bit = 0 

Save Caller’s state Execute system call Restore state 

Return 
Mode bit = 1 

Resume process 
User Mode 

Mode bit = 1 

Kernel Mode 
Mode bit = 0 

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and 
Remzi Arpaci-Dussea, Michael Swift 

System call details 

•  How does the kernel 
know which system 
call? 
–  In a register 

•  Where are the 
parameters? 
–  in a register 
–  on the stack 
–  in a memory block 

 # system call handler stub 
ENTRY(system_call) 
        pushl %eax                      # save orig_eax 
        SAVE_ALL 
        GET_THREAD_INFO(%ebp) 
        cmpl $(nr_syscalls), %eax 
        jae syscall_badsys 
        syscall_call: 
        call *sys_call_table(,%eax,4) 
        movl %eax,EAX(%esp)             # store the return value 

<open>:        push   %ebx	
<open+1>:      mov    0x10(%esp),%edx	
<open+5>:      mov    0xc(%esp),%ecx	
<open+9>:      mov    0x8(%esp),%ebx	
<open+13>:     mov    $0x5,%eax	
<open+18>:     int    $0x80	
<open+20>:     pop    %ebx	
<open+21>:     cmp    $0xfffff001,%eax	
<open+26>:     jae    0x2a189d <open+29>	
<open+28>:     ret    	
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System call issues 

•  What would happen if kernel didn’t save state? 
•  Why must the kernel verify arguments? 
•  How can you reference kernel objects as arguments 

or results to/from system calls? 
•  Why is a table of system calls in the kernel 

necessary? 
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What functions are system calls? 
•  Process control 

–  Create process, allocate memory 
•  File management 

–  Create, read, delete file 
•  Device management 

–  Open device, read/write device, mount device 
•  Information maintenance 

–  Get time, get system data/parameters 
•  Communications 

–  Create/delete channel, send/receive message 

•  Programmers generally do not use system calls directly 
–  They use runtime libraies (e.g. Java, C) 
–  Why? 
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Memory protection 

•  OS must protect user programs from each other 
–  maliciousness, ineptitude 

•  OS must also protect itself from user programs 
–  integrity and security 
–  what about protecting user programs from OS? 

•  Simplest scheme: base and limit registers 
–  are these protected? 

Prog A 

Prog B 

Prog C 

base reg 
limit reg 

base and limit registers 
are loaded by OS before 

starting program 
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More sophisticated memory protection 

•  coming later in the course 
•  paging, segmentation, virtual memory 

–  page tables, page table pointers 
–  translation lookaside buffers (TLBs) 
–  page fault handling 
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I/O operations 

•  I/O is moving data between main memory and a 
device controller 
–  E.g. network, disk, graphics 

•  I/O devices and the CPU can execute concurrently. 
•  A device driver for every device 

–  Knows details of the device 
–  Presents a uniform interface to the rest of OS 

Accessing I/O Devices 

•  Memory Mapped I/O 
–  I/O devices appear as regular memory to CPU 
–  Regular loads/stores used for accessing device 
–  Hardware  

•  Port I/O 
–  CPU has separate bus for I/O devices 
–  Special instructions are required 
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Polling I/O 

•  Each device controller typically has: 
–  Data-in register (for host to receive input from device) 
–  Data-out (for host to send output to device) 
–  Status register (read by host to determine device state) 
–  Control register (written by host to invoke command) 

Polling I/O handshaking: 

•  To write data to a device: 
–  Host repeatedly reads busy bit in status register until clear 
–  Host sets write bit in command register and writes output in 

data-out register 
–  Host sets command-ready bit in control register 

–  Controller notices command-ready bit, sets busy bit in status 
register 

–  Controller reads command register, notices write bit: reads 
data-out register and performs I/O (magic) 

–  Controller clears command-ready bit, clears the error bit (to 
indicate success) and clears the busy bit (to indicate it’s 
finished) 
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Polling I/O 

•  What’s the problem?  
–  CPU could spend most its time polling devices, while other 

jobs go undone. 

•  But devices can’t be left to their own devices for too 
long 
–  Limited buffer at device - could overflow if doesn’t get CPU 

service. 

•  Modern operating systems uses Interrupts to solve 
this dilemma. 
–  Interrupts: Notification from interface that device needs 

servicing 

Interrupts 

•  CPU hardware has a interrupt-request line (a wire) it 
checks after processing each instruction.  

•  Device controller raises interrupt, CPU catches it, 
interrupt handler dispatches and clears it. 

•  Modern OS needs more sophisticated mechanism: 
–  Ability to defer interrupt 
–  Efficient way to dispatch interrupt handler 
–  Multilevel interrupts to to distinguish between high and low 

priority interrupts. 
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Even interrupts are sometimes to slow: 

•  Device driver loads controller registers appropriately 
•  Controller examines registers, executes I/O 
•  Controller signals I/O completion to device driver 

–  Using interrupts 

•  High overhead for moving bulk data (i.e. disk I/O): 
–  One interrupt per byte.. 

Direct Memory Access (DMA) 

•  Transfer data directly between device and memory 
–  No CPU intervention 

•  Device controller transfers blocks of data  
•  Interrupts when block transfer completed 

–  As compared to when byte is completed 

•  Very useful for high-speed I/O devices 
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Interrupt Timeline 

Example I/O 
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Memory 
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Keyboard Controller 
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Disk Controller 
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Timers 

•  How can the OS prevent runaway user programs 
from hogging the CPU (infinite loops?) 
–  use a hardware timer that generates a periodic interrupt 
–  before it transfers to a user program, the OS loads the timer 

with a time to interrupt 
•  “quantum”: how big should it be set? 

–  when timer fires, an interrupt transfers control back to OS 
•  at which point OS must decide which program to schedule next 
•  very interesting policy question: we’ll dedicate a class to it 

•  Should the timer be privileged? 
–  for reading or for writing? 

© 2004-2007 Ed Lazowska, Hank Levy, Andrea and 
Remzi Arpaci-Dussea, Michael Swift 

Synchronization 
•  Interrupts cause a wrinkle: 

–  may occur any time, causing code to execute that interferes 
with code that was interrupted 

–  OS must be able to synchronize concurrent processes 
•  Synchronization: 

–  guarantee that short instruction sequences (e.g., read-
modify-write) execute atomically 

–  one method: turn off interrupts before the sequence, execute 
it, then re-enable interrupts 

•  architecture must support disabling interrupts 
–  another method:  have special complex atomic instructions 

•  read-modify-write 
•  test-and-set 
•  load-linked store-conditional 
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“Concurrent programming” 

•  Management of concurrency and asynchronous 
events is biggest difference between “systems 
programming” and “traditional application 
programming” 
–  modern “event-oriented” application programming is a 

middle ground 

•  Arises from the architecture 
•  Can be sugar-coated, but cannot be totally 

abstracted away 
•  Huge intellectual challenge 

–  Unlike vulnerabilities due to buffer overruns, which are just 
sloppy programming 
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How do arch. trends impact OS design? 
•  Human:computer ratio 

–  Batch - time sharing - personal computers - embedded / pervasive 
computing 

–  Single job  - time shared - internetworked 
•  Programmer:processor cost ratio 

–  assembly to C to Java to Perl languages 
–  command line to GUI to pen / voice interfaces 

•  Networking 
–  Isolation to dialup to LAN to WAN 

•  OS must devote more effort to communications 
–  Disconnected to wired to wireless 

•  OS must manage connectivity more 
–  Isolated to shared to attacked 

•  OS must provide more security / protection 


