
1

9/26/17 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and 
Remzi Arpaci-Dussea, Michael Swift 1

CS 537
Lecture 6

Fast Translation - TLBs

Michael Swift

Faster with TLBS
• Questions answered in this lecture:

– Review paging...
– How can page translations be made faster?
– What is the basic idea of a TLB (Translation 

Lookaside Buffer)?
– What types of workloads perform well with TLBs?
– How do TLBs interact with context-switches?



2

P1

P2

P2

P1

PT

P1

0x4000

0x5000

0x6000

0x2000

0x3000

0x1000

0x0000

PT

P1 pagetable1 5 4 …

P2 pagetable6 2 3 …

P2
0x7000

Virtual Physical

Review: Paging

0x0800

load 0x0000 load 0x0800
load 0x6000

load 0x1444 load 0x0808
load 0x2444

load 0x1444 load 0x0008
load 0x5444

Assume 4 KB pages

What do we need to know?
Location of page table in memory (ptbr)

ptbr

Size of each page table entry (assume 8 bytes)

Review:
Paging PROS and CONS

Advantages
– No external fragmentation

• don’t need to find contiguous RAM
– All free pages are equivalent 

• Easy to manage, allocate, and free pages
Disadvantages

– Page tables are too big
• Must have one entry for every page of address space

– Accessing page tables is too slow [today’s focus]
• Doubles number of memory references per instruction



3

Translation Steps
H/W: for each mem reference:

1. extract VPN (virt page num) from VA (virt addr)
2. calculate addr of PTE (page table entry)
3. read PTE from memory
4. extract PFN (page frame num)
5. build PA (phys addr)
6. read contents of PA from memory into register

(cheap)

(cheap)

(cheap)

(cheap)

(expensive)

(expensive)

Which expensive step will we avoid in today’s lecture?

Which steps are expensive?

3)  Don’t always have to read PTE from memory!

Example: 
Array Iterator

int sum = 0;
for (i=0; i<N; i++){

sum += a[i];
}
Assume ‘a’ starts at 0x3000
Ignore instruction fetches

load 0x3000

load 0x3004

load 0x3008

load 0x300C
…

What virtual addresses?

load 0x100C
load 0x7000
load 0x100C
load 0x7004
load 0x100C
load 0x7008
load 0x100C
load 0x700C

What physical addresses?

Observation: 
Repeatedly access same PTE because program repeatedly 
accesses same virtual page

Aside: What can you infer?
• ptbr: 0x1000; PTE 4 bytes each
• VPN 3 -> PPN 7



4

Pages of Page tables
• Page tables are stored in memory

– Memory is made up of pages
• Page tables are made of of pages (more on Thursday!!!)
• Each page of a page table has some number of translations

– Sizeof(page)/sizeof(PTE) == # of translations in a page
– Example: 4kb pages, 32 bit addresses

• Sizeof(pte) = 20 bits + metadata == 32 bits / 4 byte
• 1024 PTEs in a page

• Example: 64kb pages, 64 bit addresses
– Sizeof(PTE) = 48 bits + metadata = 64 bits / 8 bytes
– 8192 PTEs/page

9/26/17 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and 
Remzi Arpaci-Dussea, Michael Swift 7

Strategy: Cache 
Page Translations

TLB: Translation Lookaside Buffer
(yes, a poor name!)

CPU RAM

memory interconnect

PT
Translation 
Cache Some popular entries



5

TLB Organization

A
0
1
2
3
4
5
6
7

A B
0
1
2
3

A B C D

Direct Mapped

Fully associative

Two-way set associative

Four-way set associative

Tag (virtual page number) Physical page number (page table entry)
TLB Entry

Various ways to organize a 16-entry TLB (artificially small)

Lookup
• Calculate set (tag % num_sets)
• Search for tag within resulting set

Set

In
de

x
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

A    B        C         D         E             K           L          M          N        O

TLB Associativity Trade-offs

Higher associativity
+ Better utilization, fewer collisions
– Slower
– More power

Lower associativity
+ Fast
+ Simple, less hardware
– Greater chance of collisions

TLBs usually set-associative
- x86: 4-way
- ARM (cell phones: 2-way



6

HW and OS Roles
Who Handles TLB MISS?  H/W or OS?
H/W: CPU must know where pagetables are

– CR3 register on x86
– Pagetable structure fixed and agreed upon between HW and 

OS
– HW “walks” the pagetable and fills TLB

OS: CPU traps into OS upon TLB miss
– “Software-managed TLB”
– OS interprets pagetables as it chooses
– Modifying TLB entries is privileged

- otherwise what could process do?
Need same protection bits in TLB as pagetable

- rwx

Array Iterator 
(w/ TLB)

int sum = 0;
for (i = 0; i < 2048; i++){

sum += a[i];
}

Assume following virtual address stream:
load 0x1000

load 0x1004

load 0x1008

load 0x100C
…

What will TLB behavior look like?



7

Virt Phys

P1

P2

P2

P1

PT

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB

PT

P1 pagetable

1 5 4 …

P2
28 KB

TLB Accesses: 
SEQUENTIAL Example

load 0x1000
load 0x1004
load 0x1008
load 0x100c
…
load 0x2000
load 0x2004

load 0x0004
load 0x5000
(TLB hit)
load 0x5004
(TLB hit)
load 0x5008
(TLB hit)
load 0x500C
…
load 0x0008
load 0x4000
(TLB hit)
load 0x4004

0 1 2 3

CPU’s TLB

PTBR

Valid VPN PPN

1
1

1
2

5
4

Performance of TLB?

int sum = 0;
for (i=0; i<2048; i++) {

sum += a[i];
}

Calculate miss rate of TLB for data:
# TLB misses / # TLB lookups

# TLB lookups?
= number of accesses to a = 2048

# TLB misses?
= number of unique pages accessed
= 2048 / (elements of ‘a’ per 4K page) 
= 2K / (4K / sizeof(int)) = 2K / 1K
= 2

Miss rate? 
2/2048 = 0.1%

Hit rate? (1 – miss rate)
99.9%

Would hit rate get better or worse with smaller pages?
Worse



8

TLB PERFORMANCE 
with Workloads

Sequential array accesses almost always hit in TLB
– Very fast!

What access pattern will be slow?
– Highly random, with no repeat accesses

Workload 
Access Patterns

int sum = 0;
for (i=0; i<2048; i++) {

sum += a[i];
}

int sum = 0;
srand(1234);
for (i=0; i<1000; i++) {

sum += a[rand() % N];
}
srand(1234);
for (i=0; i<1000; i++) {

sum += a[rand() % N];
}

Workload A Workload B



9

time

Sequential Accesses

time

Repeated Random Accesses

… …

Workload 
ACCESS PATTERNS

Spatial Locality Temporal Locality

Workload Locality

Spatial Locality: future access will be to nearby addresses
Temporal Locality: future access will be repeats to the same data
What TLB characteristics are best for each type?
Spatial:

– Access same page repeatedly; need same vpn->ppn translation
– Same TLB entry re-used

Temporal:
– Access same address near in future
– Same TLB entry re-used in near future
– How near in future?  How many TLB entries are there?



10

TLB Performance 
Context switches are expensive
Even with ASID, other processes “pollute” TLB

– Discard process A’s TLB entries for process B’s 
entries

Architectures can have multiple TLBs
– 1 TLB for data, 1 TLB for instructions
– 1 TLB for regular pages, 1 TLB for “super pages”

Multi-level TLB
• Problem:

– First level TLB is part of processor pipeline, timing is critical
– CPU looks up VPN in TLB before accessing cache

• Bigger, slower TLB à slower memory access
• Already 4 cycles in x8t6

• Solution: 2-level TLB
– Intel: level 1: 64-entry, 4-way set associative
– Level 2:1536 entries, 12-way set associative

• Tends to hold entries from multiple processes
– Uses ASIDs so not flush large L2 TLB

9/26/17 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and 
Remzi Arpaci-Dussea, Michael Swift 20



11

TLB PERFORMANCE

How can system improve TLB performance (hit rate) given 
fixed number of TLB entries?

Increase page size 
Fewer unique translations needed to access same amount of memory)

Large Pages
• TLB reach

– How much memory can be translated without a TLB miss?
– # of entries * size of page

• 64 entries * 4kb pages = 256 kb
• 1025 entries* 4kb pages = 4 mb

– Modern machines: 16 GB+ -> 4 million entries
• Solution: larger pages

– x86: 2mb, 1 GB pages

9/26/17 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and 
Remzi Arpaci-Dussea, Michael Swift 22



12

Multi-size TLBs
• Fully associative:

– Each entry has a size field
– Use “don’t care” fields in matching

• 4kb: 0x12345---
• 2mb:0x12***---

• Set associative
– Separate TLB  for each sizes
– X86: 2mb, 1gb pages

• 32 entries for 2mb -> 64MB without a TLB moss
– 1536 L2 entries -> 3GB without a page walk

• 12 entries for 1gb -> 12GB without a miss

9/26/17 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and 
Remzi Arpaci-Dussea, Michael Swift 23

Context Switches
What happens if a process uses cached TLB entries 

from another process?
Solutions?
1. Flush TLB on each switch

– Costly; lose all recently cached translations
2. Track which entries are for which process

– Address Space Identifier
– Tag each TLB entry with an 8-bit ASID

- how many ASIDs do we get?
- why not use PIDs?



13

P1

P2

P2

P1

PT

P1

16 KB

20 KB

24 KB

8 KB

12 KB

4 KB

0 KB

Virtual Physical

PT

P2
28 KB

PTBR

load 0x1444 load 0x2444

load 0x1444 load 0x5444

P1 pagetable (ASID 11)1 5 4 …

P2 pagetable (ASID 12)6 2 3 …

Valid Virt Phys ASID

0 1 9 11
1 1 5 11
1 1 2 12
1 0 1 11

TLB:

TLB Example with ASID

ASID: 12

ASID: 11

Summary

• Pages are great, but accessing page tables for every 
memory access is slow

• Cache recent page translations à TLB
– Hardware performs TLB lookup on every memory access

• TLB performance depends strongly on workload
– Sequential workloads perform well
– Workloads with temporal locality can perform well
– Increase TLB reach by increasing page size

• In different systems, hardware or OS handles TLB 
misses

• TLBs increase cost of context switches
– Flush TLB on every context switch
– Add ASID to every TLB entry


