
1

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

1

CS 537
Lecture 14

Unix FS Internals
Michael Swift

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

2

The original Unix file system

•  Dennis Ritchie and Ken Thompson, Bell Labs, 1969
•  “UNIX rose from the ashes of a multi-organizational

effort in the early 1960s to develop a dependable
timesharing operating system” -- Multics

•  Designed for a “workgroup” sharing a single system
•  Did its job exceedingly well

–  Although it has been stretched in many directions and made
ugly in the process

•  A wonderful study in engineering tradeoffs

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

3

All Unix disks are divided into five parts …

•  Boot block
–  can boot the system by loading from this block

•  Superblock
–  specifies boundaries of next 3 areas, and contains head of

freelists of inodes and file blocks

•  i-node area
–  contains descriptors (i-nodes) for each file on the disk; all i-

nodes are the same size; head of freelist is in the superblock

•  File contents area
–  fixed-size blocks; head of freelist is in the superblock

•  Swap area
–  holds processes that have been swapped out of memory

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

4

So …

•  You can attach a disk to a dead system …
•  Boot it up …
•  Find, create, and modify files …

–  because the superblock is at a fixed place, and it tells you
where the i-node area and file contents area are

–  by convention, the second i-node is the root directory of the
volume

2

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

5

i-node format
•  User number
•  Group number
•  Protection bits
•  Times (file last read, file last written, inode last written)
•  File code: specifies if the i-node represents a directory,

an ordinary user file, or a “special file” (typically an I/O
device)

•  Size: length of file in bytes
•  Block list: locates contents of file (in the file contents

area)
–  more on this soon!

•  Link count: number of directories referencing this i-node

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

6

The flat (i-node) file system

•  Each file is known by a number, which is the number
of the i-node
–  seriously – 1, 2, 3, etc.!
–  why is it called “flat”?

•  Files are created empty, and grow when extended
through writes

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

7

The tree (directory, hierarchical) file system

•  A directory is a flat file of fixed-size entries
•  Each entry consists of an i-node number and a file

name
i-node number File name

152 .
18 ..

216 my_file
4 another_file

93 oh_my_god
144 a_directory

•  It’s as simple as that!
3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and

Remzi Arpaci-Dussea, Michael Swift
8

Using directories
•  How do you find files?

–  Read the directory, search for the name you want (checking
for wildcards)

•  How do you list files (ls)
–  Read directory contents, print name field

•  How do you list file attributes (ls -l)
–  Read directory contents, open inodes, print name +

attributes

•  How do you sort the output (ls -S, ls -t)
–  The FS doesn’t do it -- ls does it!

3

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

9

The “block list” portion of the i-node
•  Clearly it points to blocks in the file contents area
•  Must be able to represent very small and very large files. How?
•  Each inode contains 15 block pointers

–  first 12 are direct blocks (i.e., 4KB blocks of file data)
–  then, single, double, and triple indirect indexes

0
1

12
13
14

…

…

…

…

…

…

…

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

10

So …
•  Only occupies 15 x 4B in the i-node
•  Can get to 12 x 4KB = a 48KB file directly

–  (12 direct pointers, blocks in the file contents area are 4KB)
•  Can get to 1024 x 4KB = an additional 4MB with a

single indirect reference
–  (the 13th pointer in the i-node gets you to a 4KB block in the

file contents area that contains 1K 4B pointers to blocks
holding file data)

•  Can get to 1024 x 1024 x 4KB = an additional 4GB
with a double indirect reference
–  (the 14th pointer in the i-node gets you to a 4KB block in the

file contents area that contains 1K 4B pointers to 4KB blocks
in the file contents area that contian 1K 4B pointers to blocks
holding file data)

•  Maximum file size is 4TB

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

11

File system consistency

•  Both i-nodes and file blocks are cached in memory
•  The “sync” command forces memory-resident disk

information to be written to disk
–  system does a sync every few seconds

•  A crash or power failure between sync’s can leave an
inconsistent disk

•  You could reduce the frequency of problems by
reducing caching, but performance would suffer big-
time

What could go wrong?

•  Creating a file
–  Allocate an inode (remove from list/bitmap)
–  write inode
–  Write file name to directory data
–  write size to directory inode

•  What if you crash:
–  after writing inode but before writing the free inode list?
–  after writing the directory inode size before writing directory

inode data?

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

12

4

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

13

i-check: consistency of the flat file system

•  Is each block on exactly one list?
–  create a bit vector with as many entries as there are blocks
–  follow the free list and each i-node block list
–  when a block is encountered, examine its bit

•  If the bit was 0, set it to 1
•  if the bit was already 1

–  if the block is both in a file and on the free list, remove it from the
free list and cross your fingers

–  if the block is in two files, call support!

–  if there are any 0’s left at the end, put those blocks on the
free list

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

14

d-check: consistency of the directory file system

•  Do the directories form a tree?
•  Does the link count of each file equal the number of

directories links to it?
–  I will spare you the details

•  uses a zero-initialized vector of counters, one per i-node
•  walk the tree, then visit every i-node

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

15

Protection systems

•  FS must implement some kind of protection system
–  to control who can access a file (user)
–  to control how they can access it (e.g., read, write, or exec)

•  More generally:
–  generalize files to objects (the “what”)
–  generalize users to principals (the “who”, user or program)
–  generalize read/write to actions (the “how”, or operations)

•  A protection system dictates whether a given action
performed by a given principal on a given object
should be allowed
–  e.g., you can read or write your files, but others cannot
–  e.g., your can read /etc/motd but you cannot write to it

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

16

Model for representing protection
•  Two different ways of thinking about it:

–  access control lists (ACLs)
•  for each object, keep list of principals and principals’ allowed actions
•  Like a guest list (check identity of caller on each access)

–  capabilities
•  for each principal, keep list of objects and principal’s allowed actions
•  Like a key (something you present to open a door)

•  Both can be represented with the following matrix:

/etc/passwd /home/swift /home/guest

root rw rw rw

swift r rw r

guest r
principals

objects

ACL

capability

5

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

17

ACLs vs. Capabilities
•  Capabilities are easy to transfer

–  they are like keys: can hand them off
–  they make sharing easy

•  ACLs are easier to manage
–  object-centric, easy to grant and revoke

•  to revoke capability, need to keep track of principals that have it
•  hard to do, given that principals can hand off capabilities

•  ACLs grow large when object is heavily shared
–  can simplify by using “groups”

•  put users in groups, put groups in ACLs
•  you are could be in the “cs537-students” group

–  additional benefit
•  change group membership, affects ALL objects that have this group in

its ACL

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

18

Protection in the Unix FS

•  Objects: individual files
•  Principals: owner/group/world
•  Actions: read/write/execute

•  This is pretty simple and rigid, but it has proven to be
about what we can handle!

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

19

File sharing
•  Each user has a “file descriptor table” (or “per-user open file

table”)
•  Each entry in the channel table is a pointer to an entry in the

system-wide “open file table”
•  Each entry in the open file table contains a file offset (file

pointer) and a pointer to an entry in the “memory-resident i-node
table”

•  If a process opens an already-open file, a new open file table
entry is created (with a new file offset), pointing to the same
entry in the memory-resident i-node table

•  If a process forks, the child gets a copy of the channel table
(and thus the same file offset)

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

20

User 1 User 2 User 3

channel table channel table channel table

open file
table

file offset file offset

memory-resident
i-node table

6

3/27/09 © 2004-2007 Ed Lazowska, Hank Levy, Andrea and
Remzi Arpaci-Dussea, Michael Swift

21

