
CS 736 – Minimal Abstractions 
 

1.  Minimal abstractions: does an OS need to provide abstractions, and 
when? 

2. Questions from reviews: 
a. Why is arrakis not trivial thinking about u-net, other user-mode 

networking? 
i. A: preserve Posix interface for sockets 

1. Past work tended to use RDMA or other protocols, 
hard to program 

ii. Handle disks 
1. Past work only handled networking 

iii. Partially, it is not that new 
b. Security: who implements control? 

i. OS: currently manages control/data, just removing data so 
no loss in security if HW does things right 

c. Would bypass be worth it with slow devices? 
i. No – percent overhead small 

d. Native vs Linux interface 
i. Exo kernel – interface closer to HW, smaller abstraction 

allow stripping out more code 
 
3. ExoKernel	– exterminate abstractions 

a. Background: 
i. lots of effort at customizing/extensible kernels (e.g. hydra, 

mach, vino, spin). Mostly aimed at taking an existing 
kernel and adding extensions, building a new architecture 
that allows extensions to be downloaded, or moving 
functionality to user-mode where it can be replaced. 

ii. Basic challenge: all these approaches tend to be slow 
b. Context 

i. Predated modern virtual machines – they are like an 
exokernel 

ii. Paper presented at HotOS workshop – for new ideas, not 
fully-baked systems. Later published 2 papers 
demonstrating performance, flexibility, sharing 

iii. Trying to be inflammatory – to get attention. 
c. Technology change? 

i. QUESTION: was there a technology change? 
d. Problem: 

i. operating systems getting big and bloated. QUESTION: 
HOW BIG IS A KERNEL? Linux? 



ii. Abstractions offered useful for low-perf apps (sometimes), 
but mismatch between offering and what apps need makes 
programming difficult, hurts performance.   

iii. Example: automatic virtual memory. App may have better 
sense of its needs, e.g. what pages to replace and when 

e. Question: how do you get the extensibility, flexibility, sharing 
and protection with all the overhead? 

 
f. CLAIM: impossible to provide abstractions good for all 

applications and efficient 
i. Let’s examine claim: 
ii. What is an OS? code that securely multiplexes + abstracts 

hardware. 
1. Code one can neither neither change nor avoid 

(baked in!) 
2. Microkernel move code around, perhaps allow some 

substitution but not much. 
3. Securely multiplex: why? so can run multiple 

programs 
4. Abstract: why? 

a. Makes multiplexing easier (at higher level, 
conceals some details. E.g. file systems) 

b. Easier to write program - don't need to deal 
with low-level     details 

5. Lots of good ideas proposed but not adopted by OS - 
demonstrates limits of current OS design 

a. how do we know all the ideas are good? 
b. lots of things are adopted into operating 

systems 
g. Current design leads to: 

i. poor reliability, because complex systems needed (e.g. 
vm, COW,   mmap, multithreading) 

ii. Poor adaptability: hard to add new policy, mechanism. 
Change not localized because OS applies to all apps 

1. Lots of linux changes rejected because some apps 
depend on old behavior 

iii. Poor performance: abstractions take time to execute; 
applications   that don't need them still pay. Example: GC 
or DB that interacts   poorly with VM and would do better 
managing memory itself 

iv. Poor flexibility: apps can't implement their own 
abstractions, just   emulate on top of existing OS at high 
cost 

h. Discussion of value of abstractions 



i. Benefits 
1. Higher level of programming 
2. Code reuse – don’t have to rewrite low-level code 
3. Higher-level policy; can enforce policies with more 

knowledge 
a. E.g. more information about sharing & 

cooperation 
4. More security: can group information for finer-level 

access control 
5. Can share at a higher level – e.g. files instead of 

blocks, to get better consistency semantics 
6. Easier to write programs – can deal with things you 

think about (contiguous memory, files), not 
hardware 

7. Performance: 
a. Can more easily overlap operations of multiple 

processes  
i. E.g. disk scheduling 

b. Can do system-wide caching 
i. File system caching 

c. Have semantics to make better decisions 
i. What blocks are data vs metadata 

ii. Drawbacks: 
1. Performance: wrong abstraction means what you 

want is very expensive 
a. E.g. file systems when you want block storage, 

or have large files, or billions of small files 
b. E.g. networking – can’t get to inner access of 

how protocols work, hard to avoid copying 
2. Hard to change monolithic kernel – difficult, complex 

code 
a. E.g. optimize to deliver network packets right 

off disk to web server 
b. Issue isn’t as much one of booting into another 

OS, as to modifying to do what you want 
3. End-to-end argument 

a. Application knows best 
b. application must handle things anyway 
c. might as well give power to the application to 

do things their way 
i. Optimize for mutual trust instead of 

distrust 
a. Solution: 

i. Big idea: 



1. Kernel provides minimum necessary to securely 
multiplex hardware, but no abstractions (if 
possible) 

2. OS runs as a library attached to application, 
provides abstractions 

a. should be easier to extend, better 
tuned to applications 

b. provides same high level abstractions 
to make it easy to program 

c. EVERYTHING that used to be in the 
kernel other than sharing & protecting 
hardware moves to a library IN YOUR 
PROCESS. 

d. THEY IMPLEMENTED POSIX interface in 
a library, to run standard Unix code 

3. Idea is NOT: 
a. have a trusted user-mode implementation 

of a service 
4. Idea IS: 

a. Run the OS code yourself in your process 
b. NO trusted third party 

5. DISCUSSION: what happens to 
compatibility? 

a. Answer: you have this in the form of 
libraries, but you can bypass it or 
modify the libraries. 

b. E.g. can use raw packet send instead of 
standard TCP/IP implementation 

c. E.g. a database can directly write to 
disk and manage buffering, instead of 
using file system 

6. WHAT HAPPENS TO RELIABILITY? 
a. You run less code. 
b. You can run common shared code if you 

want (but at lower performance). 
c. Kernel crashes are worse than user-

level crashes, as they impact 
everything and force a reboot 

ii. Minimal kernel, exokernel, that provides access to 
hardware if at all possible  

1. QUESTION: How? 
a. Provide base minimum: wired pages for 

exception handlers and page table, 
addresses of exception handlers 



b. Ensure safety at all times 
i. No use of other’s resources (e.g. 

memory, CPU) 
c. Allow safe code downloaded to kernel 

i. For packet filter to decide which 
process gets a packet 

2. Expose hardware names – e.g. physical address 
a. So can do HW-dependent things, such as 

page coloring 
b. Use SECURE BINDINGS: 

i. When first using a resource, check 
access and cache.  

1. E.g. a TLB: verify mapping, then 
let it be used 

2.  E.g. packet filter: verify selects 
right packets, then let it use 

c. For memory: 
i. Create capabilities to each page 

accessible by a process, which it 
presents to establish mappings. 

ii. Provide ability to insert into a TLB 
(could be software TLB in kernel) or 
remove 

iii. QUESTION: How compare with normal 
address space? 

1. Can use physical addresses 
directly, can use large pages if 
want, or page coloring` 

d. Processes: 
i. Provide address of an exception 

handler 
1. Know where to start code 
2. What to do on seg fault, divide-

by-zero, etc. 
3. Know what to save/restore on 

context switch  
3. Expose hardware events – e.g. swapping memory 

out 
a. So can choose what do do 

4. Expose revocation: ask libos to do revocation 
a. Take away a CPU: libos may want to do 

some scheduling, or decide what state to 
save 

b. Take away memory: update PTE 



5. WHAT ABSTRACTIONS DO THEY KEEP? 
a. Capabilities: a right to use a HW 

resource 
i. Check capabilities on use 
ii. Use HW support – e.g. TLB, or tables 

for disk blocks. Very lightweight 
6. Provide SW TLB – apps can fill in own mappings 

safely 
7. QUESTION: how do you handle resource sharing? 

a. Don’t have enough policy in the kernel to 
make accurate decisions 

iii. Provide abstractions in libraries – programs can choose 
what libraries they want 

1. QUESTION: Who writes these?  
a. Could be OS developer, but leaves open 

modules for extension. 
b. Could be a port of an existing OS for 

compatibility 
c. Can run multiple simultaneously 

2. QUESTION: What are implications? Do app 
developers have to write their own OS? Do app 
developers have to write own window routines in 
X because in user space, compared to windows? 
But can X be changed more easily? 

a. Can think of OS code being more modular – 
can replace parts of it, just for your app. 
Can leave interface alone, or subclass & add 
new features. 

3. QUESTION: portability- how handled? 
a. A: library has hardware abstraction layer. 

But need not, if want extra performance 
b. E.g. routines to manipulate page tables, 

handle specific exception formats 
4. QUESTION: What are assumptions 

a. Not for timesharing; relatively trusted libOS 
because computer user  chooses it, 

b. Probably not for malicious applications  
5. Each application links to a libOS, which provides 

OS-level APIs 
a. Applications trusting each other can have a 

libOS that shares state 
6. LibOS chooses what state to save/restore on 

context switch 



7. LibOS can be customized to the application – 
different mechanisms and policices 

8. QUESTION: Impact on complexity? 
a. Previously OS / device drivers hide 

complexity – only do once 
b. Now: all libOS have to do it, or share code 
c. Now: can have libOS that only has the 

features you need – leave out everything 
else 

i. makes libOS simpler 
d. When you need new functionality: 

i. need to change libOS 
ii. maybe copy code, maybe 

reimplement 
iii. e.g. static web server -> dynamic web 

server 
iv. Kernel handles dependencies between 

services, but in libOS, when add 
services, need to manage this 
separately 

iv. Provide some functionality via safe downloaded code 
into kernel 

1. Code has guaranteed completion 
2. Limited access to memory 
3. Used for packet filters, event notification (wake 

up), file system block translation 
v. Big issues are sharing 

1. If kernel doesn’t handle it, how does it happen? 
a. Between libOS – but can optimize for trust 

relationship 
i. Mutual trust (e.g. unix processes of 

same user) 
1. Allow sharing w/o OS 

intervention 
ii. Unidirectional trust (e.g. 

process/kernel, microkernel server) 
1. Trusted sides retains ownership 

of shared resources, e.g. page 
tables 

iii. Mutual suspicion 
1. Provide kernel support via. 

Downloaded code 
2. LibOS must treat all data 

suspiciously 



iv. QUESTION: should you trust? How 
does that impact reliability / security? 

b. Comparison to virtual machines (coming soon) 
i. Expose communication primitives (IPC) 

1. Better support for sharing (e.g. memory) 
ii. Some changes from HW interface 

1. Exception tables vs interupt vectors 
2. Software TLBs vs page tables 

 
 

Arrakis:	
 

1. What hardware enables this work? 
a. Self-virtualizing devices – enables user-mode I/O 
b. RDMA devices – user mode IO 

2. What is the problem? 
a. OS overhead high on data plane to devices relative to modern devices 

i. File systems 
1. Can to read/write in 25us – compared to 1-10ms for disk 

ii. Network 
1. 10gbps network sends a packet in 1us, round trip with 

RDMA is 3 us 
b. Past solutions 

i. New APIs/data structures for zero-zopy 
ii. Hardware offload – TCP etc 
iii. System-call batching 

3. Basic research approach: 
a. Benchmark a system see what is slow 

i. Profile to understand why slow 
ii. Network: 

1. Network stack – protocols 
a. Must demultiplex packets between processes 

2. Scheduler – context switches if process not running 
3. Kernel crossing – trap/return 
4. Copy – copy data into kernel buffers 

iii. Storage: similar 
1. Trap to kernel 
2. Scheduling waiting for I/O to complete 

iv. Application: 
1. For simple service (memory cache), most of time is in OS/IO 

path 
a. E.g. socket handling 

v. Why a problem? 



1. New hardware is fast: 40Gbit ethernet, 25us SSDs 
2. SW is now comparable to HW; for hard disk or slow network 

SW is cheap 
a. 10ms seek time vs 100us FS time 

b. What is new opportunity: self-virtualizing hardware 
i. Idea: HW knows about processes, can take independent request 

from different processes 
1. Sidebar: why not work normally? 

ii. How? 
1. Connection per process – queue of requests 
2. Rules to distinguish data per process 

a. Disk: req/resp queue 
b. Net: network address (port, IP address) 

3. Scheduling: mechanisms to share HW between processes 
4. OS retains control – creates connection to processes (limited 

number) 
5. IOMMU: allow using virtual addresses from user-mode 

a. Page table in PCIe bus does translation, knows about 
processes, so device gets correct physical data, 
maintains security 

4. Arrakis 
a. Problem: 

i. I/O is fast, but kernel adds overhead 
1. Abstraction overhead (e.g. sockets, file systems) 
2. Time overhead: trapping/returning 
3.  

b. Big idea: data plane out of kernel 
i. Control plane == connection set up, control over who gets to do 

what, deciding policy on resource use 
ii. Data plan = actual requests to read/write data, send/transmit 

packets 
iii. Origin: comes from networking; connection establishment, 

forwarding policy (routing)  vs packet movement (just forwarding) 
c.  

i. Once connection established, data movement an be done w/o 
kernel involvement, securely 

ii.  
iii. How? 
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SYSTEMS
Arrakis: The Operating System as Control Plane

Hardware Support for User-Level Operating 
Systems
An inspiration for this work is the recent development of virtu-
alizable network interfaces, such as the Intel X520 10 Gigabit 
Ethernet controller. These interfaces provide a separate pool of 
packet buffer descriptors for each virtual machine. The network 
interface demultiplexes incoming packets and delivers them 
into the appropriate virtual memory location based on the buffer 
descriptors set up by the guest operating system. Of course, the 
VMM still specifies which guest VMs are assigned to which 
virtual network device. Once the setup is done, however, the data 
path never touches the VMM. We would like to be able to demul-
tiplex packets directly to applications, based on IP addresses and 
port numbers. For this to work, the network device needs to be 
more sophisticated, but Moore’s Law favors hardware complex-
ity that delivers better application performance, so such features 
are likely to be added in the future.

Entering the market now are hard disk controllers that allow 
hard disk partitions to be imported directly as virtual disks to 
guest operating systems. What we need is something more: the 
ability to give any application direct access to its own virtual 
disk blocks from user space. Unlike a fixed disk partition, 
applications could request the kernel to extend or shrink their 
allocation, as they are able to do for main memory today. The 
disk device maps the virtual disk block number to the physical 
location. Flash wear leveling and bad block remapping already 
support this type of virtualization. As with the network inter-
face, the disk hardware would then read and write disk data 
directly to application memory.

An interesting research question we are investigating is whether 
we can efficiently simulate this model on top of existing hard-
ware. The idea is to create a large number of disk partitions, 
which are then allocated as needed to different applications. 
Application data is spread across different partitions, but the 
application library synthesizes these partitions into a logical 
whole seen by the higher level code.

Power management can also be virtualized [4]. At the applica-
tion level, knowing which devices need to be powered on and 

which can be put into low-power mode is easier. Applications 
are likely to know more about their present and future usage of a 
device, and therefore are capable of smarter power management 
than a device driver running within a traditional kernel.

Finally, Intel now supports multiple levels of (multi-level) page 
translation (Extended Page Tables [5]). The intent of this is to 
support direct read-write access by a guest operating system to 
its own page tables, without needing to trap into the hypervisor 
to reflect every change into the host kernel shadow page table 
seen by hardware. While useful for operating system virtual-
ization, page translation hardware can also be used for a raft 
of application-level services, such as transparent, incremental 
checkpointing, external paging, user-level page allocation, and 
so forth.

Arrakis: The Operating System Is the  
Control Plane
What is required on the software side to allow applications 
direct hardware I/O? Ideally, we would like a world in which the 
operating system kernel is solely responsible for setting up and 
controlling data channels to hardware devices and memory. The 
hardware delivers data and enforces resource and protection 
boundaries on its own. Applications receive the full power of the 
unmediated hardware. To make this possible, we partition the 
operating system into a data plane and a control plane. This is in 
analogy to network routing, where the router OS is responsible 
for setting up data flows through the router that can occur with-
out any software mediation.

Figure 2 shows this division in the Arrakis operating system. 
In Arrakis, the operating system (control plane) is only respon-
sible for setting up hardware data channels and providing an 
interface to applications to allow them to request and relin-
quish access to I/O hardware, CPUs, and memory. Applications 
are able to operate directly on the unmediated hardware (data 
plane).

Direct hardware access may be made transparent to the applica-
tion developer, as needed. We can link library operating systems 
into applications that can provide familiar abstractions and 

Figure 1: Application I/O paths for a virtualized Web service. Figure 2: Arrakis I/O architecture



iv.  
v. becomes 

vi.  

vii.  
d. Retain kernel API but handle data plane in a library 

i. Implement POSIX apis 
e. Abstract hardware enough to have generic apps, but not too much 

Skipping the kernel
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i.  
5. Hardware model: how get hardware to be safely sharable? 

a. What is needed: 
i. Virtual interfaces to devices 

1. Per-app queues 
a. Pass virtual address of application buffers to 

send/receive 
b. VNIC for networking, VSIC for storage 

i. Ensures req/resp go to correct process 
2. Per-app rate limiters (to apply policy) 
3. Per-app filters – what packets/data go to this app? 

a. Transmit: prohibit sending from someone else’s port 
b. Receive: only get data for this app 
c. Read/write for disk: what range of blocks? 
d. QUESTION: What is OS protection role for a 

filter? 
i. Must ensure non-overlapping filters 
ii. Must ensure not take packets for rest of OS 
iii. Must not claim too much port space  

e. QUESTION: Why a capability to a filter? 
i. Allows passing between processes, like a 

socket or file descriptor 
ii. Can create a filter, fork a process, give to child 

to take 
4. Challenges: 

a. HW may not support enough for every process 
i. Solution: go back to SW for some processes 

b. HW may not filter on right fields 
i. Limit to what can be used 

c. HW may not do protection for disks 
i. Wait for it? Doable –no technical challenge, 

just business 
5. NOTE: research not stopped by what is currently shipping, 

but look at what is possible in HW even if not in current 
products 

a. Does not need new inventions in HW! 
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Figure 3: Arrakis architecture. The storage controller maps
VSAs to physical storage.

through their protected virtual device instance without re-
quiring kernel intervention. In order to perform these oper-
ations, applications rely on a user-level I/O stack that is pro-
vided as a library. The user-level I/O stack can be tailored to
the application as it can assume exclusive access to a virtu-
alized device instance, allowing us to remove any features
not necessary for the application’s functionality. Finally,
(de-)multiplexing operations and security checks are not
needed in this dedicated environment and can be removed.

The user naming and protection model is unchanged.
A global naming system is provided by the control plane.
This is especially important for sharing stored data.
Applications implement their own storage, while the
control plane manages naming and coarse-grain allocation,
by associating each application with the directories and
files it manages. Other applications can still read those
files by indirecting through the kernel, which hands the
directory or read request to the appropriate application.

3.2 Hardware Model

A key element of our work is to develop a hardware-
independent layer for virtualized I/O—that is, a device
model providing an “ideal” set of hardware features.
This device model captures the functionality required
to implement in hardware the data plane operations of a
traditional kernel. Our model resembles what is already
provided by some hardware I/O adapters; we hope it will
provide guidance as to what is needed to support secure
user-level networking and storage.

In particular, we assume our network devices provide
support for virtualization by presenting themselves as
multiple virtual network interface cards (VNICs) and
that they can also multiplex/demultiplex packets based on
complex filter expressions, directly to queues that can be
managed entirely in user space without the need for kernel
intervention. Similarly, each storage controller exposes
multiple virtual storage interface controllers (VSICs)
in our model. Each VSIC provides independent storage
command queues (e.g., of SCSI or ATA format) that are
multiplexed by the hardware. Associated with each such
virtual interface card (VIC) are queues and rate limiters.

VNICs also provide filters and VSICs provide virtual
storage areas. We discuss these components below.

Queues: Each VIC contains multiple pairs of DMA
queues for user-space send and receive. The exact form
of these VIC queues could depend on the specifics of
the I/O interface card. For example, it could support a
scatter/gather interface to aggregate multiple physically-
disjoint memory regions into a single data transfer. For
NICs, it could also optionally support hardware checksum
offload and TCP segmentation facilities. These features
enable I/O to be handled more efficiently by performing
additional work in hardware. In such cases, the Arrakis
system offloads operations and further reduces overheads.

Transmit and receive filters: A transmit filter is a pred-
icate on network packet header fields that the hardware
will use to determine whether to send the packet or discard
it (possibly signaling an error either to the application or
the OS). The transmit filter prevents applications from
spoofing information such as IP addresses and VLAN
tags and thus eliminates kernel mediation to enforce these
security checks. It can also be used to limit an application
to communicate with only a pre-selected set of nodes.

A receive filter is a similar predicate that determines
which packets received from the network will be delivered
to a VNIC and to a specific queue associated with the target
VNIC. For example, a VNIC can be set up to receive all
packets sent to a particular port, so both connection setup
and data transfers can happen at user-level. Installation
of transmit and receive filters are privileged operations
performed via the kernel control plane.

Virtual storage areas: Storage controllers need to pro-
vide an interface via their physical function to map virtual
storage areas (VSAs) to extents of physical drives, and
associate them with VSICs. A typical VSA will be large
enough to allow the application to ignore the underlying
multiplexing—e.g., multiple erasure blocks on flash, or
cylinder groups on disk. An application can store multiple
sub-directories and files in a single VSA, providing precise
control over multi-object serialization constraints.

A VSA is thus a persistent segment [13]. Applications
reference blocks in the VSA using virtual offsets,
converted by hardware into physical storage locations. A
VSIC may have multiple VSAs, and each VSA may be
mapped into multiple VSICs for interprocess sharing.

Bandwidth allocators: This includes support for re-
source allocation mechanisms such as rate limiters and
pacing/traffic shaping of I/O. Once a frame has been
removed from a transmit rate-limited or paced queue, the
next time another frame could be fetched from that queue
is regulated by the rate limits and the inter-packet pacing
controls associated with the queue. Installation of these
controls are also privileged operations.



b. Emulate in SW: hW interface, but use a CPU core for 
protection 

i. Poll queues for requests, copy to single HW 
queue, translate virtual addresses 

ii. Use same format, just apply protection rules 
ii. Control plane inteface: how connect to devices/how manage them 

1. Basic I/O inteface 
a. Requests queues 
b. Doorbells: notifications (IPC) that data is available 

2. Network control 
a. Filter:  

i. type (transmit/receive) 
ii. predicate:subset of pkt headers 

1. IP addresses, ports, protocol types 
2. Example: port 80 with any sender; 

allows accepting connections for HTP 
3. Example: map/reduce: allows 

sending/receving over a port to a whole 
group of machines 

4. Details: 
a. Flags – direction, protocol 
b. Peerlist –other machines involved 
c. Service list: allowed ports 

iii. Interface: 
1. CreateFilter – returns a capability to 

send/receive packets matching the filter 
2. Can attach a filter to a queue (or more 

than one)  
3. Storage control: 

a. Problem:  
i. HW only grants access to blocks 
ii. Want files, want sharing/protection of these 

files 
b. Virtual storage area: region of disk limited to an 

application 
i. Not used by other processes, so can safely 

read/write blocks there 
ii. Effectively like a partition 
iii. Easier abstraction than a file: 

1. Cannot grow (perhaps) 
2. Is contiguous (no indexing structures) 

c. Solution:  
i. process can export sub-tree (volume in Unix) 

to other processes 



1. Total local control over data in sub-tree 
2. Othres can mount remotely 

a. RPC endpoint for others to call in 
3. Local operations handled within process 
4. Access control at unit of volume (VSA) 

not file 
5. Each process is a network file server to 

other processes 
a. Can run separate FS server when 

app not running 
b. Multiple apps can access VSA if 

all read-only 

d.  
e. QUESTION: is this reasonable? 

i. What if it doesn’t respond? 
1. Time out, or use async calls to avoid 

blocking 
ii. Is it o.k. that it can read/write all the data? 

1. Permissions enforced at volume level 
2.  

iii. Data plan interface 
1. Network: 

a. User-level network stack (e.g., tcp, udp) as a library 
b. Send/receive packets using DMA descriptors 

i. Send packet over queue (scatter/gather) 
c. Notification: signal file descriptor (can be polled, 

selected) 
2. Disk: 

a. Read/write blocks at logical addresses to VSAs – 
virtual storage areas (one or more) 

b. Persistent data structures to leverage low-latency 
storage (CALADAN) 

i. Log, queue 
1. Log: APIs to atomically create entries, 

append, read log 

Virtual Storage Area

/tmp/lockfile
/var/lib/key_value.db
/etc/config.rc
…

Kernel
VFS

emacs

Redis Fast
HW ops

Global Naming

Logical 
disk

Indirect IPC interface



2. Queue: push head, pop tail 
ii. Manage all metadata, high performance 
iii. Simpler than complete files, all user-mode 
iv. Handles correctness: flushing data at 

appropriate time 
v. No serialization – no pointers in data structures 

b. Compared to ExoKernel: 
i. Not remove abstractions completely, but remove dataplane 

1. What called most often 
2. Dominant impact on performance 

ii. Leverage HW support for virtualization 
1. To much of what exokernel wants in HW 

iii. Only address I/O 
1. Not touch memory management, scheduling 

iv. Still have abstractions, but all in library 
1. Low-level matches HW: request queues 
2. Can use native interface (arrakis/p) to bypass (like 

ExoKernel vision) 
c. Other uses of virtualization hardware 

i. Dune: allow page table manipulation in SW  
d. Evaluation: 

i. Microbenchmark: show low-level operations relative to linux 
ii. Applications:  

1. show low-level perf benefits applications 
2. Show compatibilty with applications 

iii. Memcached + UDP 
1. Note: not use TCP (complicated protocol) 
2. Faster packet/send receive 

iv. Load balancer: 
1. Lots of connection setup/ teardown 
2. Avoid system calls because all use same filter 

v. Perf isolation: 
1. Job of kernel is to fairly share resources 
2. Show that HW can do the same thing itself 

a. Only show VNIC – easy – not VSA – hard! 


