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Abstract

Android based devices have become increasing important in many peoples’ lives. The in-
creasing number of device components like cameras, WIFI, and multicore processors as well
as increasingly complex applications drain the battery leading to frustrated users who depend
on non-stop access to their device. We propose a solution named SApp that will educate
the user on the impact of their applications by providing an opportunity to reduce the bat-
tery consumption through smarter user decisions and prioritization. This is a three step
process: test the impact of the specific device components, then measure the performance
of applications, and combine heuristics with the measurements to predict future application
impacts. The end result is an educated user capable of extending the life of their device
through informed decisions.

1 Introduction

The Android Operating System is the most popular in the world, powering over one billion
mobile devices[5]. These devices provide users with the ability to communicate, play games,
and browse the internet anywhere at any time. The popularity has led to manufacturers
adding more processors for increasing power, stronger network transmitters for faster data
sharing, and larger, clearer screens for better viewing experiences. The changes improve
the enjoyment of the device, but weight and slow improvements in battery technology limit
the energy a device can store. In an online poll of over 7,000 Android users, 72% said that
they were dissatisfied with the battery life of their phone[4].

The initial assumption would be to improve the hardware for a more power efficient
display or longer lasting batteries. However, there exists a popular market[8][9][7][12][14]
for a software approach that informs users and developers about the cause of their device’s
power drain and the attributing applications. Developers could use that information to
design more energy efficient programs while users could limit the usage of power hunger
application to lengthen battery life.

We present SApp as a potential solution to educate users and developers alike by taking
a three step approach to application energy profiling. The first step builds a power model
of popular device components such as the CPU, display, IO, and WIFI. The model is built
using a software-only approach that is unique to the specific device at a specific point in
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time. With this capability, as the hardware degrades over time, the model can be rebuilt
to reflect the current operating environment.

The second step runs as a background service and collects statistics relating specific
applications to the various components. SApp’s background service is designed to produce
low energy overhead while accurately assigning cost to processes. The service runs at the
kernel level by adding statistical counters to the Linux process structure to record CPU by
frequency, IO reads and writes, and bytes received over WIFI and outputs that data into
the processes /proc folder. The service also differentiates the foreground applications from
the background applications to ensure proper accounting of the display.

The final step aggregates the data collected in step two and combines it with the power
model obtained in step one to accurately reflect the allocation of power. Furthermore, that
information can be used to predict future battery drain to provide users an understanding
of which applications they can use for a certain duration while maintaining above a battery
threshold. The end state is an informed user or developer capable of extending the battery
life of their device through informed, conscience decisions.

2 Motivation

The increasing complexity of mobile devices and the user tendency to multitask applications
such as games, email, music, and video players has led to situations where the battery life
seemingly disappears. At least that is how it appears to the user. In actuality, the running
applications, whether in the foreground or background, are accessing the various phone
components such as the CPU, WIFI, display, or conducting IO. In order to make power
efficient decisions, the user must understand where the power drain comes from and the
battery cost as attributed to specific applications on their specific device.

For this project, we aimed to create an application that can determine the cost of all
running applications by collecting the component use by application and outputting the
expected battery drain of continued use. The ideal situation is that of an individual waiting
to board an airplane. That person has limited power left on their cell phone with no
opportunity to recharge prior to landing. However, the individual desires to play a game
for twenty minutes prior to boarding, but needs to have enough power left to make a phone
call following the flight. Based on prior phone use, SApp will predict the energy required to
place and phone call and calculate the duration the game can be played prior to reaching
the phone call energy threshold. SApp will inform the user that they can play ten minutes
to preserve enough battery for a phone call.

What separates SApp from current power models is a software only approach that creates
a unique profile to the specified device at that specific time. In addition, SApp takes the
power model to the next step by offering predictive drain based on previous performance.
The intent is to end with a more informed user, capable of making energy-aware decisions to
extend the battery life between charges. In addition, SApp benefits application developers
by allowing them to profile the component usage of their design decisions and reduce energy
cost whenever possible. To add additional focus, research indicates that graphics, CPU, and
networking drain the most power from mobile devices [11].
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3 Design

To achieve the aforementioned goals, SApp is broken down into three steps. First, SApp
determines a measurable cost of using a specific device component for a length of time.
This step includes building a power model for the device by isolating components and
determining the battery drain over a unit of time. The second step runs as a background
service, collecting application data. The information collected is broken down to component
statistics that are correlated to the model developed in step one. The final step aggregates
the data collected in step two and applies the cost coefficients built in step one to the data
collected in step two to determine the cost of an application. That information is presented
to the user and used to predict battery drain for future application usage. Ultimately,
as discussed below, SApp requires a rooted device with a customized kernel. This design
decision is unavoidable based on the requirements of the test suite and application polling.
Admittedly, both of these decisions negatively impact the market for SApp.

3.1 Profiling

To build a power model of a given device, SApp runs a testing suite aimed at isolating
specific components to determine their cost to the system of a whole. This test is designed
to run over the course of several hours without other applications sharing resources, ideally
overnight. Currently, the test is composed of four component modes: display, CPU, IO, and
WIFI. Figure 1 displays the specific subtests that isolate the various components. Certainly,
more components should be added for system completeness but went beyond the timeline
and scope for this project.

For consistency during the tests, the CPU is held constant with a steady workload on all
tests other than testing CPU frequencies. Android devices typically operate with the OnDe-
mand governor which dynamically scales the CPU frequency based on CPU utilization[6].
For control purposes, every test mode outside of CPU sets all CPU’s to the Userspace gov-
ernor and sets the maximum and minimum CPU frequency to the median frequency option.
In addition, each test mode creates a spin thread for each processor to occupy all cores and
eliminate CPU idle time which drains less power.

Each test mode determines when the battery changes one full percentage which is the
most accurate power measurement provided by Android. SApp captures the CPU time by
frequency in cycles, IO statistics in bytes read and written to disk, WIFI bytes received, and
total time elapsed in milliseconds. We chose WIFI bytes received as the initial networking
representative due to the nature of mobile devices to receive more than transmit for appli-
cations such as the browser or games. Each test mode runs for three iterations, with one
iteration equaling one percent battery drain, then keeps the test iteration with the median
runtime. Repeated tests showed that test runtimes were consistent with some fluctuation
due to background processes. When possible, components such as WIFI are turned off until
testing to provide further isolation.

The first test examines the display by turning off the WIFI, running one spin thread per
CPU, setting the CPU frequencies to a median value, and maintaining a pure white display
at 70% brightness. The screen power setting most resembles that of most applications and
the white background was chosen as it is the most expensive color per pixel[11]. As I will

3



discuss in the future work section, the display test could be improved significantly with a
more inclusive drill down into the GPU. However, due to time constraints, the current test
fills nicely as a broader stand-in.

After three iterations of display testing, the screen lock is released and allowed to turn
off. The CPU test mode captures all possible CPU frequencies and randomizes the order
in which they are tested. Each frequency option is tested for three iterations with one spin
thread for each processor and the WIFI turned off.

The third test analyzes the effect of IO on battery drain by keeping the screen off,
setting all CPU frequencies to the median option, maintaining a spin thread per CPU, and
conducting tests that perform specific IO functions. Two IO tests are conducted: one for
reads and another for writes. Both tests conduct 1,200 operations of 32,000 bytes capacity
on both internal storage and an SD card. The IO operations read or write large, random-
filled files from random offsets to force cache misses. SApp tested a variety of different
tests altering the number and size of reads before settling on the current form as a decent
indicator of power drain. The number of bytes actually coming from or reaching disk are
read from /proc/[PID]/IO.

The WIFI test maintains the same frequencies, spin cycles, and screen settings as the
IO test. At this point, the WIFI is activated and connected to a local preset WIFI network.
SApp makes repeated requests from www.android.com and records the number of bytes
received.

Following the completion of all tests, the data is converted into component cost co-
efficients. Only the median test iteration results are examined with all other iterations
discarded. First, the CPU energy coefficients are calculated by dividing 1% battery by the
number of CPU cycles at that frequency as indicated in formula 1.

Ef =
1

CyclesAtFreqf
(1)

Second, the display energy coefficient is calculated by subtracting the CPU cost from 1%
battery and dividing the remaining power drain by the time in milliseconds that the display
was on as indicated in formula 2.

Ed =
1 − Ef ∗ CyclesAtFreqf

time
(2)

Third, the IO energy coefficients are calculated by subtracting the CPU cost from 1%
battery and dividing the remaining power drain by the number of bytes either read to or
written from disk as indicated in formula 3.

Er =
1 − Ef ∗ CyclesAtFreqf

bytesread
Ew =

1 − Ef ∗ CyclesAtFreqf
byteswritten

(3)

Finally, the WIFI energy coefficient is calculated by subtracting the CPU cost from 1%
battery and dividing the remaining power drain by the number of bytes received as indicated
in formula 4.

Ew =
1 − Ef ∗ CyclesatFreqf

bytesreceived
(4)

The results are then stored for use in assigning past cost per application and predicting
future cost.
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Figure 1: Different Testing Modes for the Component Power Model

We make the basic assumption that only limited background applications are running.
The user is expected to turn off any additional services or applications to ensure that SApp
isolates resources. In a modern OS, it is nearly impossible to expect that all background
threads such as the garbage collector or application manager. Some resource sharing during
the component tests are acceptable as long as major applications are not run concurrently.
Idealy, SApp is the only application running during the tests without interruption.

3.2 Application Polling

To assign cost to specific applications, SApp polls the Android Activity Manager for a
list of every running application. Every thirty seconds, component usage statistics for each
running application are recorded from each processes /proc/[PID] folder. The only problem
is that the Android OS does not maintain many important statistics that SApp needs to
access. For instance, the /proc/[PID] folder maintains IO statistics, but requires a rooted
phone to read them. In addition, while user CPU time and system CPU time are maintained
by the system, Android does not track the CPU time per frequency per application. As
indicated in previous studies [17], the CPU frequency affects the rate at which energy is
drained. SApp could have polled the current frequency and assumed that it was maintained
for thirty seconds or more but that would most likely result in low accuracy. Lastly, while
the bytes received and transmitted are recorded by networking interface, they are never
attributed to a specific process. For these reason, we found that the Android Linux kernel
does not maintain sufficient statistics for our power model.

The solution, and major limitation of SApp, came from modifying the kernel to record
CPU frequency time, network bytes received, and IO bytes read from and written to disk
in a single location in each process’s /proc/[PID] folder. The single location reduces the
number of reads and writes attributed to SApp lowering the IO cost of the poller. The new
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kernel provides an accurate accounting of each process’s resource use accurately and with
low overhead.

The background service operates by waking every thirty seconds to grab a statistical
snapshot of all currently running applications. After thirty more seconds, the delta of the
statistics for all running processes are calculated and inserted into a SQLite database for use
in assigning and projecting cost. It is assumed that very short running applications might
not be captured in the thirty second window, but short running applications are less likely
to have a major effect on the battery drain. SApp maintains two states of applications:
foreground and background. Foreground applications reflect applications that are actively
using the display and receiving user input. However, even when closed, applications continue
to use resources so they must be tracked separately to avoid affecting the cost analysis of
running applications. As the results show, users and developers may be interested in how
much battery an application drains when relegated to the background.

3.3 Projecting

Upon termination of the application profiler, whether through a timer or user input, a
background service aggregates the data collected. The service summarizes all statistical
categories for each application while differentiating between when an application runs in
the foreground and background. Next, the service multiplies the aggregated statistics for
each application by the component coefficient determined in step one to find the cost of
each application separated by CPU, display, IO, and WIFI. That cost is divided by the
total time the application ran to determine the cost of the application per second. That
simple coefficient can be used to provide the user with a cost estimate per length of time.

4 Results

The goal was to give the user a reasonable analysis of the cost of running various appli-
cations, not to provide a completely accurate accounting of the energy drain of a device.
All output is given in battery percentage of the total system. Although less scientific as
compared to watts or ampere-hour, many users of other application power diagnostic tools
expressed an easier to understand output[14]. All tests were performed on a 2013 Nexus 7
with a customized Android 4.4.2. The device features a quad-core 1.5GHz processor.

4.1 Power Model

As indicated in Figure 2, the display drains battery life the fastest. As a result of the test
not taking into account GPU calls, different pixels on the screen, or user inputs such as
touches, all applications displayed in the foreground for the same duration will have the
same display cost. SApp’s findings reflect the importance of the display with those of other
power models.

For this architecture, CPU cycles are measured in 1/100’s of a second allowing for 10
seconds of CPU time to be compared to 10 seconds of display time in Figure 2 The CPU
power cost reflects a linear relationship between CPU frequency and power drained. This
also comes as no surprise as it is articulated in other power models as well. The results also
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confirm the importance of a governor to scale back the frequency as the CPU utilization
falls in order to maintain power efficiency.

The cost of the IO was the most unstable with some difficulty correlating the statistics
gathered by the kernel with the drain of battery. Ultimately, IO accounted for a very
small percentage of battery decrease so a conservative coefficient relating bytes read from
and written to disk was determined. As indicated in Figure 2, ten seconds of display is still
larger than 1MB IO operations signifying the lack of an IO power drain. As most application
do not read or write very much data to disk, we are comfortable with the decision. The
WIFI coefficient indicates that bytes transmitted over the network are more costly than IO
operation although I only record bytes received and not bytes transmitted.

Figure 2: Test Results from a Component Test used to build a Power Model

4.2 Application Data Collection

The data collected during application polling shows some interesting trends. To start, after
an application is minimized, it often continues in the background to reduce the time needed
to bring it back to the forefront for continued use. While this feature is beneficial if one
wants to use the application again shortly, it can also lead to wasted resources. As shown
in Figure 3, Angry Birds in particular used thousands of CPU cycles at a relatively high
frequency just to maintain state in the background. The Android browser also continued
downloading data from the WIFI network, most likely for future buffering. Since we never
restarted the application during that test run, it resulted in wasted battery drain. As a
takeaway, users should terminate programs that they do not wish to use again in the near
future and application developers should be aware of their energy drain during maintenance
states.

The other important takeaway from Figure 3 is the relatively low energy cost of SApp.
While write heavy due to the database storage, all other collected resource usage is low.
SApp could consolidate and compact writes to further reduce the costs. One could observe
the usefulness of this energy profiler in developing more energy efficient programs.
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Figure 3: Aggregated Sample Results from a one hour Application Polling Run with all
Output in Battery % drained

4.3 Prediction

Figure 4 combines the component coefficients with the application statistics to determine
the energy cost of selected applications. The energy cost estimated by the profiler came out
to 12.9% while the total battery dropped from 76% to 64%. It should be noted that the
battery percentage given by the Android OS is precise only to 1% meaning the actual range
could be anywhere from 12.9% to 11.1%. Given the general lack of precision in Android
battery output and the broad assumptions SApp makes in regards to calculating component
coefficients, we are fairly satisfied with the power model.

A follow-on test calculated that 15 additional minutes of Angry Birds would cost 2.57%
battery. After executing 15 more minutes of Angry Birds, the power model output 2.84%
energy drain due to Angry Birds. Tests of a similar game, Candy Crush, resulted in a
prediction that fell within 14% of the actual energy. Tests of the browser fared even bet-
ter, often falling within 6%. Similar tests for other applications also indicate that basing
prediction on previous behavior is a suitable assumption.

5 Future Work

The work conducted this this project can be extended in several directions. First and
foremost is to increase the accuracy and inclusivity of the components measured. The
display test should be opened up to include OpenGL calls into the GPU, measure user
interactions with the touch screen, and measure brightness. The WIFI model too should
be expanded to include signal strength, bytes transmitted, packets sent and received, and
possibly include 3G network calls. Many papers have already been published on WIFI power
analysis that future developers could utilize for further refinement [3][2][1][15]. Based off of
SApp’s results and those of related works, these two areas along with the CPU encompass
the largest energy drain and would benefit the most from more refined testing. Other
popular device components such as audio, GPS, and Bluetooth should also be incorporated
into the tests.

Second, SApp should be made more inclusive to more users by reducing the reliance on
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Figure 4: Sample Cost of Various Applications with all Output in Battery % drained

a custom kernel and require rooted devices. The possibility exists for a dedicated developer
to exploit some Android API’s, alter the polling techniques, or uncover more assumptions
in existing, unrooted devices. A power model built in this environment would surely prove
desirable by the Google Play market users as power management is currently a hot com-
modity.

A different direction this project could take is in the manner it interacts with users.
SApp currently features little in the way of UI and could be expanded to feature data
visualizations and comparisons between several applications. In addition, SApp could use
the authority granted by root access to allow users to place limits on resource usage by
applications. Rules could be enforced to prevent background applications from wasting
CPU cycles if they have not been made active with time thresholds. This should speed up
other applications by eliminating wasted CPU cycles.

6 Related Work

The mobile device power management research area is enormous, but we will touch on
a few of the more recent studies and applications. PowerTutor is very similar to SApp
in that coefficients are calculated for a variety of components to create a power model
for the device[17]. However, PowerTutor’s coefficients are calculated with a power meter
in a laboratory environment limiting the number of devices that are supported by the
application. WattsOn, created by the Windows 8 team at Microsoft, is another successful
power profiling application for use by application developers[10]. As with PowerTutor,
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WattsOn was developed in a laboratory environment by measuring specific components
with power meters. While very successful in creating power models that do not require
alterations to a user’s device, maintaining a model for every possible device is unfeasible.
In a talk given in Madison on 29 April 2014, Dr. Chandra, from WattsOn, offered that future
versions would require hardware vendors to supply component costs as even a company as
large as Microsoft could not sustain excessive device testing. The software-only design of
SApp allows for a larger number of devices to be incorporated and a custom power model
generated for a device.

AppScope takes a similar, modified-kernel approach by monitoring for component hard-
ware request events and charges them to the appropriate application[16]. However, most
trials in their publication are limited to less than four minutes where it would be interest-
ing to observe the accuracy in longer tests. Additionally, SApp extends the profiling into
forecasting future energy drain.

Carat[12] takes the collaborative approach to power modeling compare the battery drain
of an application on one device to that of a community. Carat uses machine-learning to
infer what applications are draining battery and offers actions to take such as killing certain
application to extend battery life. It is an innovative approach to extending battery life,
but does not build a power model to provide detailed information to developers. Also, the
community design requires offloading lots of data which may represent privacy issues to
some users.

Eprof[13] uses fine-grained approaches to identify energy bugs in source code and even
specific lines of code. While interesting, Eprof does not appear to have been updated since
2012 and is not available in the market.

7 Conclusion

SApp demonstrates the potential to a software only approach to creating a mobile device
power model. This approach provides more inclusion to the number of devices, particularly
in the fractured Android market with ten different device manufacturers. SApp could be
improved by either reducing the necessity of rooting the phone and installing a custom
kernel or by adding to the depth of the component testing.

With three simple steps, SApp produces a power model specific to the device at a certain
point in time, gathers data regarding the applications that run on the device, and produces
fairly accurate battery costs and predictions. It manages to do this with relatively low
overhead and user interaction. SApp assists users and developers by extending battery life
through more informed decisions and energy optimized programming.
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