Striking the Right Chord:
Parameter Tuning in Memory Tiering Systems

Konstantinos Kanellis*
kkanellis@cs.wisc.edu

University of Wisconsin-Madison
Madison, WI, USA

Shivaram Venkataraman
shivaram@cs.wisc.edu
University of Wisconsin-Madison
Madison, WI, USA

Abstract

Memory tiering achieves cost-effective scaling by adding
multiple tiers of memory using new interconnect technolo-
gies, such as CXL, or denser alternatives, such as NVM. For
maximum performance, frequently accessed (hot) data must
be placed close to the CPU in faster tiers, while infrequently
accessed (cold) data can be placed in farther, slower tiers. Ex-
isting tiering solutions employ heuristics and preconfigured
thresholds to make data placement and migration decisions.
As aresult, these systems fail to adapt to different workloads
and hardware, resulting in poor performance.

In this paper, we study how the thresholds and parameters
used by tiering systems affect application performance. We
find that applications are sensitive to these values, and that
the optimal values vary significantly across workloads. Fur-
thermore, factors such as application inputs, thread counts,
fast-slow memory ratio, and memory latency and bandwidth
influence the best parameter choices. Our evaluation shows
that properly configuring these parameters can improve per-
formance by up to 2x compared to default configurations.

CCS Concepts: « Hardware — Memory and dense stor-
age; « Software and its engineering — Memory manage-
ment; - Computing methodologies — Machine learning.

Keywords: Memory Tiering, Compute Express Link (CXL),
Parameter Tuning, Bayesian Optimization

ACM Reference Format:

Konstantinos Kanellis, Sujay Yadalam, Shivaram Venkataraman,
and Michael Swift. 2025. Striking the Right Chord: Parameter Tun-
ing in Memory Tiering Systems. In 3rd Workshop on Disruptive

“Both authors contributed equally to this work.

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.

DIMES °25, October 13—16, 2025, Seoul, Republic of Korea

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2226-4/25/10

https://doi‘org/TOJ 145/3764862.3768172

Sujay Yadalam®
sujayyadalam@cs.wisc.edu

University of Wisconsin-Madison
Madison, WI, USA

Michael Swift
swift@cs.wisc.edu
University of Wisconsin-Madison
Madison, W1, USA

Liblinear
-578 576 576 479 465

Silo-YCSB
-383 375 377 373 372 368
-579 577 579 577 578 578 -370 374 370 373 366 356
-576 576 577 CET HBBIEEY -373 372 368 347 358 360

5w -577 580 578 [ZF]557 % -362 360[343|331 304 339
EI¢ -578 576 577 576@ Elq -341FF 339 342299 301
g~ -578 576 575 577 581 577 ?g ~ 7

- 570 7o CRCNEEE - NI

10 14 18 24 30 36 10 14 18 24 30 36
cooling_threshold cooling_threshold

12 16 20
12 16 20

hreshold
t threshold

d

Figure 1. Execution time (in seconds) of Liblinear (left) and
Silo (right), when we tweak two HeMem parameters. Default
configuration execution time is shown in red box.

Memory Systems (DIMES ’25), October 13-16, 2025, Seoul, Republic of
Korea. ACM, New York, NY, USA, 9 pages. https://doi.org/10.1145/
3764862.3768172

1 Introduction

Need for memory tiering. Modern data-intensive applica-
tions like graph processing, machine learning and in-memory
databases demand large amounts of memory for high perfor-
mance. Due to the scaling limitations of DRAM, this demand
has led to memory becoming one of the most significant costs
of datacenters [26, 40]. One way to alleviate this problem
is to supplement existing DRAM with memory tiers con-
sisting of new memory technologies such as CXL-attached
memory [19] or Non-Volatile Memory (NVM) [8]. This en-
ables building systems with vast amounts of memory in a
cost-effective manner.

Newer memory technologies such as NVM or CXL mem-
ory have higher access latencies and lower bandwidths, which
can lead to application performance degradation. To mini-
mize the performance loss, memory tiering systems make
smart data placement decisions based on memory access
patterns. For instance, they keep frequently accessed (hot)
data in faster tiers and infrequently accessed (cold) data in
slower tiers. There have been numerous memory tiering sys-
tems that aim to smartly place and migrate data, transparent
to running applications [13, 22, 25, 31, 43]. These systems

DIMES 25, October 13-16, 2025, Seoul, Republic of Korea

rely on hardware event sampling, page table scanning or
page faults to infer application data access patterns, and use
heuristics such as access frequency and/or recency to make
page placement decisions.

Limitations of existing systems. Our experiments reveal
that these systems fail to perform well under all circum-
stances; they either do not work well with certain applica-
tions or on certain hardware configurations. For example,
we find that Memtis [22] performs poorly for iterative work-
loads with changing hot data sets (more in Section 3).

One of the main reasons for such poor performance is the
use of pre-configured static thresholds used to make data
placement decisions. For instance, HeMem [31] uses a pa-
rameter called hot_threshold to classify hot pages. When
a page receives more than hot_threshold samples, HeMem
considers the page hot and promotes it to the fast tier. Devel-
opers of tiering systems perform limited sensitivity studies
to find the best values for these parameters. These default
values provide reasonable performance for some workloads
on certain hardware but are not optimized for specific work-
load behavior. As a result, HeMem fails to correctly identify
all the hot pages and fails to migrate them in a timely manner
for many workloads [22, 23]. As shown in Table 1, almost all
of today’s tiering systems employ such static thresholds to
make placement and migration decisions.

Some systems such as Memtis [22] and ArtMem [44] at-
tempt to address the above limitation by dynamically ad-
justing the hot_threshold for page promotion to ensure the
correct set of hot pages are loaded in the fast tier. We ob-
serve that these systems still underperform because they uses
static values for other parameters such as cooling period,
adaptation period, and migration period.

To highlight the extent to which static thresholds affect
memory tiering performance, we perform a simple parameter
sensitivity study using two of HeMem’s [31] parameters:
hot_threshold, which is used to determine when a page is
hot (default is 8 sampled accesses), and cooling_threshold,
which controls when page counts are cooled, i.e., when page
counts are halved to imitate an exponential moving average
(default is 18 sampled accesses). Figure 1 shows the execution
time for two workloads, Liblinear [14] and Silo [39] with a
YCSB-C client, under different parameter values. From these
experiments, we make two key observations. First, workloads
are sensitive to the thresholds. Small changes in the values can
result in large variations in performance. Second, the best
values of these parameters vary across workloads and could
be significantly different from the default values.

Based on the above observations, in this paper we try
to answer the question: how much performance improve-
ment can be achieved by tuning all tiering-related parame-
ters for each workload? To this end, we conduct a tuning
study of three tiering engines representative of most exist-
ing systems: (1) HeMem [31], a frequency-based policy with
all static thresholds, (2) Memtis [22] which uses frequency

Konstantinos Kanellis, Sujay Yadalam, Shivaram Venkataraman, and Michael Swift

Frequency Frequency+Recency
. HMSDK [21], TMTS [13]
th]rs::lzt)clds Heh;fl::n[lzzt]a;’gv[li][y] AutoNUMA [28], TPP [25]
AutoTiering [43]
Static +
. Memtis [22], FlexMem [41]
dynamic . IDT [6]
thresholds ArtMem [44], FreqTier [35]

Table 1. Taxonomy of tiering systems based on access fre-
quency/recency heuristics and static/dynamic thresholds.
Systems studied in this work are highlighted in bold.

heuristic and dynamically adjusts the hot_threshold, and
(3) HMSDK [21], which uses both access frequency and re-
cency data from DAMON [27] access monitoring. We per-
form tuning on different hardware, vary the number of
threads and far:near memory size ratio, and change the ap-
plication inputs. Instead of randomly exploring the search
space, we leverage Bayesian Optimization (BO) to identify
the best parameter values for each workload in different sce-
narios, as BO can identify the optimal value of a function
with few samples [33]. Although researchers have used BO
to determine the best set of knob values in other systems,
such as databases [20] and storage systems [5], this work is
the first to use BO to tune knobs for memory tiering systems.

From our evaluation, we find that tuning tiering system pa-
rameters can yield as much as 2x improvement. Our analysis
of the best-performing configurations reveals that tuning pa-
rameters leads to accurate classification of hot and cold pages,
timely migrations, and a reduction in wasteful migrations.
For instance, the Bayesian Optimizer recognizes workloads
with streaming access patterns and finds parameter values
that avoid wasteful migration of sequentially-accessed pages.

However, we also find that the best parameter values de-
pend not only on the application but also on other factors
such as input attributes, thread count, and fast-slow memory
ratios. Furthermore, we find that tuning alone cannot help ex-
isting systems achieve optimal performance for two reasons.
First, most tiering systems use simple, rigid heuristics such
as access frequency or recency which are not suitable for cer-
tain memory access patterns. For example, frequency-based
policies such as HeMem and Memtis cannot perform well
with streaming/sequential access patterns (see Section 4 for
more details). Second, most systems rely on noisy, inaccurate
page access data from hardware event sampling (e.g. Intel
PEBS) or page table scanning (e.g. DAMON [27]). As a result,
they may fail to identify all the hot pages or perform wasteful
migrations. Hence, for optimal performance, future tiering
systems need to adapt to workloads: use suitable heuristics
based on the access pattern, adjust thresholds dynamically,
and use robust policies to handle the noise in the page access
sampling mechanisms.

2 Tuning Methodology

We now describe the tuning environment and methodology,
as well as the tiering engines we used for our study.

Striking the Right Chord: Parameter Tuning in Memory Tiering Systems

Specification PMEM NUMA
Number of cores 24 20
Processor generation Icelake Skylake
Processor frequency (GHz) 3 2.2
L3 cache size (MB) 18 13.75
Far memory type Optane NUMA
Max near memory size (GB) 96 96
Max far memory size (GB) 128 96
Max near mem BW (GB/s) 138 56
Max far mem Read/Write BW (GB/s) 7.45/2.25 22/20
Near memory latency (ns) 80 95

Far memory latency (ns) 150 - 250 180

Table 2. Specifications of machines used in our evaluation.

Hardware Setup. Table 2 shows the hardware specifica-
tions of the two machines used in our evaluation. PMEM uses
Intel Optane DC Persistent Memory DIMMs as the slow
tier, whereas the NUMA machine (Cloudlab [12]) uses remote
NUMA memory to emulate a slow tier.

Workloads. For our evaluation, we select a set of eight rep-
resentative and diverse workloads shown in Table 3. Specif-
ically, we employ a classifier training kernel from Liblin-
ear [14], three graph processing algorithms from GapBS [4],
an HPC workload (XSBench [38]), an in-memory database
(Silo [39]), an in-memory index lookup (Btree [1]), and a pop-
ular memory intensive micro-benchmark, GUPS [29]. These
workloads have been widely used to evaluate tiered mem-
ory systems in many prior works [22, 23, 31, 43]. By default,
we run these workloads with 12 threads, large enough to
saturate the memory bandwidth of each system.

Tiering Configuration. Similar to prior work [22], we con-
figure the ratio of fast to slow tier memory size by setting the
fast tier size to the corresponding proportion of the workload
resident set size (RSS). Unless otherwise noted, experiments
use a 1:8 memory size ratio. For example, for XSBench whose
RSS is 65GiB, we set the fast-tier size to 7.22GiB (11%).
Tuning pipeline. To speed up the search for the best tiering
parameters, we employ Bayesian Optimization (BO), which
has been shown to identify the best-performing configura-
tions in as few iterations as possible [33]. Here, we use the
state-of-the-art SMAC framework [18], which uses a Random
Forest as the surrogate to model the parameter space; this
allows it to handle large high-dimensional spaces efficiently.
SMAC has been used successfully to tune complex systems
with hundreds of knobs [15, 20]. We configure SMAC with
a budget of 100 iterations, allocating the first 20 to initial
exploration; additionally, SMAC evaluates a random configu-
ration 20% of the time. Each tuning session requires between
10 and 24 hours, depending on the workload and the input.

2.1 Tiering engines overview

HeMem. HeMem [31] is a user-space memory manager for
tiered memory systems that is transparently linked to appli-
cations. HeMem has ten tunable parameters that control its
run-time behavior and decision making.

DIMES 25, October 13-16, 2025, Seoul, Republic of Korea

Workload Inputs RSS Perf. Metric Description

Liblinear kddb 34.13 Train time Logistic regression-based classifier.
GapBS-BC kr(?necker 78.13 Elapsed time conlpute the measure of centrality
twitter 13.08 in a graph based on shortest paths.

kronecker 71.29

GapBS-PR Elapsed time ~ Compute PageRank score of a graph.

twitter 12.32

kronecker 69.29 . Compute connected components of
GapBS-CC twitter 12.09 Elapsed time a graph using (Shiloach-Vishkin).

B TPC-C 75.68 .

Silo YCSB-C 71.40 Throughput In-memory transactional database.
Btree - 12.13 Throughput In-memory index lookup benchmark.
XSBench - 64.97 Elapsed time ~ Compute kernel of MCNP algorithm.
GUPS 8GiBhot 64.03 Updates/sec Skewed accesses with dynamic hotset.

Table 3. Workloads Characteristics. RSS is in GiB.

HeMem monitors page accesses using hardware event
sampling such as Intel PEBS [7]. HeMem samples LLC load
misses as well as all store instructions. Based on the col-
lected samples, HeMem maintains an access count per page.
If the page access count exceeds a pre-defined threshold,
HeMem classifies the page as hot; otherwise it considers
the page cold. HeMem uses different thresholds for reads
(read_hot_threshold)and writes (write_hot_threshold).

To adapt to workload hot-set changes, HeMem regularly
cools the pages it is tracking. When the access count of any
page reaches cooling_threshold, HeMem halves the ac-
cess counts of all pages. If the access count falls below the hot
threshold after cooling, the page is considered cold. To avoid
scanning all pages, HeMem cools pages in batches whose size
is determined by another parameter called cooling_pages.
This is one of the (hidden) parameters that is not discussed
in the paper but is part of the implementation.

HeMem includes a migration thread that runs periodi-
cally every migration_period and promotes hot pages from
slower tiers and demotes cold pages from faster tiers. Dur-
ing page migration, pages are write-protected to avoid races
between application writes and the data movement. Applica-
tions could therefore stall waiting for pages to be migrated.
Memtis. Memtis [22] builds on HeMem by dynamically ad-
justing the hot_threshold based on the workload’s access
distribution. It maintains a hotness distribution of all pages
using a histogram of page access counts. Using the histogram,
it selects the hot_threshold such that the hot set size is
close to the fast tier capacity. To adapt to workload changes,
Memtis adjusts the threshold every adaptation_interval.

Similar to HeMem, Memtis cools page access counts to
decay the impact of old accesses. It performs cooling based
on the number of sampled memory accesses. When the total
PEBS samples reach a multiple of cooling_threshold, all
page access counts are halved. Memtis also adjusts the PEBS
sampling period to keep the overheads bounded (3% CPU).

Migration threads run periodically (promotion_interval,
demotion_interval) to promote hot pages to the fast tier
and demote cold pages to the slow tier.

DIMES 25, October 13-16, 2025, Seoul, Republic of Korea

2.5 4 [l HeMem(Default) ZZA HeMem(Tuned)
B Memtis(Default) HEEER Memtis(Tuned)

2.0
1.5
1.0 1

0.5

Normalized Performance

0.0 -
e(\d\ 6\)‘?6

) ™ C QC(’ (f)% e
O =] < X 2 *c)%

.(\e?*(= C <
\;\\0\\ 63Q% 639% 639% 6,\\04 6\\0‘

Konstantinos Kanellis, Sujay Yadalam, Shivaram Venkataraman, and Michael Swift

2.04 B HeMem(Default) ZZ HeMem(Tuned)
) BB Memtis(Default) EEER Memtis(Tuned)
B HMSDK(Default) B2 HMSDK(Tuned)

Normalized Performance

o\

) ™ L e% P _«e® <
(= 4 \\0:((, & *6%6(\

Al C <
N S S -
\;\\0\\ (,'o\’% 6""9% 639‘6 N\O

Figure 2. Performance of default and tuned configurations for all workloads on PMEM (left) and NUMA (right) nodes. Performance
is normalized to HeMem default configuration. Top of the stacked bars show the performance improvement due to tuning.

HMSDK. The Heterogeneous Memory Software Develop-
ment Kit, HMSDK [21], aims to enhance the efficiency of CXL
memory, enabling expanded bandwidth and capacity. Un-
like HeMem and Memtis, HMSDK does not rely on hardware
event sampling. Instead, it uses the DAMON [27] monitoring
framework in Linux for page access information. DAMON
scans the Accessed (A) bits in page table entries periodically
to identify hot and cold pages. To overcome the overhead of
scanning every page table entries (PTE), DAMON divides the
address space into regions and monitors only sampled pages
in each region. It dynamically adjusts the number of regions
by merging and dividing to create homogeneous regions
such that pages within a region are accessed similarly.

DAMON includes thresholds related to the number of re-
gions (e.g., min_regions, max_regions), and PTE scanning
frequency (sample_interval, aggr_interval). Using DA-
MON’s page access information, HMSDK promotes pages
accessed at least prom_accesses times in the last prom_age
seconds. Similarly, it demotes pages that have fewer than
dem_accesses in the last dem_age seconds.

3 Results
3.1 Performance benefit of parameter tuning,.

We begin by comparing the performance of the best parame-
ter configurations found by the optimizer with that of the
default configuration. Figure 2 show the performance bene-
fits of tuning. HMSDK does not support NVM as the slow tier,
so we do not run it on PMEM. We run all the three engines on
NUMA. For almost all workloads, tuning the parameter values
provides superior performance by 1.07-2.09x. HeMem and
HMSDK benefit the most since all their thresholds are static.
Although Memtis dynamically adjusts the hot_threshold,
it still benefits from tuning of its other static thresholds.
Interestingly, we find that tuned HeMem outperforms
Memtis for most workloads. There are three main reasons
for this. First, Memtis reserves some free space at all times
in DRAM for new allocations, which results in wasted use-
ful DRAM space. Second, Memtis manages both basepages
and hugepages which increases management overhead and
migration costs. Third, Memtis performs cooling very in-
frequently (tens of seconds) compared to HeMem (tens of

| Reason(s) for improvement | Important knobs

Accurate hot page classification | hot_threshold
HeMem | Promote hot pages earlier cooling_threshold
Reduce unnecessary migrations | sampling_period
React faster to hot set change adaptation_period

Memtis Promote hot pages earlier cooling_threshold
. . sample_interval
HMSDK Accurate hot page classification aggr interval

Timely migrations
y mig promo:faccesses, age}

Table 4. Reasons for performance improvement with tuning
and the most important knobs for each tiering system.

milliseconds). This results in delayed promotion of new hot
pages which is explained below.

Understanding tuning benefits. As summarized in Table 4,
tuned configurations achieve better performance due to:

(D) Accurate hot and cold page classification: With tuned
sampling frequencies and hotness thresholds, HeMem and
HMSDK can identify hot and cold pages correctly. Consider
Silo with YCSB-C workload: default HeMem and HMSDK
cannot identify all of the hot pages. The optimizer increases
the sampling frequency and lowers the threshold to ensure
the hot pages are correctly detected and promoted.

(2) Adapting to hot set changes: With default parameter val-
ues, we observe that all the three tiering engines react slowly
to hot set changes. This happens mainly due to inaccurate
cooling thresholds. In Memtis, due to inaccurate adaptation
period and cooling threshold, previously hot pages continue
to stay hot for too long, occupying the local tier. Memtis
does not demote these pages quickly, so it cannot promote
the newly hot pages to the fast tier.

@ Eliminating unnecessary migrations: Due to incorrect
thresholds, HeMem promotes pages with fluctuating access
counts and pages with short bursts of accesses. With GapBS-
PR and GapBS-CC, that have streaming access patterns, de-
fault HeMem migrates many pages after they are accessed,
which is not useful. When tuned, the thresholds are adjusted
so that HeMem does not migrate pages that are part of the
streaming accesses.

3.2 Parameter sensitivity to application inputs.

We find that the best parameter values vary not only across
applications, but also across different inputs to the same

Striking the Right Chord: Parameter Tuning in Memory Tiering Systems

[Default EZ2A Tuned BE=A Tuned (transfer)

2.0
1.5
1.0
0.5
0.0

twitter kron-s29 twitter kron-s29 TPC-C YCSB

GapBS-BC GapBS-PR Silo
Figure 3. Performance of HeMem’s best configuration com-
pared to default, for two application inputs. We also show
how each best configuration performed when HeMem used
it while running on the alternative input (i.e., transfer).

Normalized Performance

GapBS-BC (Kron-s29) GapBS-BC (Twitter)

@ 81 @ 13 o 104
G ; O
o 61 10° T 10 10°
£ 10 w0t g 102
p 100 Popular Zodes 10
20 g 3

0 0
§ 0 : : (1)0 § 0= (1)0

0 200 400 0 250 500

Time (secs)

Time (secs)

Figure 4. GapBS-BC memory access pattern over time, for
Kronecker-s29 (left) and Twitter (right) input graphs.

application. This is intuitive because different inputs can
cause applications to have different memory access patterns.
For instance, changing the input graph of a graph algorithm
can change the access pattern, and changing the number of
threads can affect an application’s bandwidth utilization.

To understand how the best values are dependent on the
input, we use the tuned knob values obtained for one input
with the other input. For example, we run GapBS-BC on
a Twitter graph using the best configuration obtained for
the Kronecker graph. Figure 3 shows the results. In most
cases, the best configuration generated for one input does
not perform well for the other input. In fact, we observe that
the performance is worse than the default in some cases.

The above behavior occurs because even minor differences
in memory access patterns require very different configura-
tions. Consider the input graphs to GapBS-BC: Twitter graph
and Kronecker graph. As shown in Figure 4, the access pat-
terns are similar except for one difference. With the Twitter
graph, there are a handful of popular nodes on a small set
of pages as highlighted. This results in frequent accesses
to these pages, whereas in Kronecker all pages receive al-
most equal number of accesses. The tuned configuration for
Twitter graph uses thresholds that ensure the popular pages
form the hot set, while the best configuration for Kronecker
graph focuses on reducing wasteful migrations of pages with
similar access intensities.

3.3 Parameter sensitivity to different thread counts.

We now measure application performance with varying ap-
plication thread counts. Figure 5 shows that tuning can

DIMES 25, October 13-16, 2025, Seoul, Republic of Korea

[0] 20% 9% 9
g 10* 4% 23 N 9% 2%
©
E 0.5
o V-2 1
9% —@— Default

E £~ Tuned GapBS-BC
% 0.0 T T T — T T T
o] 13% % 44% 49% 46%
N0+ Hagoh 88— g5 g%
g &8 -
5 0.5*380/ 7
= SiloTPCC

0.0 T T 1 T T T

2‘ 4‘1 8 1‘2 16 2 4 8 12 16
Number of Threads

Figure 5. Performance of HeMem’s default and tuned config-

uration when varying thread count. Performance normalized

to the best tuned configuration. Improvement of tuned over

default config. for each thread count is annotated in red.

C
N
o

[NUMA (Default) BE=# Transfer PMEM(Tuned)
ZZA NUMA(Tuned)

Normalized Performance

% oC NG NG < e

RS =g - A C g\ RIUE R St
\)\)\\ 639% o 39 GQQ% 6\\0 6\\0) \,\5%

Figure 6. Performance gains of PMEM’s HeMem tuned con-

figuration when deployed on NUMA node. We also show the
performance of NUMA's default and tuned configuration.

provide performance benefits for all thread counts. Increas-
ing the number of threads increases memory traffic, which
usually results in more accesses per page. Therefore, the
hot_threshold parameter should be adjusted accordingly.

We find that the relation between hot_threshold and
thread count to be non-linear. Thus, manually identifying
the right threshold can be challenging. In addition, other
parameters such as cooling_threshold also affect perfor-
mance significantly. For some workloads (i.e., Silo-TPCC), we
observe that the best-performing configurations are similar
at different thread counts. For other workloads (i.e., GapBS-
BC, Liblinear), there is no single configuration that achieves
best performance at all thread counts.

3.4 Parameter sensitivity to different hardware.

We run experiments to see if the tuned parameters for a
workload on one machine can be used on another machine.
Prior works have observed that tuning database parameters
is challenging in cloud settings due to performance variabil-
ity (noise) across hardware [15]. In contrast, we observe that
the best-performing configurations on one machine (PMEM)
generally also perform well on other machines (NUMA), as
shown in Figure 6. This suggests that it is possible to transfer
the tuned parameters between machines as long as their
memory characteristics (latency and bandwidth) are similar.

DIMES 25, October 13-16, 2025, Seoul, Republic of Korea

w 5% % 3%
S Lo1B Y - e 2% 250

© 2 61% 349
€ 0.5 $.103% || o
o 7 |-@— Default 50%

t $3~ Tuned GapBS-BC

& 00 T T T T T T T T T T T
° 2% 12% 15% 31% 3194 0% 3% 21% a6% a6% 45%
g 1.0 4 93 & 16%| 1% %—96¢ 80
©

g 0.5 7

5 [siovess

Z 0.0

2!1 1!1 1!2 1!4 128 1:5.6 2:‘1 1!1 1!2 1!4 1!8 1:5.6
Memory Ratio Memory Ratio
Figure 7. Performance of HeMem’s default and tuned con-
figuration when fast-slow memory ratio. Performance nor-
malized to the best tuned config. Improvement of tuned over
default config. for each memory ratio is annotated in red.

3.5 Tuning for different memory configurations.

Finally, we measure application performance with varying
fast-slow memory tier size ratios and evaluate the impor-
tance of parameter tuning. Figure 7 shows the performance
of GUPS, GapBS-BC, Silo-TPCC and Liblinear with HeMem
in different ratios normalized to the 2:1 configuration.

We find that the best-performing HeMem configurations
are stable within neighborhoods of similar ratios but shift
abruptly at specific breakpoints: e.g., when the hot set no
longer fits in the fast tier. With Silo-TPCC, the same HeMem
configuration achieves best performance at 1:1, 1:2, and
1:4 configurations. At the 1:8 ratio, this configuration per-
forms poorly and the best parameter values are much dif-
ferent. In particular, at lower ratios, the optimizer sets the
write_hot_threshold to a higher value so that only a few
of the hottest pages, those that reach the high threshold, are
kept in the fast tier.

Second, we observe that tuning parameters helps more at
smaller fast tier sizes compared to larger ones. At small fast-
slow ratios, the tiering engine must rank pages with high pre-
cision because the admitted hot set is narrow; misclassifying
even a few pages incurs a high opportunity cost. Identifying
the top ~20% pages is inherently harder than identifying a
broader ~50% set, so hotness thresholds, smoothing factors,
and migration budgets require tighter tuning.

Since Memtis adjusts its hotness threshold based on the
size of the fast tier, it can better adapt to different mem-
ory ratios than HeMem and HMSDK. Our experiments with
Memtis reveal that a single tuned configuration provides per-
formance benefits across all memory ratios, unlike HeMem
and HMSDK.

4 Discussion

Offline tuning of the tiering parameters can yield significant
performance gains, but can be very time-consuming, as it
has to be performed for each workload, i.e., there is no one
best configuration that works well in all scenarios. The best
parameter values depend not only on the workload but also
on the inputs, thread count, and memory configurations.

Konstantinos Kanellis, Sujay Yadalam, Shivaram Venkataraman, and Michael Swift

Q

2 600

°

5 400

a2 —0— Default

200 —m— Tuned

g #%— MRU

=0 T T T T T
0 50 100 150 200 250

Time (seconds)
Figure 8. Silo throughput against a TPC-C client with 3
configurations: default HeMem, tuned HeMem, and a simple
recency-based policy (MRU).

Furthermore, we find that tuning of existing tiering systems
does not reach optimal performance in many cases due to
the following shortcomings.

Different workload phases could require different pa-
rameter values. Many workloads have distinct execution
phases. For instance, Liblinear classifier training has a data
preparation phase, and then in every training iteration, for-
ward and back propagation phases. The memory access be-
havior is different in each of these phases. Existing tiering
systems that rely on static thresholds are unable to identify
and adapt to the different phases. Furthermore, tuning pa-
rameters may also not help achieve the highest performance.
A single tuned configuration may fail to accelerate all phases.
The best parameters for one phase could be different from
the best values for another phase.

A single simple heuristic does not work for all work-
loads. Most tiering systems use simple heuristics such as
access frequency or recency, along with static thresholds,
as shown in Table 1. We observe that different workloads
work well with different heuristics. Tuning is insufficient
in scenarios where an unsuitable heuristic is used with a
workload. For example, we find that Silo running against
a TPC-C workload with a simple, untuned recency-based
policy performs better than even a tuned frequency-based
policy, as shown in Figure 8. TPC-C follows the latest distri-
bution: newly inserted tuples in the tables are the hottest,
and they get colder over time [36]. Frequency-based policies
such as HeMem, even when tuned, take longer to identify
and promote pages with new hot tuples.

Input signals could be noisy, and existing systems are
not designed to handle the noise. Most systems rely on
hardware event sampling (Intel PEBS, AMD IBS) or page
table scanning (DAMON) to track page accesses. The sam-
pling/scanning frequency affects the accuracy and overhead.
We find that PEBS sampling can be quite noisy at low fre-
quencies, which can lead to wasteful migrations in tiering
systems. For example, two pages accessed equally by the
application may receive different sample counts over short
time intervals. This is evident with XSBench that has the
access pattern shown in Figure 9. Two adjacent pages in
the region at the top (green) receive different samples. Tun-
ing might help identify such scenarios and select high sam-
pling/scanning frequencies. However, this does not solve
the problem fully. PEBS cannot sample memory writes (LLC

Striking the Right Chord: Parameter Tuning in Memory Tiering Systems

g XSBench 15

[aa]

5 63 10t ‘g‘ —— Page 0 Page 1

3 10 -

o 47 10° S 10

©

&3l 1078 5. LA

0 101 ©

g1 £, Ll

g 100 0~ T T T

2% 100 200 0 50 100
Time (secs) Time (secs)

Figure 9. XSBench: Memory access pattern over time (left),
and page access count for two pages that are accessed uni-
formly and equally (right). Due to PEBS sampling inaccura-
cies, one page (i.e., Page 1) might appear hotter than another.

cacheline write-backs) and prefetches since these events are
not tied to any instruction, so tiering policies do not have a
full view of the memory accesses.

Similarly, DAMON also fails to identify the hot regions
in workloads with a high memory access rate. Setting the
scanning frequency to a high value does not help. Figure 10
shows how HMSDK with DAMON cannot distinguish be-
tween hot and cold regions in GUPS even at high scanning
frequencies. Existing tiering systems are not equipped to han-
dle such noisy data and can misclassify and migrate pages
repeatedly. One way to overcome this is by building novel
page-access tracking mechanisms, such as the CXL-driven
hot page tracking proposed in M5 [37].

5 Related Work

Page-based memory tiering systems. Most proposed tier-
ing systems perform page migrations transparently to the
applications. Such systems are based on heuristics and use
static thresholds to make policy decisions. Some use recency-
based policies [25, 42], others use frequency-based policies [3,
13, 21, 31, 43], while some use both recency and frequency
information to make data placement decisions [13, 17, 24].
We find that these systems are suboptimal as they do not
adapt to the workload or the underlying hardware.
Dynamic behavior of tiering systems. Memtis [22] uses
dynamic threshold adaptation for page hotness classification,
which leads to better fast memory tier utilization. Cori [10]
tunes the periodicity of data movement in hybrid memory
systems by extracting data reuse patterns from the appli-
cation. Other systems migrate pages at different granulari-
ties for different workloads [2, 32]. Instead of adjusting the
parameters, some tiering systems use different policies for
different workloads. Heo et. al., [17] propose a dynamic pol-
icy selection mechanism which identifies the best migration
policy among LRU, LFU and random for a given workload.
Yu et. al., [45] build bandwidth-aware tiering systems.
Machine learning for data placement. Sibyl [34] uses
Reinforcement Learning (RL) for data placement in hybrid
storage systems. IDT [6] and ArtMem [44] also use RL to dy-
namically adjust some tiering parameters. They still rely on

DIMES 25, October 13-16, 2025, Seoul, Republic of Korea

GUPS (default) GUPS (high-freq)

©
w

[=2]
©

I
o

N
w

—~
i)
e
(0]
1%
©
Q
0
(%]
1%
[
=
°
°
<

Address Space (GiB)

o
o
o

50
Time (secs)

o

50 100
Time (secs)

Figure 10. Heatmap of GUPS generated by DAMON, using
default HMSDK scanning frequency (left) and high scanning
frequency (right). Even at high scanning frequency, HMSDK
cannot distinguish between hot and cold regions.

some static parameters to make decisions. Kleio [9] uses deep
neural networks to make smarter page placement decisions.
Hardware tiering and profile-guided data placement.
To overcome the inaccuracies and inefficiencies in software
profiling, Ramos et. al., [30] propose augmenting the memory
controller hardware to monitor access pattern and migrate
pages between memories which would be more efficient. X-
Mem [11] and Mira [16] use profile-guided techniques to
determine object hotness offline and make data placement
decisions during allocation time. These approaches do not
work well for applications whose hot-set changes over time.

6 Conclusion

Datacenters today serve a diverse mix of workloads, many
of which demand large memory capacities and bandwidth.
Memory tiering using CXL and NVM enables cost-effective
memory expansion. Existing tiering policies aim to reduce
the long latency accesses to slow tiers to limit performance
degradation. In that process, they employ static thresholds
to make data placement decisions, which leads to subopti-
mal performance. We find that tuning these thresholds per
workload and hardware configuration can yield significant
performance benefits (up to 2x).

However, tuning can be quite expensive as the best thresh-
olds depend not just on the application but also on multiple
factors: inputs, far-near memory ratio, thread count, and
hardware configuration. Future tiering systems need to ei-
ther adapt their thresholds to workload behavior and hard-
ware characteristics or get rid of them. Although eliminating
all thresholds might not be feasible, it is important to have
as few parameters as possible that are robust and insensitive
to the factors mentioned above.

Acknowledgments

We thank Fanchao Chen for sharing insights from his ex-
periments. We thank the anonymous reviewers for their
valuable comments that improved this paper. This work was
supported by NSF "Expeditions in Computing: Learning Di-
rected Operating System (LDOS)" Grant No. 2326576, and by
PRISM, one of seven centers in JUMP 2.0, a Semiconductor
Research Corporation (SRC) program sponsored by DARPA.

DIMES 25, October 13-16, 2025, Seoul, Republic of Korea

References

(1]
(2]

(3]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Reto Achermann and Ashish Panwar. 2020. Mitosis Workload Btree.
https://github.com/mitosis-project/mitosis-workload-btree.
Shashank Adavally and Krishna Kavi. 2021. Subpage migration in het-
erogeneous memory systems. In Workshop on Heterogeneous Memory
Systems (HMEM-2021).

Neha Agarwal and Thomas F Wenisch. 2017. Thermostat: Application-
transparent page management for two-tiered main memory. In Pro-
ceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems.

Scott Beamer, Krste Asanovi¢, and David Patterson. 2015. The GAP
benchmark suite. arXiv preprint arXiv:1508.03619 (2015).

Zhen Cao, Geoff Kuenning, and Erez Zadok. 2020. Carver: Finding
Important Parameters for Storage System Tuning. In 18th USENIX
Conference on File and Storage Technologies.

Juneseo Chang, Wanju Doh, Yaebin Moon, Eojin Lee, and Jung Ho Ahn.
2024. Idt: Intelligent data placement for multi-tiered main memory
with reinforcement learning. In Proceedings of the 33rd International
Symposium on High-Performance Parallel and Distributed Computing.
Intel Corporation. 2018. Intel 64 and IA-32 Architectures Software De-
veloper Manuals. https://software.intel.com/articles/intel-sdm. (2018).
Ian Cutress and Billy Tallis. 2018. Intel Launches Optane DIMMs up to
512GB: Apache Pass is Here. https://www.anandtech.com/show/12828/
intel-launches-optane-dimms-up-to-512gb-apache-pass-is-here.
Thaleia Dimitra Doudali, Sergey Blagodurov, Abhinav Vishnu, Sud-
hanva Gurumurthi, and Ada Gavrilovska. 2019. Kleio: A hybrid mem-
ory page scheduler with machine intelligence. In Proceedings of the 28th
International Symposium on High-Performance Parallel and Distributed
Computing.

Thaleia Dimitra Doudali, Daniel Zahka, and Ada Gavrilovska. 2021.
Cori: Dancing to the right beat of periodic data movements over hybrid
memory systems. In 2021 IEEE International Parallel and Distributed
Processing Symposium.

Subramanya R Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten
Schwan. 2016. Data tiering in heterogeneous memory systems. In
Proceedings of the Eleventh European Conference on Computer Systems.
Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong,
Jonathon Duerig, Eric Eide, Leigh Stoller, Mike Hibler, David John-
son, Kirk Webb, Aditya Akella, Kuangching Wang, Glenn Ricart,
Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cecchet,
Snigdhaswin Kar, and Prabodh Mishra. 2019. The Design and Op-
eration of CloudLab. In 2019 USENIX Annual Technical Conference.
Padmapriya Duraisamy, Wei Xu, Scott Hare, Ravi Rajwar, David Culler,
Zhiyi Xu, Jianing Fan, Christopher Kennelly, Bill McCloskey, Danijela
Mijailovic, et al. 2023. Towards an adaptable systems architecture for
memory tiering at warehouse-scale. In Proceedings of the 28th ACM
International Conference on Architectural Support for Programming
Languages and Operating Systems, Volume 3.

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and
Chih-Jen Lin. 2008. LIBLINEAR: A library for large linear classification.
The Journal of machine Learning research (2008).

Johannes Freischuetz, Konstantinos Kanellis, Brian Kroth, and Shiv-
aram Venkataraman. 2025. TUNA: Tuning Unstable and Noisy Cloud
Applications. In Proceedings of the Twentieth European Conference
on Computer Systems (Rotterdam, Netherlands) (EuroSys ’25). As-
sociation for Computing Machinery, New York, NY, USA, 954-973.
https://doi.org/10.1145/3689031.3717480

Zhiyuan Guo, Zijian He, and Yiying Zhang. 2023. Mira: A program-
behavior-guided far memory system. In Proceedings of the 29th Sym-
posium on Operating Systems Principles.

Taekyung Heo, Yang Wang, Wei Cui, Jaechyuk Huh, and Lintao Zhang.
2020. Adaptive page migration policy with huge pages in tiered mem-
ory systems. IEEE Trans. Comput. (2020).

(18]

(19]

[20]

[21]

[22]

[23

[t}

[24]

[25]

[26

—

[27]

(28]

[29

—

(30]

(31]

Konstantinos Kanellis, Sujay Yadalam, Shivaram Venkataraman, and Michael Swift

Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. 2011. Sequen-
tial model-based optimization for general algorithm configuration.
In Learning and Intelligent Optimization: 5th International Conference,
LION 5, Rome, Italy, January 17-21, 2011. Selected Papers 5.

Compute Express Link Consortium. Inc. 2020. CXL® Specification.
https://computeexpresslink.org/cxl-specification/.

Konstantinos Kanellis, Cong Ding, Brian Kroth, Andreas Miiller, Carlo
Curino, and Shivaram Venkataraman. 2022. LlamaTune: sample-
efficient DBMS configuration tuning. Proceedings of VLDB Endowment
(2022).

KyungSoo Lee, Sohyun Kim, Joohee Lee, Donguk Moon, Rakie Kim,
Honggyu Kim, Hyeongtak Ji, Yunjeong Mun, and Youngpyo Joo. 2024.
Improving key-value cache performance with heterogeneous memory
tiering: A case study of CXL-based memory expansion. IEEE Micro
(2024).

Taehyung Lee, Sumit Kumar Monga, Changwoo Min, and Young Ik
Eom. 2023. MEMTIS: Efficient Memory Tiering with Dynamic Page
Classification and Page Size Determination. In Proceedings of the 29th
Symposium on Operating Systems Principles.

Baptiste Lepers and Willy Zwaenepoel. 2023. Johnny Cache: the End of
{DRAM} Cache Conflicts (in Tiered Main Memory Systems). In 17th
USENIX Symposium on Operating Systems Design and Implementation.
Adnan Maruf, Ashikee Ghosh, Janki Bhimani, Daniel Campello, Andy
Rudoff, and Raju Rangaswami. 2022. MULTI-CLOCK: Dynamic Tiering
for Hybrid Memory Systems.. In 2022 IEEE International Symposium
on High-Performance Computer Architecture.

Hasan Al Maruf, Hao Wang, Abhishek Dhanotia, Johannes Weiner,
Niket Agarwal, Pallab Bhattacharya, Chris Petersen, Mosharaf Chowd-
hury, Shobhit Kanaujia, and Prakash Chauhan. 2023. TPP: Transparent
page placement for CXL-enabled tiered-memory. In Proceedings of the
28th ACM International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume 3.

Timothy Morgan. 2020. CXL And Gen-Z Iron Out A Coherent In-
terconnect Strategy. https://www.nextplatform.com/2020/04/03/cxl-
and-gen-z-iron-out-a-coherent-interconnect-strategy/. In The Next
Platform.

SeongJae Park, Yunjae Lee, and Heon Y Yeom. 2019. Profiling dy-
namic data access patterns with controlled overhead and quality. In
Proceedings of the 20th International Middleware Conference Industrial
Track.

[patch -v4 0/3] memory tiering: hot page selection. 2022.
https://lwn.net/ml/linux-kernel/20220622083519.708236- 1-
ying.huang@intel.com/.

Steven] Plimpton, Ron Brightwell, Courtenay Vaughan, Keith Un-
derwood, and Mike Davis. 2006. A simple synchronous distributed-
memory algorithm for the HPCC RandomAccess benchmark. In 2006
IEEE International Conference on Cluster Computing.

Luiz E Ramos, Eugene Gorbatov, and Ricardo Bianchini. 2011. Page
placement in hybrid memory systems. In Proceedings of the interna-
tional conference on Supercomputing.

Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. 2021. Hemem: Scalable tiered memory management for big
data applications and real nvm. In Proceedings of the ACM SIGOPS 28th
Symposium on Operating Systems Principles.

[32] Jee Ho Ryoo, Lizy K John, and Arkaprava Basu. 2018. A case for gran-

(33]

(34]

ularity aware page migration. In Proceedings of the 2018 International
Conference on Supercomputing.

Bobak Shahriari, Kevin Swersky, Ziyu Wang, Ryan P Adams, and
Nando De Freitas. 2015. Taking the human out of the loop: A review
of Bayesian optimization. Proc. IEEE (2015).

Gagandeep Singh, Rakesh Nadig, Jisung Park, Rahul Bera, Nastaran
Hajinazar, David Novo, Juan Gémez-Luna, Sander Stuijk, Henk Cor-
poraal, and Onur Mutlu. 2022. Sibyl: Adaptive and extensible data

Striking the Right Chord: Parameter Tuning in Memory Tiering Systems

[35]

[36]

[37]

[38]

[39]

[40]

placement in hybrid storage systems using online reinforcement learn-
ing. In Proceedings of the 49th Annual International Symposium on
Computer Architecture.

Kevin Song, Jiacheng Yang, Sihang Liu, and Gennady Pekhimenko.
2023. Lightweight frequency-based tiering for cxl memory systems.
arXiv preprint arXiv:2312.04789 (2023).

Radu Stoica and Anastasia Ailamaki. 2013. Enabling efficient OS
paging for main-memory OLTP databases. In Proceedings of the Ninth
International Workshop on Data Management on New Hardware.

Yan Sun, Jongyul Kim, Zeduo Yu, Jiyuan Zhang, Siyuan Chai,
Michael Jaemin Kim, Hwayong Nam, Jaehyun Park, Eojin Na, Yifan
Yuan, et al. 2025. M5: Mastering Page Migration and Memory Man-
agement for CXL-based Tiered Memory Systems. In Proceedings of
the 30th ACM International Conference on Architectural Support for
Programming Languages and Operating Systems, Volume 2.

John R Tramm, Andrew R Siegel, Tanzima Islam, and Martin Schulz.
2014. XSBench-the development and verification of a performance
abstraction for Monte Carlo reactor analysis. The Role of Reactor
Physics toward a Sustainable Future (2014).

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. 2013. Speedy transactions in multicore in-memory databases.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles.

Johannes Weiner, Niket Agarwal, Dan Schatzberg, Leon Yang, Hao
Wang, Blaise Sanouillet, Bikash Sharma, Tejun Heo, Mayank Jain,

(43]

[44]

(45]

DIMES 25, October 13-16, 2025, Seoul, Republic of Korea

Chungiang Tang, et al. 2022. TMO: Transparent memory offloading in
datacenters. In Proceedings of the 27th ACM International Conference
on Architectural Support for Programming Languages and Operating
Systems.

Dong Xu, Junhee Ryu, Kwangsik Shin, Pengfei Su, and Dong Li. 2024.
{FlexMem}: Adaptive page profiling and migration for tiered memory.
In 2024 USENIX Annual Technical Conference.

Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee. 2019.
Nimble page management for tiered memory systems. In Proceedings
of the Twenty-Fourth International Conference on Architectural Support
for Programming Languages and Operating Systems.

Zhengyu Yang, Morteza Hoseinzadeh, Allen Andrews, Clay Mayers,
David Thomas Evans, Rory Thomas Bolt, Janki Bhimani, Ningfang Mi,
and Steven Swanson. 2017. AutoTiering: Automatic data placement
manager in multi-tier all-flash datacenter. In 2017 IEEE 36th Interna-
tional Performance Computing and Communications Conference.
Xinyue Yi, Hongchao Du, Yu Wang, Jie Zhang, Qiao Li, and Chun Jason
Xue. 2025. ArtMem: Adaptive Migration in Reinforcement Learning-
Enabled Tiered Memory. In Proceedings of the 52nd Annual International
Symposium on Computer Architecture.

Seongdae Yu, Seongbeom Park, and Woongki Baek. 2017. Design and
implementation of bandwidth-aware memory placement and migra-
tion policies for heterogeneous memory systems. In Proceedings of the
International Conference on Supercomputing.

