
FlashVM: Virtual Memory Management on Flash
Mohit Saxena and Michael M. Swift

University of Wisconsin-Madison
{msaxena,swift}@cs.wisc.edu

Abstract

With the decreasing price of flash memory, systems will
increasingly use solid-state storage for virtual-memory
paging rather than disks. FlashVM is a system architec-
ture and a core virtual memory subsystem built in the
Linux kernel that uses dedicated flash for paging.

FlashVM focuses on three major design goals for
memory management on flash: high performance, re-
duced flash wear out for improved reliability, and ef-
ficient garbage collection. FlashVM modifies the pag-
ing system along code paths for allocating, reading and
writing back pages to optimize for the performance char-
acteristics of flash. It also reduces the number of page
writes using zero-page sharing and page sampling that
prioritize the eviction of clean pages. In addition, we
present the first comprehensive description of the usage
of the discard command on a real flash device and show
two enhancements to provide fast online garbage collec-
tion of free VM pages.

Overall, the FlashVM system provides up to 94% re-
duction in application execution time and is four times
more responsive than swapping to disk. Furthermore, it
improves reliability by writing up to 93% fewer pages
than Linux, and provides a garbage collection mecha-
nism that is up to 10 times faster than Linux with discard
support.

1 Introduction
Flash memory is one of the largest changes to storage
in recent history. Solid-state disks (SSDs), composed of
multiple flash chips, provide the abstraction of a block
device to the operating system similar to magnetic disks.
This abstraction favors the use of flash as a replacement
for disk storage due to its faster access speeds and lower
energy consumption and [1, 25, 33].

In this paper, we present FlashVM, a system architec-
ture and a core virtual memory subsystem built in the
Linux kernel for managing flash-backed virtual mem-
ory. FlashVM extends a traditional system organization
with dedicated flash for swapping virtual memory pages.
Dedicated flash allows FlashVM software to use seman-
tic information, such as the knowledge about free blocks,
that is not available within an SSD. Furthermore, dedi-
cating flash to virtual memory is economically attractive,

because small quantities can be purchased for a few dol-
lars. In contrast, disks ship only in large sizes at higher
initial costs.

The design of FlashVM focuses on three aspects of
flash: performance, reliability, and garbage collection.
We analyze the existing Linux virtual memory imple-
mentation and modify it to account for flash character-
istics. FlashVM modifies the paging system on code
paths affected by the performance differences between
flash and disk: on the read path during a page fault, and
on the write path when pages are evicted from memory.
On the read path, FlashVM leverages the low seek time
on flash to prefetch more useful pages. The Linux VM
prefetches eight physically contiguous pages to minimize
disk seeks. FlashVM uses stride prefetching to minimize
memory pollution with unwanted pages at a negligible
cost of seeking on flash. This results in a reduction in
the number of page faults and improves the application
execution time. On the write path, FlashVM throttles the
page write-back rate at a finer granularity than Linux.
This allows better congestion control of paging traffic to
flash and improved page fault latencies for various appli-
cation workloads.

The write path also affects the reliability of FlashVM.
Flash memory suffers from wear out, in that a single
block of storage can only be written a finite number of
times. FlashVM uses zero-page sharing to avoid writing
empty pages and uses page sampling, which probabilisti-
cally skips over dirty pages to prioritize the replacement
of clean pages. Both techniques reduce the number of
page writes to the flash device, resulting in improved re-
liability for FlashVM.

The third focus of FlashVM is efficient garbage col-
lection, which affects both reliability and performance.
Modern SSDs provide a discard command (also called
trim) for the OS to notify the device when blocks no
longer contain valid data [30]. We present the first com-
prehensive description of the semantics, usage and per-
formance characteristics of the discard command on a
real SSD. In addition, we propose two different tech-
niques, merged and dummy discards, to optimize the use
of the discard command for online garbage collection of
free VM page clusters on the swap device. Merged dis-
card batches requests for discarding multiple page clus-
ters in a single discard command. Alternatively, dummy

discards implicitly notify the device about free VM pages
by overwriting a logical flash block.

We evaluate the costs and benefits of each of these de-
sign techniques for FlashVM for memory-intensive ap-
plications representing a variety of computing environ-
ments including netbooks, desktops and distributed clus-
ters. We show that FlashVM can benefit a variety of
workloads including image manipulation, model check-
ing, transaction processing, and large key-value stores.
Our results show that:

• FlashVM provides up to 94% reduction in applica-
tion execution time and up to 84% savings in mem-
ory required to achieve the same performance as
swapping to disk. FlashVM also scales with in-
creased degree of multiprogramming and provides
up to four times faster response time to revive sus-
pended applications.

• FlashVM provides better flash reliability than Linux
by reducing the number of page writes to the swap
device. It uses zero-page sharing and dirty page
sampling for preferential eviction of clean pages,
which result in up to 93% and 14% fewer page
writes respectively.

• FlashVM optimizes the performance for garbage
collection of free VM pages using merged and
dummy discard operations, which are up to 10 times
faster than Linux with discard support and only 15%
slower than Linux without discard support.

The remainder of the paper is structured as follows.
Section 2 describes the target environments and makes
a case for FlashVM. Section 3 presents FlashVM design
overview and challenges. We describe the design in Sec-
tions 4.1, covering performance; 4.2 covering reliability;
and 4.3 on efficient garbage collection using the discard
command. We evaluate the FlashVM design techniques
in Section 5, and finish with related work and conclu-
sions.

2 Motivation
Application working-set sizes have grown many-fold in
the last decade, driving the demand for cost-effective
mechanisms to improve memory performance. In this
section, we motivate the use of flash-backed virtual
memory by comparing it to DRAM and disk, and not-
ing the workload environments that benefit the most.

2.1 Why FlashVM?
Fast and cheap flash memory has become ubiquitous.
More than 2 exabytes of flash memory were manufac-
tured worldwide in 2008. Table 1 compares the price
and performance characteristics of NAND flash memory
with DRAM and disk. Flash price and performance are
between DRAM and disk, and about five times cheaper

FlashVM

DiskVM

M

T

E
x
ec

u
ti

o
n
 T

im
e

T

Memory Usage M

Figure 1: Cost/Benefit Analysis: Application execution
time plot comparing the performance of disk and flash
backed virtual memory with variable main memory sizes.
∆M is the memory savings to achieve the same perfor-
mance as disk and ∆T is the performance improvement
with FlashVM for the same memory size.

Device Read Latencies (µs) Write Latencies (µs) Price
Random Seq Random Seq $/GB

DRAM 0.05 0.05 0.05 0.05 $15
Flash 100 85 2,000 200-500 $3
Disk 5,000 500 5,000 500 $0.3

Table 1: Device Attributes: Comparing DRAM, NAND
flash memory and magnetic disk. Both price and perfor-
mance for flash lie between DRAM and disk (some values
are roughly defined for comparison purposes only).

than DRAM and an order of magnitude faster than disk.
Furthermore, flash power consumption (0.06 W when
idle and 0.15–2 W when active) is significantly lower
than both DRAM (4–5 W/DIMM) and disk (13–18 W).
These features of flash motivate its adoption as second-
level memory between DRAM and disk.

Figure 1 illustrates a cost/benefit analysis in the form
of two simplified curves (not to scale) showing the exe-
cution times for an application in two different systems
configured with variable memory sizes, and either disk or
flash for swapping. This figure shows two benefits to ap-
plications when they must page. First, FlashVM results
in faster execution for approximately the same system
price without provisioning additional DRAM, as flash is
five times cheaper than DRAM. This performance gain
is shown in Figure 1 as ∆T along the vertical axis. Sec-
ond, a FlashVM system can achieve performance sim-
ilar to swapping to disk with lower main memory re-
quirements. This occurs because page faults are an or-
der of magnitude faster with flash than disk: a program
can achieve the same performance with less memory by
faulting more frequently to FlashVM. This reduction in
memory-resident working set is shown as ∆M along the

horizontal axis.
However, the adoption of flash is fundamentally an

economic decision, as performance can also be improved
by purchasing additional DRAM or a faster disk. Thus,
careful analysis is required to configure the balance of
DRAM and flash memory capacities that is optimal for
the target environment in terms of both price and perfor-
mance.

2.2 Where FlashVM?
Both the price/performance gains for FlashVM are
strongly dependent on the workload characteristics and
the target environment. In this paper, we target FlashVM
against the following workloads and environments:
Netbook/Desktop. Netbooks and desktops are usually
constrained with cost, the number of DIMM slots for
DRAM modules and DRAM power-consumption. In
these environments, the large capacity of disks is still
desirable. Memory-intensive workloads, such as image
manipulation, video encoding, or even opening multi-
ple tabs in a single web browser instance can consume
hundreds of megabytes or gigabytes of memory in a
few minutes of usage [4], thereby causing the system to
page. Furthermore, end users often run multiple pro-
grams, leading to competition for memory. FlashVM
meets the requirements of such workloads and environ-
ments with faster performance that scales with increased
multiprogramming.
Distributed Clusters. Data-intensive workloads such
as virtualized services, key-value stores and web caches
have often resorted to virtual or distributed memory solu-
tions. For example, the popular memcached [17] is used
to increase the aggregate memory bandwidth. While disk
access is too slow to support page faults during request
processing, flash access times allow a moderate num-
ber of accesses. Fast swapping can also benefit virtual
machine deployments, which are often constrained by
the main memory capacities available on commonly de-
ployed cheap servers [19]. Virtual machine monitors can
host more virtual machines with support for swapping
out nearly the entire guest physical memory. In such
cluster scenarios, hybrid alternatives similar to FlashVM
that incorporate DRAM and large amounts of flash are
an attractive means to provide large memory capacities
cheaply [6].

3 Design Overview
The FlashVM design, shown in Figure 2, consists of ded-
icated flash for swapping out virtual memory pages and
changes to the Linux virtual memory hierarchy that opti-
mize for the characteristics of flash. We target FlashVM
against NAND flash, which has lower prices and better
write performance than the alternative, NOR flash. We
propose that future systems be built with a small multi-

ple of DRAM size as flash that is attached to the mother-
board for the express purpose of supporting virtual mem-
ory.
Flash Management. Existing solid-state disks (SSD)
manage NAND flash memory packages internally for
emulating disks [1]. Because flash devices do not sup-
port re-writing data in place, SSDs rely on a translation
layer to implement block address translation, wear lev-
eling and garbage collection of free blocks. The trans-
lation from this layer raises three problems not present
with disks: write amplification, low reliability, and ag-
ing.

Write amplification occurs when writing a single block
causes the SSD to re-write multiple blocks, and leads
to expensive read-modify-erase-write cycles (erase la-
tency for a typical 128–512 KB flash block is as high
as 2 milliseconds) [1, 26]. SSDs may exhibit low reli-
ability because a single block may only be re-written a
finite number of times. This limit is around 10,000 and
is decreasing with the increase in capacity and density
of MLC flash devices. Above this limit, devices may
exhibit unacceptably high bit error rates [18]. For a 16
GB SSD written at its full bandwidth of 200 MB/sec, er-
rors may arise in as little as a few weeks. Furthermore,
SSDs exhibit aging after extensive use because fewer
clean blocks are available for writing [24, 26]. This can
lead to performance degradation, as the device continu-
ously copies data to clean pages. The FlashVM design
leverages semantic information only available within the
operating system, such as locality of memory references,
page similarity and knowledge about deleted blocks, to
address these three problems.
FlashVM Architecture. The FlashVM architecture tar-
gets dedicated flash for virtual memory paging. Dedi-
cating flash for virtual memory has two distinct advan-
tages over traditional disk-based swapping. First, ded-
icated flash is cheaper than traditional disk-based swap
devices in price per byte only for small capacities re-
quired for virtual memory. A 4 GB MLC NAND flash
chip costs less than $6, while the cheapest IDE/SCSI
disk of similar size costs no less than $24 [5, 32]. Sim-
ilarly, the more common SATA/SAS disks do not scale
down to capacities smaller than 36 GB, and even then
are far more expensive than flash. Furthermore, the pre-
mium for managed flash, which includes a translation
layer, as compared to raw flash chips is dropping rapidly
as SSDs mature. Second, dedicating flash for virtual
memory minimizes the interference between the file sys-
tem I/O and virtual-memory paging traffic. We proto-
type FlashVM using MLC NAND flash-based solid-state
disks connected over a SATA interface.
FlashVM Software. The FlashVM memory manager,
shown in Figure 2, is an enhanced version of the mem-
ory management subsystem in the Linux 2.6.28 kernel.

Kernel VM Layers

VM Memory Manager

Block Layer

Disk Scheduler

DRAM

Flash VM Manager
Performance

Reliability
Garbage Collection

Swap
Cache

Block Device Driver

Disk

Page Swapping

SATA PCI-E/SATA/Onboard

Dedicated
FlashVM

Figure 2: FlashVM Memory Hierarchy: FlashVM
manager controls the allocation, read and write-back
of pages swapped out from main memory. It hands the
pages to the block layer for conversion into block I/O re-
quests, which are submitted to the dedicated flash device.

Since NAND flash is internally organized as a block de-
vice, the FlashVM manager enqueues the evicted pages
at the block layer for scheduling. The block layer is re-
sponsible for the conversion of pages into block I/O re-
quests submitted to the device driver. At a high-level,
FlashVM manages the non-ideal characteristics of flash
and exploits its useful attributes. In particular, our design
goals are:

• High performance by leveraging the unique perfor-
mance characteristics of flash, such as fast random
reads (discussed in Section 4.1).

• Improved reliability by reducing the number of page
writes to the swap device (discussed in Section 4.2).

• Efficient garbage collection of free VM pages by
delaying, merging, and virtualizing discard opera-
tions (discussed in Section 4.3).

The FlashVM implementation is not a singular addi-
tion to the Linux VM. As flash touches on many as-
pects of performance, FlashVM modifies most compo-
nents of the Linux virtual memory hierarchy, including
the swap-management subsystem, the memory allocator,
the page scanner, the page-replacement and prefetching
algorithms, the block layer and the SCSI subsystem. In
the next section, we identify and describe our changes
to each of these subsystems for achieving the different
FlashVM design goals.

4 Design and Implementation
This section discusses the FlashVM implementation to
improve performance, reliability, and to provide efficient

garbage collection.

4.1 FlashVM Performance
Challenges. The virtual-memory systems of most oper-
ating systems were developed with the assumption that
disks are the only swap device. While disks exhibit a
range of performance, their fundamental characteristic is
the speed difference between random and sequential ac-
cess. In contrast, flash devices have a different set of
performance characteristics, such as fast random reads,
high sequential bandwidths, low access and seek costs,
and slower writes than reads. For each code path in
the VM hierarchy affected by these differences between
flash and disk, we describe our analysis for tuning pa-
rameters and our implementation for optimizing perfor-
mance with flash. We analyze three VM mechanisms:
page pre-cleaning, page clustering and disk scheduling,
and re-implement page scanning and prefetching algo-
rithms.

4.1.1 Page Write-Back
Swapping to flash changes the performance of writing
back dirty pages. Similar to disk, random writes to flash
are costlier than sequential writes. However, random
reads are inexpensive, so write-back should optimize for
write locality rather than read locality. FlashVM accom-
plishes this by leveraging the page pre-cleaning and clus-
tering mechanisms in Linux to reduce page write over-
heads.
Pre-cleaning. Page pre-cleaning is the act of eagerly
swapping out dirty pages before new pages are needed.
The Linux page-out daemon kswapd runs periodically to
write out 32 pages from the list of inactive pages. The
higher write bandwidth of flash allows FlashVM write
pages more aggressively, and without competing file sys-
tem traffic, use more I/O bandwidth.

Thus, we investigate writing more pages at a time to
achieve sequential write performance on flash. For disks,
pre-cleaning more pages interferes with high-priority
reads to service a fault. However, with flash, the lower
access latency and higher bandwidths enable more ag-
gressive pre-cleaning without affecting the latency for
handling a page-fault.
Clustering. The Linux clustering mechanism assigns lo-
cations in the swap device to pages as they are written
out. To avoid random writes, Linux allocates clusters,
which are contiguous ranges of page slots. When a clus-
ter has been filled, Linux scans for a free cluster from the
start of the swap space. This reduces seek overheads on
disk by consolidating paging traffic near the beginning of
the swap space.

We analyze FlashVM performance for a variety of
cluster sizes from 8 KB to 4096 KB. In addition, for clus-
ters at least the size of an erase block, we align clusters

Linux Prefetching

FlashVM Prefetching

F F T X

Figure 3: Virtual Memory Prefetching: Linux reads-
around an aligned block of pages consisting of the target
page and delimited by free or bad blocks to minimize disk
seeks. FlashVM skips the free and bad blocks by seeking
to the next allocated page and reads all valid pages. (T,
F and X represent target, free and bad blocks on disk re-
spectively; unfilled boxes represent the allocated pages).

with erase-block boundaries to ensure minimum amount
of data must be erased.

4.1.2 Page Scanning
A virtual memory system must ensure that the rate at
which it selects pages for eviction matches the write
bandwidth of the swap device. Pages are selected by two
code paths: memory reclaim during page allocation; and
the page-out daemon that scan the inactive page list for
victim pages. The Linux VM subsystem balances the
rate of scanning with the rate of write-back to match the
bandwidth of the swap device. If the scanning rate is too
high, Linux throttles page write-backs by waiting for up
to 20–100 milliseconds or until a write completes. This
timeout, appropriate for disk, is more than two orders of
magnitude greater than flash access latencies.

FlashVM controls write throttling at a much finer
granularity of a system jiffy (one clock tick). Since mul-
tiple page writes in a full erase block on flash take up to
two milliseconds, FlashVM times-out for about one mil-
lisecond on our system. These timeouts do not execute
frequently, but have a large impact on the average page
fault latency [29]. This enables FlashVM to maintain
higher utilization of paging bandwidth and speeds up the
code path for write-back when reclaiming memory.

4.1.3 Prefetching on Page Fault
Operating systems prefetch pages after a page fault to
benefit from the sequential read bandwidth of the de-
vice [12]. The existing Linux prefetch mechanism reads
in up to 8 pages contiguous on disk around the target
page. Prefetching is limited by the presence of free or
bad page slots that represent bad blocks on disk. As
shown in Figure 3, these page slots delimit the start or
the end of the prefetched pages. On disk, this approach
avoids the extra cost of seeking around free and bad
pages, but often leads to fetching fewer than 8 pages.

FlashVM leverages fast random reads on flash with

two different prefetching mechanisms. First, FlashVM
seeks over the free/bad pages when prefetching to re-
trieve a full set of valid pages. Thus, the fast random ac-
cess of flash medium enables FlashVM to bring in more
pages with spatial locality than native Linux.

Fast random access on flash also allows prefetching of
more distant pages with temporal locality, such as stride
prefetching. FlashVM records the offsets between the
current target page address and the last two faulting ad-
dresses. Using these two offsets, FlashVM computes the
strides for the next two pages expected to be referenced
in the future. Compared to prefetching adjacent pages,
stride prefetching reduces memory pollution by reading
the pages that are more likely to be referenced soon.

We implement stride prefetching to work in conjunc-
tion with contiguous prefetching: FlashVM first reads
pages contiguous to the target page and then prefetches
stride pages. We find that fetching too many stride pages
increases the average page fault latency, so we limit the
stride to two pages. These two prefetching schemes re-
sult in a reduction in the number of page faults and im-
prove the total execution time for paging.

4.1.4 Disk Scheduling

The Linux VM subsystem submits page read and write
requests to the block-layer I/O scheduler. The choice
of the I/O scheduler affects scalability with multipro-
grammed workloads, as the scheduler selects the order
in which requests from different processes are sent to the
swap device.

Existing Linux I/O schedulers optimize performance
by (i) merging adjacent requests, (ii) reordering requests
to minimize seeks and to prioritize requests, and (iii)
delaying requests to allow a process to submit new re-
quests. Work-conserving schedulers, such as the NOOP
and deadline schedulers in Linux, submit pending re-
quests to the device as soon as the prior request com-
pletes. In contrast, non-work-conserving schedulers may
delay requests for up to 2–3 ms to wait for new requests
with better locality or to distribute I/O bandwidth fairly
between processes [9]. However, these schedulers opti-
mize for the performance characteristics of disks, where
seek is the dominant cost of I/O. We therefore analyze
the impact of different I/O schedulers on FlashVM.

The Linux VM system tends to batch multiple read re-
quests on a page fault for prefetching, and multiple write
requests for clustering evicted pages. Thus, paging traf-
fic is more regular than file system workloads in general.
Further, delaying requests for locality can lead to lower
device utilization on flash, where random access is only a
small component of the page transfer cost. Thus, we ana-
lyze the performance impact of work conservation when
scheduling paging traffic for FlashVM.

4.2 FlashVM Reliability
Challenges. As flash geometry shrinks and MLC tech-
nology packs more bits into each memory cell, the prices
of flash devices have dropped significantly. Unfortu-
nately, so has the erasure limit per flash block. A sin-
gle flash block can typically undergo between 10,000
and 100,000 erase cycles, before it can no longer reliably
store data. Modern SSDs and flash devices use inter-
nal wear-leveling to spread writes across all flash blocks.
However, the bit error rates of these devices can still be-
come unacceptably high once the erasure limit is reached
[18]. As the virtual memory paging traffic may stress
flash storage, FlashVM specially manages page writes
to improve device reliability. It exploits the informa-
tion available in the OS about the state and content of a
page by employing page sampling and page sharing re-
spectively. FlashVM aims to reduce the number of page
writes and prolong the lifetime of the flash device dedi-
cated for swapping.

4.2.1 Page Sampling
Linux reclaims free memory by evicting inactive pages
in a least-recently-used order. Clean pages are simply
added to the free list, while reclaiming dirty pages re-
quires writing them back to the swap device.

FlashVM modifies the Linux page replacement algo-
rithm by prioritizing the reclaim of younger clean pages
over older dirty pages. While scanning for pages to re-
claim, FlashVM skips dirty pages with a probability de-
pendent on the rate of pre-cleaning. This policy increases
the number of clean pages that are reclaimed during each
scan, and thus reduces the overall number of writes to the
flash device.

The optimal rate for sampling dirty pages is strongly
related to the memory reference pattern of the applica-
tion. For applications with read-mostly page references,
FlashVM can find more clean pages to reclaim. How-
ever, for applications that frequently modify many pages,
skipping dirty pages for write-back leads to more fre-
quent page faults, because younger clean pages must be
evicted.

FlashVM addresses workload variations with adap-
tive page sampling: the probability of skipping a dirty
page also depends on the write rate of the application.
FlashVM predicts the average write rate by maintaining
a moving average of the time interval tn for writing n
dirty pages. When the application writes to few pages
and tn is large, FlashVM more aggressively skips dirty
pages. For applications that frequently modify many
pages, FlashVM reduces the page sampling probability
unless n pages have been swapped out. The balance
between the rate of page sampling and page writes is
adapted to provide a smooth tradeoff between device life-
time and application performance.

4.2.2 Page Sharing
The Linux VM system writes back pages evicted from
the LRU inactive list without any knowledge of page
content. This may result in writing many pages to the
flash device that share the same content. Detecting iden-
tical or similar pages may require heavyweight tech-
niques like explicitly tracking changes to each and every
page by using transparent page sharing [3] or content-
based page sharing by maintaining hash signatures for all
pages [8]. These techniques reduce the memory-resident
footprint and are orthogonal to the problem of reducing
the number of page write-backs.

We implement a limited form of content-based shar-
ing in FlashVM by detecting the swap-out of zero pages
(pages that contain only zero bytes). Zero pages form
a significant fraction of the memory-footprint of some
application workloads [8]. FlashVM intercepts paging
requests for all zero pages. A swap-out request sets a
zero flag in the corresponding page slot in the swap map,
and skips submitting a block I/O request. Similarly, a
swap-in request verifies the zero flag, which if found set,
allocates a zero page in the address space of the appli-
cation. This extremely lightweight page sharing mecha-
nism saves both the memory allocated for zero pages in
the main-memory swap cache and the number of page
write-backs to the flash device.

4.3 FlashVM Garbage Collection
Challenges. Flash devices cannot overwrite data in
place. Instead, they must first erase a large flash block
(128–512 KB), a slow operation, and then write to pages
within the erased block. Lack of sufficient pre-erased
blocks may result in copying multiple flash blocks for
a single page write to: (i) replenish the pool of clean
blocks, and (ii) ensure uniform wear across all blocks.
Therefore, flash performance and overhead of wear man-
agement are strongly dependent on the number of clean
blocks available within the flash device. For example,
high-end enterprise SSDs can suffer up to 85% drop in
write performance after extensive use [24, 26]. As a re-
sult, efficient garbage collection of clean blocks is neces-
sary for flash devices, analogous to the problem of seg-
ment cleaning for log-structured file systems [28].

For virtual memory, sustained paging can quickly age
the dedicated flash device by filling up all free blocks.
When FlashVM overwrites a block, the device can re-
claim the storage previously occupied by that block.
However, only the VM system has knowledge about
empty (free) page clusters. These clusters consist of
page slots in the swap map belonging to terminated pro-
cesses, dirty pages that have been read into the memory
and all blocks on the swap device after a reboot. Thus,
a flash device that implements internal garbage collec-
tion or wear-leveling may unnecessarily copy stale data,

 10

 100

 1000

 10000

 0.01 0.1 1 10 100 1000
 10000

A
ve

ra
ge

 L
at

en
cy

 (
m

s)

Discarded LBA Range (MB)

Discard Overhead

Figure 4: Discard Overhead: Impact of the number of
blocks discarded on the average latency of a single dis-
card command. Both x-axis and y-axis are log-scale.

reducing performance and reliability when not informed
about invalid pages.

FlashVM addresses this problem by explicitly noti-
fying the flash device of such pages by using the dis-
card command (also called trim introduced in the recent
SATA SSDs [30]. The discard command has the follow-
ing semantics:

discard(dev, rangelist[(sector, nsectors),])

where rangelist is the list of logical block address
ranges to be discarded on the flash device dev. Each
block range is represented as a pair of the starting sec-
tor address and the number of following sectors.

Free blocks can be discarded offline by first flushing
all in-flight read/write requests to the flash device, and
then wiping the requested logical address space. How-
ever, offline discard typically offers very coarse-grain
functionality, for example in the form of periodic disk
scrubbing or disk format operations [20]. Therefore,
FlashVM employs online cleaning that discards a smaller
range of free flash page clusters at runtime.

The Linux VM implements rudimentary support for
online cleaning in recent kernel versions starting in
2.6.28. When it finds 1 MB of free contiguous pages,
it submits a single discard request for the correspond-
ing page cluster. However, Linux does not fully support
discard yet: the block layer breaks discard requests into
smaller requests of no more than 256 sectors, while the
ATA disk driver ignores them. Thus, the existing Linux
VM is not able to actually discard the free page clusters.
FlashVM instead bypasses the block and ATA driver lay-
ers and sends discard commands directly to the flash de-
vice through the SCSI layer [14, 16]. Thus, FlashVM
has the ability to discard any number of sectors in a sin-
gle command.

We next present an experimental analysis of the cost of
discard on current flash devices. Based on these results,

which show that discard is expensive, we describe two
different techniques that FlashVM uses to improve the
performance of garbage collection: merged discard and
dummy discard.

4.3.1 Discard Cost
We measure the latency of discard operations on the
OCZ-Vertex SSD, which uses the Indilinx flash con-
troller used by many SSD manufacturers. Figure 4 shows
the overheads for discard commands issued over block
address ranges of different sizes. Based on Figure 4, we
infer the cost of a single discard command for cleaning B
flash blocks in one or more address ranges, each having
an average utilization u of valid (not previously cleaned)
pages:

costM =
{

co if B ≤ Bo

co + m · u · (B −Bo) otherwise

In this equation, co is the fixed cost of discarding up
to Bo blocks and m is the marginal cost of discarding
each additional block. Interestingly, the fixed cost of a
single discard command is 55 milliseconds! We spec-
ulate that this overhead occurs because the SSD con-
troller performs multiple block erase operations on dif-
ferent flash channels when actually servicing a discard
command [15]. The use of an on-board RAM buffer con-
ceals the linear increase only up to a range of Bo blocks
lying between 10–100 megabytes.

The cost of discard is exacerbated by the effect of com-
mand queuing: the ATA specification defines the discard
commands as untagged, requiring that every discard be
followed by an I/O barrier that stalls the request queue
while it is being serviced. Thus, the long latency of dis-
cards requires that FlashVM optimize the use of the com-
mand, as the overhead incurred may outweigh the perfor-
mance and reliability benefits of discarding free blocks.

4.3.2 Merged Discard
The first optimization technique that FlashVM uses is
merged discard. Linux limits the size of each discard
command sent to the device to 128 KB. However, as
shown in Figure 4, discards get cheaper per byte as range
sizes increase. Therefore, FlashVM opportunistically
discards larger block address ranges. Rather than discard
pages on every scan of the swap map, FlashVM defers
the operation and batches discards from multiple scans.
It discards the largest possible range list of free pages up
to a size of 100 megabytes in a single command.

This approach has three major benefits. First, delay-
ing discards reduces the overhead of scanning the swap
map. Second, merging discard requests amortizes the
fixed discard cost co over multiple block address ranges.

Third, FlashVM merges requests for fragmented and
non-contiguous block ranges. In contrast, the I/O sched-
uler only merges contiguous read/write requests.

4.3.3 Dummy Discard
Discard is only useful when it creates free blocks that
can later be used for writes. Overwriting a block also
causes the SSD to discard the old block contents, but
without paying the high fixed costs of the discard com-
mand. Furthermore, overwriting a free block removes
some of the benefit of discarding to maintain a pool of
empty blocks. Therefore, FlashVM implements dummy
discard to avoid a discard operation when unnecessary.

Dummy discard elides a discard operation if the block
is likely to be overwritten soon. This operation implic-
itly informs the device that the old block is no longer
valid and can be asynchronously garbage collected with-
out incurring the fixed cost of a discard command. As
FlashVM only writes back page clusters that are inte-
gral multiples of erase-block units, no data from partial
blocks needs to be relocated. Thus, the cost for a dummy
discard is effectively zero.

Unlike merged discards, dummy discards do not make
new clean blocks available. Rather, they avoid an inef-
fective discard, and can therefore only replace a fraction
of all discard operations. FlashVM must therefore de-
cide when to use each of the two techniques. Ideally,
the number of pages FlashVM discards using each oper-
ation depends on the available number of clean blocks,
the ratio of their costs and the rate of allocating free page
clusters. Upcoming and high-end enterprise SSDs ex-
pose the number of clean blocks available within the de-
vice [24]. In the absence of such functionality, FlashVM
predicts the rate of allocation by estimating the expected
time interval ts between two successive scans for find-
ing a free page cluster. When the system scans fre-
quently, recently freed blocks are overwritten soon, so
FlashVM avoids the extra cost of discarding the old con-
tents. When scans occur rarely, discarded clusters remain
free for an extended period and benefit garbage collec-
tion. Thus, when ts is small, FlashVM uses dummy dis-
cards, and otherwise applies merged discards to a free
page cluster in the swap map.

4.4 Summary
FlashVM architecture improves performance, reliability
and garbage collection overheads for paging to dedicated
flash. Some of the techniques incorporated in FlashVM,
such as zero-page sharing, also benefit disk-backed vir-
tual memory. However, the benefit of sharing is more
prominent for flash, as it provides both improved perfor-
mance and reliability.

While FlashVM is designed for managed flash, much
of its design is applicable to unmanaged flash as well. In

Device Sequential (MB/s) Random 4K-IO/s Latency
Read Write Read Write ms

Seagate Disk 80 68 120-300/s 4-5
IBM SSD 69 20 7K/s 66/s 0.2
OCZ SSD 230 80 5.5K/s 4.6K/s 0.2
Intel SSD 250 70 35K/s 3.3K/s 0.1

Table 2: Device Characteristics: First-generation IBM
SSD is comparable to disk in read bandwidth but excels
for random reads. Second-generation OCZ-Vertex and
Intel SSDs provide both faster read/write bandwidths and
IOPS. Write performance asymmetry is more prominent
in first-generation SSDs.

such a system, FlashVM would take more control over
garbage collection. With information about the state of
pages, it could more effectively clean free pages with-
out an expensive discard operation. Finally, this design
avoids the cost of storing persistent mappings of logi-
cal block addresses to physical flash locations, as virtual
memory is inherently volatile.

5 Evaluation
The implementation of FlashVM entails two compo-
nents: changes to the virtual memory implementation in
Linux and dedicated flash for swapping. We implement
FlashVM by modifying the memory management sub-
system and the block layer in the x86-64 Linux 2.6.28
kernel. We focus our evaluation on three key questions
surrounding these components:

• How much does the FlashVM architecture of ded-
icated flash for virtual memory improve perfor-
mance compared to traditional disk-based swap-
ping?

• Does FlashVM software design improve perfor-
mance, reliability via write-endurance and garbage
collection for virtual memory management on
flash?

• Is FlashVM a cost-effective approach to improving
system price/performance for different real-world
application workloads?

We first describe our experimental setup and method-
ology and then present our evaluation to answer these
three questions in Section 5.2, 5.3 and 5.4 respectively.
We answer the first question by investigating the bene-
fits of dedicating flash for paging in Section 5.2. In Sec-
tion 5.3 and 5.4, we isolate the impact of FlashVM soft-
ware design by comparing against the native Linux VM
implementation.

5.1 Methodology
System and Devices. We run all tests on a 2.5 GHz
Intel Core 2 Quad system configured with 4 GB DDR2

DRAM and 3 MB L2 cache per core, although we reduce
the amount of memory available to the OS for our tests,
as and when mentioned. We compare four storage de-
vices: an IBM first generation SSD, a trim-capable OCZ-
Vertex SSD, an Intel X-25M second generation SSD,
and a Seagate Barracuda 7200 RPM disk, all using native
command queuing. Device characteristics are shown in
Table 2.
Application Workloads. We evaluate FlashVM per-
formance with four memory-intensive application work-
loads with varying working set sizes:

1. ImageMagick 6.3.7, resizing a large JPEG image by
500%,

2. Spin 5.2 [31], an LTL model checker for testing mu-
tual exclusion and race conditions with a depth of
10 million states,

3. pseudo-SpecJBB, a modified SpecJBB 2005 bench-
mark to measure execution time for 16 concurrent
data warehouses with 1 GB JVM heap size using
Sun JDK 1.6.0,

4. memcached 1.4.1 [17], a high-performance object
caching server bulk-storing or looking-up 1 million
random 1 KB key-value pairs.

All workloads have a virtual memory footprint large
enough to trigger paging and reach steady state for our
analysis. For all our experiments, we report results av-
eraged over five different runs. While we tested with all
SSDs, we mostly present results for the second genera-
tion OCZ-Vertex and Intel SSDs for brevity.

5.2 Dedicated Flash
We evaluate the benefit of dedicating flash to virtual
memory by: (i) measuring the costs of sharing storage
with the file system, which arise from scheduling com-
peting I/O traffic, and (ii) comparing the scalability of
virtual memory with traditional disk-based swapping.

5.2.1 Read/Write Interference
With disk, the major cost of interference is the seeks
between competing workloads. With an SSD, however,
seek cost is low and the cost of interference arises from
interleaving reads and writes from the file and VM sys-
tems. Although this cost occurs with disks as well, it is
dominated by the overhead of seeking. We first evaluate
the performance loss from interleaving, and then mea-
sure the actual amount of interleaving with FlashVM.

We use a synthetic benchmark that reads or writes a
sequence of five contiguous blocks. Figure 5(a) shows
I/O performance as we interleave reads and writes for
disk, IBM SSD and Intel SSD. For disk, I/O performance
drops from its sequential read bandwidth of 80 MB/s to
8 MB/s when the fraction of interleaved writes reaches
60% because the drive head has to be repositioned be-

tween read and write requests. On flash, I/O performance
also degrades as the fraction of writes increase: IBM
and Intel SSDs performance drops by 10x and 7x respec-
tively when 60 percent of requests are writes. Thus, in-
terleaving can severely reduce system performance.

These results demonstrate the potential improvement
from dedicated flash, because, unlike the file system, the
VM system avoids interleaved read and write requests.
To measure this ability, we traced the block I/O requests
enqueued at the block layer by the VM subsystem us-
ing Linux blktrace. Page read and write requests are
governed by prefetching and page-out operations, which
batch up multiple read/write requests together. On ana-
lyzing the average length of read request streams inter-
leaved with write requests for ImageMagick and Spin,
we found that FlashVM submits long strings of read and
write requests. The average length of read streams ranges
between 138–169 I/O requests, and write streams are be-
tween 170–230 requests. Thus, the FlashVM system ar-
chitecture benefits from dedicating flash without inter-
leaved reads and writes from the file system.

5.2.2 Scaling Virtual Memory
Unlike flash, dedicating a disk for swapping does not
scale with multiple applications contending for memory.
This scalability manifests in two scenarios: increased
throughput as the number of threads or programs in-
creases, and decreased interference between programs
competing for memory.
Multiprogramming. On a dedicated disk, competing
programs degenerate into random page-fault I/O and
high seek overheads. Figure 5(b) compares the paging
throughput on different devices as we run multiple in-
stances of ImageMagick. Performance, measured by the
rate of page faults served per second, degrades for both
disk and the IBM SSD with as few as 3 program in-
stances, leading to a CPU utilization of 2–3%. For the
IBM SSD, performance falls largely due to an increase
in the random write traffic, which severely degrades its
performance.

In contrast, we find improvement in the effective uti-
lization of paging bandwidth on the Intel SSD with an
increase in concurrency. At 5 instances, paging traffic al-
most saturates the device bandwidth: for each page fault
FlashVM prefetches an additional 7 pages, so it reads
96 MB/s to service 3,000 page faults per second. In ad-
dition, it writes back a proportional but lower number
of pages. Above 5 instances of ImageMagick, the page
fault service rate drops because of increased congestion
for paging traffic: CPU utilization falls from 54% with
5 concurrent programs to 44% for 8 programs, and write
traffic nears the bandwidth of the device. Nevertheless,
these results demonstrate that performance scales sig-
nificantly as multiprogramming increases on flash when

 0

 50

 100

 150

 200

 250

 0 0.2 0.4 0.6 0.8 1

IO
P

S
 (

M
B

/s
)

Fraction of Writes

read b/w

write b/w

Intel
IBM
Disk

(a) Read/Write Interference

 0

 500

 1000

 1500

 2000

 2500

 3000

1 2 3 4 5 6 7 8

P
ag

e
fa

ul
ts

 p
er

 s
ec

on
d

Degree of Multiprogramming

Disk
IBM
Intel

(b) Paging Throughput

 0

 200

 400

 600

 800

 1000

 0 20 40 60 80 100 120 140
 0

 4000

 8000

 12000

 16000

 20000

R
es

id
en

t S
et

 S
iz

e
(M

B
)

N
um

be
r

of
 p

ag
e

fa
ul

ts

Normalized Time (s)

swap-out

swap-in

Inactive RSS
Active RSS

Page Faults: Disk
Page Faults: FlashVM

(c) Response Time

Figure 5: Dedicated Flash: Impact of dedicating flash for VM on performance for read/write interference with file
system traffic, paging throughput for multiprogrammed workloads and response time for increased memory contention.

compared to disk. We find similar increase in paging
throughput on dedicated flash for multithreaded applica-
tions like memcached. FlashVM performance and device
utilization increase when more threads generate more si-
multaneous requests. This is much the same argument
that exists for hardware multithreading to increase paral-
lelism in the memory system.
Response Time. The second scalability benefit of ded-
icated flash is faster response time for demand pag-
ing when multiple applications contend for memory.
Figure 5(c) depicts the phenomena frequently observed
on desktops when switching to inactive applications.
We model this situation with two processes each hav-
ing working-set sizes of 512 MB and 1.5 GB, that con-
tend for memory on a system configured with 1 GB
of DRAM. The curves show the resident set sizes (the
amount of physical memory in use by each process) and
the aggregate number of page faults in the system over
a time interval of 140 seconds. The first process is ac-
tive for the first 10 seconds and is then swapped out by
the Linux VM to accommodate the other process. When
120 seconds have elapsed, the second process terminates
and the first process resumes activity.

Demand paging the first process back into memory
incurs over 16,000 page faults. With disk, this takes
11.5 seconds and effectively prevents all other applica-
tions from accessing the disk. In contrast, resuming the
first process takes only 3.5 seconds on flash because of
substantially lower flash access latency. Thus, perfor-
mance degrades much more acceptably with dedicated
flash than traditional disk-based swapping, leading to
better scalability as the number of processes increase.

5.3 FlashVM Software Evaluation

FlashVM enhances the native Linux virtual memory sys-
tem for improved performance, reliability and garbage
collection. We first analyze our optimizations to the ex-
isting VM mechanisms required for improving flash per-
formance, followed by our enhancements for wear man-
agement and garbage collection of free blocks.

5.3.1 Performance Analysis

We analyze the performance of different codes paths that
impact the paging performance of FlashVM.

Page pre-cleaning. Figure 6(a) shows the performance
of FlashVM for ImageMagick, Spin and memcached as
we vary the number of pages selected for write-back
(pre-cleaned) on each page fault. Performance is poor
when only two pages are written back because the VM
system frequently scans the inactive list to reclaim pages.
However, we find that performance does not improve
when pre-cleaning more than 32 pages, because the over-
head of scanning is effectively amortized at that point.
Page clustering. Figure 6(b) shows FlashVM perfor-
mance as we vary the cluster size, the number of pages
allocated contiguously on the swap device, while keep-
ing pre-cleaning constant at 32 pages. When only two
pages are allocated contiguously (cluster size is two),
overhead increases because the VM system wastes time
finding free space. Large cluster sizes lead to more se-
quential I/O, as pages are allocated sequentially within
a cluster. However, our results show that above 32 page
clusters, performance again stabilizes. This occurs be-
cause 32 pages, or 128 KB, is the size of a flash erase
block and is enough to obtain the major benefits of se-
quential writes on flash. We tune FlashVM with these
optimal values for pre-cleaning and cluster sizes for all
our further experiments.
Congestion control. We evaluate the performance of
FlashVM congestion control by comparing it against na-
tive Linux on single- and multi-threaded workloads. We
separately measured the performance of changing the
congestion timeout for the page allocator and for both
the page allocator and the kswapd page-out daemon for
ImageMagick. With the native Linux congestion control
timeout tuned to disk access latencies, the system idles
even when there is no congestion.

For single-threaded programs, reducing the timeout
for the page allocator from 20ms to 1ms improved per-
formance by 6%, and changing the timeout for kswapd

Read-Ahead Native Stride
(# of pages) PF Time PF Time

2 139K 103.2 118K / 15% 88.5 / 14%
4 84K 96.3 70K / 17% 85.7 / 11%
8 56K 91.5 44K / 21% 85.1 / 7%

16 43K 89.0 28K / 35% 83.5 / 6%

Table 3: VM Prefetching: Impact of native Linux and
FlashVM prefetching on the number of page faults and
application execution time for ImageMagick. (PF is
number of hard page faults in thousands, Time is elapsed
time in seconds, and percentage reduction and speedup
are shown for the number of page faults and application
execution time respectively.)

in addition leads to a 17% performance improvement.
For multithreaded workloads, performance improved 4%
for page allocation and 6% for both page allocation and
the kswapd. With multiple threads, the VM system is
less likely to idle inappropriately, leading to lower ben-
efits from a reduced congestion timeout. Nevertheless,
FlashVM configures lower timeouts, which better match
the latency for page access on flash.
Prefetching. Along the page-fault path, FlashVM
prefetches more aggressively than Linux by reading
more pages around the faulting address and fetching
pages at a stride offset. Table 3 shows the benefit of these
two optimizations for ImageMagick. The table lists the
number of page faults and performance as we vary the
number of pages read-ahead for FlashVM prefetching
against native Linux prefetching, both on the Intel SSD.

We find that FlashVM outperforms Linux for all val-
ues of read-ahead. The reduction in page faults improves
from 15% for two pages to 35% for 16 pages, because
of an increase in the difference between the number of
pages read for native Linux and FlashVM. However, the
speedup decreases because performance is lost to ran-
dom access that results in increased latency per page
fault. More sophisticated application-directed prefetch-
ing can provide additional benefits by exploiting a more
accurate knowledge of the memory reference patterns
and the low seek costs on flash.
Disk Scheduling. FlashVM depends on the block layer
disk schedulers for merging or re-ordering I/O requests
for efficient I/O to flash. Linux has four standard sched-
ulers, which we compare in Figure 6(c). For each sched-
uler, we execute 4 program instances concurrently and
report the completion time of the last program. We scale
the working set of the program instances to ensure rele-
vant comparison on each individual device, so the results
are not comparable across devices.

On disk, the NOOP scheduler, which only merges ad-
jacent requests before submitting them to the block de-
vice driver in FIFO order, performs worst, because it re-
sults in long seeks between requests from different pro-

cesses. The deadline scheduler, which prioritizes syn-
chronous page faults over asynchronous writes, performs
best. The other two schedulers, CFQ and anticipatory,
insert delays to minimize seek overheads, and have in-
termediate performance.

In contrast, for both flash devices the NOOP scheduler
outperforms all other schedulers, outperforming CFQ
and anticipatory scheduling by as much as 35% and the
deadline scheduler by 10%. This occurs because there is
no benefit to localizing seeks on an SSD. We find that
average page access latency measured for disk increases
linearly from 1 to 6 ms with increasing seek distance.
In contrast, for both SSDs, seek time is constant and
less than 0.2 ms even for seek distances up to several
gigabytes. So, the best schedule for SSDs is to merge
adjacent requests and queue up as many requests as
possible to obtain the maximum bandwidth. We find that
disabling delaying of requests in the anticipatory sched-
uler results in a 22% performance improvement, but it
is still worse than NOOP. Thus, non work-conserving
schedulers are not effective when swapping to flash,
and scheduling as a whole is less necessary. For the
remaining tests, we use the NOOP scheduler.

5.3.2 Wear Management

FlashVM reduces wear-out of flash blocks by write re-
duction using dirty page sampling and zero-page sharing.

Page Sampling. For ImageMagick, uniformly skipping
1 in 100 dirty pages for write back results in up to 12%
reduction in writes but a 5% increase in page faults and
a 7% increase in the execution time. In contrast, skip-
ping dirty pages aggressively only when the program has
a lower write rate better prioritizes the eviction of clean
pages. For the same workload, adaptively skipping 1 in
20 dirty pages results in a 14% write reduction without
any increase in application execution time. Thus, adap-
tive page sampling better reduces page writes with less
affect on application performance.

Page Sharing. The number of zero pages swapped out
from the inactive LRU list to the flash device is de-
pendent on the memory-footprint of the whole system.
Memcached clients bulk-store random keys, leading to
few empty pages and only 1% savings in the number of
page writes with zero-page sharing. In contrast, both Im-
ageMagick and Spin result in substantial savings. Im-
ageMagick shows up to 15% write reduction and Spin
swaps up to 93% of zero pages. We find that Spin pre-
allocates a large amount of memory and zeroes it down
before the actual model verification phase begins. Zero-
page sharing improves both the application execution
time as well as prolongs the device lifetime by reducing
the number of page writes.

 0

 50

 100

 150

 200

 250

ImageMagick Spin memcached

T
im

e
(s

)

Number of pages pre-cleaned

2
32

256
1024

(a) Page pre-cleaning

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

ImageMagick Spin memcached

T
im

e
(s

)

Cluster Size (# of pages)

2
32

256
1024

(b) Page clustering

 0

 100

 200

 300

 400

 500

Disk IBM Intel

T
im

e
(s

)

NOOP
Deadline

CFQ
Anticipatory

(c) Disk Scheduling

Figure 6: Performance Analysis: Impact of page pre-cleaning, page clustering and disk scheduling on FlashVM
performance for different application workloads.

5.3.3 Garbage Collection

FlashVM uses merged and dummy discards to optimize
garbage collection of free VM pages on flash. We com-
pare the performance of garbage collection for FlashVM
against native Linux VM on an SSD. Because Linux can-
not currently execute discards, we instead collect block-
level I/O traces of paging traffic for different applica-
tions. The block layer breaks down the VM discard I/O
requests into 128 KB discard commands, and we emu-
late FlashVM by merging multiple discard requests or re-
placing them with equivalent dummy discard operations
as described in Section 4.3. Finally, we replay the pro-
cessed traces on an aged trim-capable OCZ-Vertex SSD
and record the total trace execution time.

 1

 10

 100

 1000

ImageMagick Spin memcached

T
im

e
(s

)

Discard Technique

Native
Merged

Dummy
Native-w/o

Figure 7: Garbage Collection Performance: Impact
of merged and dummy discards on application perfor-
mance for FlashVM. y-axis is log-scale for application
execution time.

Figure 7 compares the performance of four different
systems: FlashVM with merged discards over 100 MB
ranges, FlashVM with dummy discards, native Linux
VM with discard support and baseline Linux VM with-
out discard support. Linux with discard is 12 times
slower than the baseline system, indicating the high cost
for inefficient use of the discard command. In contrast,

Workload DiskVM FlashVM
Const Mem Const Runtime

Runtime Mem Rel. Runtime Rel. Memory
ImageMagick 207 814 31% 51%

Spin 209 795 11% 16%
SpecJBB 275 710 6% 19%

memcached-store 396 706 18% 60%
memcached-lookup 257 837 23% 50%

Table 4: Cost/Benefit Analysis: FlashVM analysis for
different memory-intensive application workloads. Sys-
tems compared are DiskVM with disk-backed VM, a
FlashVM system with the same memory (Const Mem)
and one with the same performance but less memory
(Const Runtime). FlashVM results show the execution
time and memory usage, both relative to DiskVM. Ap-
plication execution time Runtime is in seconds; memory
usage Mem is in megabytes.

FlashVM with merged discard, which also has the re-
liability benefits of Linux with discard, is only 15 per-
cent slower than baseline. With the addition of adap-
tive dummy discards, which reduces the rate of discards
when pages clusters are rapidly allocated, performance is
11% slower than baseline. In all cases, the slowdown is
due to the long latency of discard operations, which have
little direct performance benefit. These results demon-
strate that naive use of discard greatly degrades perfor-
mance, while FlashVM’s merged and dummy discard
achieve similar reliability benefits at performance near
native speeds.

5.4 FlashVM Application Performance

Adoption of FlashVM is fundamentally an economic de-
cision: a FlashVM system can perform better than a
DiskVM system even when it is provisioned with more
expensive DRAM. Therefore, we evaluate the perfor-
mance gains and memory savings when replacing disk
with flash for paging. Our results reflect estimates for
absolute memory savings in megabytes.

Table 4 presents the performance and memory usage
of five application workloads on three systems:

1. DiskVM with 1GB memory and a dedicated disk for
swapping;

2. FlashVM - Const Mem with the same DRAM size
as DiskVM, but improved performance;

3. FlashVM - Const Runtime with reduced DRAM
size, but same performance as DiskVM.

Our analysis in Table 4 represents configurations that
correspond to the three data points shown in Figure 1.
System configurations for workloads with high locality
or unused memory do not page and show no benefit from
FlashVM. Similarly, those with no locality or extreme
memory requirements lie on the far left in Figure 1 and
perform so poorly as to be unusable. Such data points
are not useful for analyzing virtual memory performance.
The column in Table 4 titled DiskVM shows the execu-
tion time and memory usage of the five workloads on a
system swapping to disk. Under FlashVM - Const Mem
and FlashVM - Const Runtime, we show the percentage
reduction in the execution time and memory usage re-
spectively, both when compared to DiskVM. The reduc-
tion in memory usage corresponds to the potential price
savings by swapping to flash rather than disk for achiev-
ing similar performance.

For all applications, a FlashVM system outperforms
a system configured with the same amount of DRAM
and disk-backed VM (FlashVM - Const Mem against
DiskVM). FlashVM’s reduction in execution time varies
from 69% for ImageMagick to 94% for the modified
SpecJBB, a 3-16x speedup. On average, FlashVM re-
duces run time by 82% over DiskVM. Similarly, we find
that there is a potential 60% reduction in the amount of
DRAM required on the FlashVM system to achieve sim-
ilar performance as DiskVM (FlashVM - Const Runtime
against DiskVM). This benefit comes directly from the
lower access latency and higher bandwidth of flash, and
results in both price and power savings for the FlashVM
system.

Overall, we find that applications with poor locality
have higher memory savings because the memory saved
does not substantially increase their page fault rate. In
contrast, applications with good locality see proportion-
ally more page faults from each lost memory page. Fur-
thermore, applications also benefit differently depending
on their access patterns. For example, when storing ob-
jects, memcached server performance improves 5x on a
FlashVM system with the same memory size, but only
4.3x for a lookup workload. The memory savings differ
similarly.

6 Related Work
The FlashVM design draws on past work investigating
the use of solid-state memory for storage. We categorize
this work into the following four classes:

Persistent Storage. Flash has most commonly been pro-
posed as a storage system to replace disks. eNVy pre-
sented a storage system that placed flash on the mem-
ory bus with a special controller equipped with a battery-
backed SRAM buffer [33]. File systems, such as YAFFS
and JFFS2 [27], manage flash to hide block erase la-
tencies and perform wear-leveling to handle bad blocks.
More recently, TxFlash exposes a novel transactional in-
terface to use flash memory by exploiting its copy-on-
write nature [25]. These systems all treat flash as per-
sistent storage, similar to a file system. In contrast,
FlashVM largely ignores the non-volatile aspect of flash
and instead focuses on the design of a high-performance,
reliable and scalable virtual memory.
Hybrid Systems. Guided by the price and performance
of flash, hybrid systems propose flash as a second-level
cache between memory and disk. FlashCache uses flash
as secondary file/buffer cache to provide a larger caching
tier than DRAM [10]. Windows and Solaris can use
USB flash drives and solid-state disks as read-optimized
disk caches managed by the file system [2, 7]. All these
systems treat flash as a cache of the contents on a disk
and mainly exploit its performance benefits. In contrast,
FlashVM treats flash as a backing store for evicted pages,
accelerates both read and write operations, and provides
mechanisms for improving flash reliability and efficiency
of garbage collection by using the semantic information
about paging only available within the OS.
Non-volatile Memory. NAND flash is the only mem-
ory technology after DRAM that has become cheap
and ubiquitous in the last few decades. Other non-
volatile storage class memory technologies like phase-
change memory (PCM) and magneto-resistive memory
(MRAM) are expected to come at par with DRAM prices
by 2015 [21]. Recent proposals have advocated the use
of PCM as a first-level memory placed on the memory
bus alongside DRAM [11, 19]. In contrast, FlashVM
adopts cheap NAND flash and incorporates it as swap
space rather than memory directly addressable by user-
mode programs.
Virtual Memory. Past proposals on using flash as virtual
memory focused on new page-replacement schemes [23]
or providing compiler-assisted, energy-efficient swap
space for embedded systems [13, 22]. In contrast,
FlashVM seeks more OS control for memory manage-
ment on flash, while addressing three major problems
for paging to dedicated flash. Further, we present the
first description of the usage of the discard command on
a real flash device and provide mechanisms to optimize
the performance of garbage collection.

7 Conclusions
FlashVM adapts the Linux virtual memory system for
the performance, reliability, and garbage collection char-

acteristics of flash storage. In examining Linux, we find
many dependencies on the performance characteristics of
disks, as in the case of prefetching only adjacent pages.
While the assumptions about disk performance are not
made explicit, they permeate the design, particularly re-
garding batching of requests to reduce seek latencies and
to amortize the cost of I/O. As new storage technologies
with yet different performance characteristics and chal-
lenges become available, such as memristors and phase-
change memory, it will be important to revisit both oper-
ating systems and applications designs.

Acknowledgments
Many thanks to our shepherd John Regehr and to the anony-
mous reviewers for their helpful comments and feedback. This
work was supported by NSF Award CNS-0834473. Swift has a
financial interest in Microsoft Corp.

References
[1] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T.,

DAVIS, J., MANASSE, M., AND PANIGRAHY, R. De-
sign tradeoffs for ssd performance. In USENIX (2008).

[2] ARCHER, T. MSDN Blog: Microsoft Ready-
Boost. http://blogs.msdn.com/tomarcher/
archive/2006/06/02/615199.aspx.

[3] BUGNION, E., DEVINE, S., AND ROSENBLUM, M.
Disco: Running commodity operating systems on scal-
able multiprocessors. In SOSP (1997).

[4] DOTNETPERLS.COM. Memory benchmark for Web
Browsers., December 2009. http://dotnetperls.
com/chrome-memory.

[5] DRAMEXCHANGE.COM. Mlc nand flash price quote,
Dec. 2009. http://dramexchange.com/#flash.

[6] GEAR6. Scalable hybrid memcached solutions. http:
//www.gear6.com.

[7] GREGG, B. Sun Blog: Solaris L2ARC Cache. http:
//blogs.sun.com/brendan/entry/test.

[8] GUPTA, D., LEE, S., VRABLE, M., SAVAGE, S., SNO-
EREN, A. C., VARGHESE, G., VOELKER, G. M., AND

VAHDAT, A. Difference engine: Harnessing memory re-
dundancy in virtual machines. In OSDI (2008).

[9] IYER, S., AND DRUSCHEL, P. Anticipatory scheduling:
A disk scheduling framework to overcome deceptive idle-
ness in synchronous IO. In SOSP (2001).

[10] KGIL, T., AND MUDGE, T. N. Flashcache: A nand flash
memory file cache for low power web servers. In CASES
(2006).

[11] LEE, B. C., IPEK, E., MUTLU, O., AND BURGER, D.
Architecting phase change memory as a scalable DRAM
alternative. In ISCA (2009).

[12] LEVY, H. M., AND LIPMAN, P. H. Virtual memory man-
agement in the VAX/VMS operating system. Computer
15, 3 (1982), 35–41.

[13] LI, H.-L., YANG, C.-L., AND TSENG, H.-W. Energy-
aware flash memory management in virtual memory sys-
tem. In IEEE Transactions on VLSI systems (2008).

[14] LINUX-DOCUMENTATION. SCSI Generic Driver
Interface. http://tldp.org/HOWTO/
SCSI-Generic-HOWTO.

[15] LORD, M. Author, Linux IDE Subsystem, Personal Com-
munication. December, 2009.

[16] LORD, M. hdparm 9.27: get/set hard disk parameters.
http://linux.die.net/man/8/hdparm.

[17] MEMCACHED. High-performance Memory Object
Cache. http://www.danga.com/memcached.

[18] MIELKE, N., MARQUART, T., KESSENICH, J. N. W.,
BELGAL, H., SCHARES, E., TRIVEDI, F., GOODNESS,
E., NEVILL, E., AND L.R. Bit error rate in nand flash
memories. In IEEE IRPS (2008).

[19] MOGUL, J. C., ARGOLLO, E., SHAH, M., AND FARA-
BOSCHI, P. Operating system support for nvm+dram hy-
brid main memory. In HotOS (2009).

[20] MSDN BLOG. Trim Support for Windows 7. http://
blogs.msdn.com/e7/archive/2009/05/05/
support-and-q-a-for-solid-state-drives-and.
aspx.

[21] OBJECTIVE-ANALYSIS.COM. White Paper:
PCM becomes a reality., Aug. 2009. http:
//www.objective-analysis.com/uploads/
2009-08-03 Objective Analysis PCM
White Paper.pdf.

[22] PARK, C., LIM, J., KWON, K., LEE, J., AND MIN, S. L.
Compiler-assisted demand paging for embedded systems
with flash memory. In EMSOFT (2004).

[23] PARK, S., JUNG, D., KANG, J., KIM, J., AND LEE, J.
CFLRU: A replacement algorithm for flash memory. In
CASES (2006).

[24] POLTE, M., SIMSA, J., AND GIBSON, G. Enabling en-
terprise solid state disks performance. In WISH (2009).

[25] PRABHAKARAN, V., RODEHEFFER, T., AND ZHOU, L.
Transactional flash. In OSDI (2008).

[26] RAJIMWALE, A., PRABHAKARAN, V., AND DAVIS,
J. D. Block management in solid-state devices. In
USENIX (2009).

[27] REDHAT INC. JFFS2: The Journalling Flash File System,
version 2, 2003. http://sources.redhat.com/
jffs2.

[28] ROSENBLUM, M., AND OUSTERHOUT, J. K. The design
and implementation of a log-structured file system. ACM
Transactions on Computer Systems 10, 1 (1992).

[29] SAXENA, M., AND SWIFT, M. M. FlashVM: Revisiting
the Virtual Memory Hierarchy. In HotOS-XII (2009).

[30] SHU, F., AND OBR, N. Data Set Management
Commands Proposal for ATA8-ACS2, 2007. http:
//t13.org/Documents/UploadedDocuments/
docs2008/e07154r6-Data Set Management
Proposal for ATA-ACS2.doc.

[31] SPIN. LTL Model Checker, Bell Labs. http://
spinroot.com.

[32] STREETPRICES.COM. Disk drive price quote, Dec. 2009.
http://www.streetprices.com.

[33] WU, M., AND ZWAENEPOEL, W. eNVy: A non-volatile,
main memory storage system. In ASPLOS-VI (1994).

