
Towards O(1) Memory
Michael M. Swift

University of Wisconsin–Madison
swift@cs.wisc.edu

Abstract
Since the dawn of computing, memory capacity has been a primary
limitation in system design. Forthcoming memory technology such
as Intel and Micron’s 3D XPoint memory and other technologies
may provide far larger memory capacity than ever before. Further-
more, these new memory technologies are inherently persistent
and save data across system crashes or power failures.

We conjecture that current operating systems are ill-equipped
for an environment where there is ample memory. For example,
operating systems do substantial work for every page allocated,
which adds unnecessary overhead when dealing with terabytes of
memory.

We suggest that now is the time for a complete rethinking of
memory management for both operating systems and language
runtimes considering excess memory capacity. We propose a new
guiding principle: Order(1) operation, so that memory operations
have low constant time independent of size. We describe a con-
crete proposal of this principle with the idea of file-only memory,
in which most dynamic memory allocation is managed with file-
system mechanisms rather than common virtual memory mecha-
nisms.

CCS Concepts
• Software and its engineering→Virtualmemory;Mainmem-
ory; File systems management; Secondary storage;

Keywords
persistent memory, single-level storage
ACM Reference format:
Michael M. Swift. 2017. Towards O(1) Memory. In Proceedings of HotOS ’17,
Whistler, BC, Canada, May 08-10, 2017, 8 pages.
https://doi.org/10.1145/3102980.3102982

1 Introduction
Forthcoming memory technologies may provide vast amounts of
byte-addressable memory at costs comparable to today’s systems.
For example, projections of phase-change memory (PCM) and other
technologies predict large, cheap memories [2, 19]. More recently,
3-dimensional fabrication techniques used in 3D-NAND Flash [20]
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotOS ’17, May 08-10, 2017, Whistler, BC, Canada
© 2017 Copyright held by the owner/author(s). Publication rights licensed to Associa-
tion for Computing Machinery.
ACM ISBN 978-1-4503-5068-6/17/05. . . $15.00
https://doi.org/10.1145/3102980.3102982

and Intel and Micron’s 3d XPoint memory [25] can create large
memories at lower cost beyond the terabytes possible with DRAM
today. These technologies are inherently persistent, and thus have
low power requirements: power is only needed for reading and
writing but not storing stored data, while DRAM requires periodic
refresh. The Massive Memory Machine [10] proposed decades ago
described many benefits of having so much memory.

While not guaranteed, these technologies may be able to provide
memory sizes an order of magnitude (or more) larger than DRAM
at similar prices and power. If this happens, current system designs
are inadequate. Operating systems, since their origin, devote huge
complexity and effort to efficiently allocating and reclaiming scarce
memory resources through the virtual memory system and mem-
ory allocators. Processors provide page-based fine-grained (4KB)
address translation to avoid internal and external fragmentation
of scarce memory. As an example of what is possible, with ample
memory it may be more efficient to allocate a large page (e.g., 2MB)
when only hundreds of kilobytes are needed to improve TLB per-
formance. No current system would choose this, though, because of
the wasted space. Persistence of memory provides another oppor-
tunity to further simplify systems in many deployments as there is
no need to detect which pages must be written back to disk.

Towards this end, we propose Order(1) memory as a new orga-
nizing principle for memory management: we strive to make all
memory management operations constant time, independent of
operand or memory size. This ensures that memory management
costs do not grow as increasingly larger memories are available. For
example, the time to allocate and map a large read-only file should
be independent of its size. In many cases this can be accomplished
by trading space, in the form of some wasted memory, for time
spent managing memory.

As a concrete step towards this goal, we describe file-only mem-
ory. Recognizing that file systems already manage large, under-
utilized, persistent data stores, we adopt file-system techniques
towards memory management. This enables most operations that
currently operate on individual pages to instead operate on large
extents or a whole file, and hence provide Order(1) performance.

In addition to this high-capacity persistent memory, future sys-
tems will likely have a small amount of high-bandwidth memory,
similar to what is used for GPUs today [17, 26]. This memory, while
many gigabytes, will likely be a small fraction of total memory,
and is used for computations that have high bandwidth needs as
compared to capacity needs. In this work, we focus only on high-
capacity memory.

While the issue of redesigning operating systems around new
memory technologies has been considered in the past [2, 4, 8],
there is now more clarity about the future of computer systems,
and hence it is possible to propose more concrete designs on the
future of memory management.

https://doi.org/10.1145/3102980.3102982
https://doi.org/10.1145/3102980.3102982

HotOS ’17, May 08-10, 2017, Whistler, BC, Canada Michael M. Swift

2 Motivation
Three factors motivate re-examining memory management: (i)
emerging technologies allowing cheap, high-capacity memories, (ii)
the merging of memory and storage technology, and (iii) current
OS memory management practices.

Memory technology: The ability to produce higher-density
DRAM has slowed, and analysts predict that other technologies are
needed to keep growing capacity [28]. Most candidate technologies,
such as Phase-change memory (PCM) and Spin-Transfer Torque
MRAM (STT-MRAM), are persistent because they use no energy
to store data. This also allows higher three-dimensional structures
because there is less need to remove heat. As an example, Intel
and Micron’s much-delayed 3D XPoint DIMM product promises
6TB of storage in a 2-socket server, up from approximately 768GB
today [23]. To enable paging for large physical memories, Intel
recently introduced 5-level address translation, which can address
4PB of physical memory but requires up to 35 memory references
in virtualized systems [14].

We note that ample memory does not mean that all uses of
memory are free. Accessing memory still imposes a cost, and caches,
because of their proximity to the processor core, will remain a
precious resource. However, capacity in memory itself for data that
is not accessed may become cheap.

Implication: There is likely to just be vastly morememory tomanage
in the near future, even for lower-end systems. Many aspects of
memory management are currently linear, such as maintaining
per-page metadata. Any operations that are linear in the amount
of memory available (physical) or used (virtual) may get relatively
slower.

Memory as storage: Large amounts of cheap memory does
not mean it can be used freely, as people typically only buy the
memory they need. However, non-volatile memory enables the
merging of persistent and volatile memory. Thus, there is likely
to be excess capacity most of the time: space reserved for future
expansion of the file system can be used for volatile memory objects
in the meantime [16].

Consider the situation of storage devices such as hard drives and
SSDs. An old study from Microsoft [1] showed that the mean and
median file system utilization was below 50%, which is explained by
disks gradually increasing in utilization until they are replaced by a
larger device. When local storage moves into non-volatile memory,
there may be similar utilization patterns, implying vast amounts
of memory provisioned for future persistent data but currently
unused.

Implication: Storage-like utilization patterns for persistent memory
indicate there will likely be excess memory capacity that can be
used to improve performance.

Cost ofmemorymanagement: Currentmemorymanagement
techniques are generally optimized to be space efficient at the ex-
pense of performance: 4KB pages have high overhead, but low frag-
mentation. Heap allocators and garbage collectors tend to spend
CPU cycles to conserve memory. However, recent efforts such as
TCMalloc [11] and log-structured memory [27] that waste space

for improved performance show some of the potential available.
The kernel’s management of physical memory is also designed

around a scarce resource backed by a separate persistent store. As
a result, the kernel maintains extensive metadata about pages and
devotes substantial effort to tracking the use and status of every
physical page. For example, the Linux PAGE structure has 25 separate
flags to track memory status and 38 fields (many overlapping in
unions). This design also leads to expensive per-page operations to
ensure data remains in place (i.e., pinning), which may be necessary
for DMA transfers. If data is kept in persistent memory, there is
no need to track if it is clean or dirty, as it need not be returned to
backing storage. Similarly, if memory is ample, there is no need to
track what has been recently referenced to reclaim idle pages.

Implication: Much of the information tracked by the memory man-
ager is either unnecessary or can be tracked at much coarser gran-
ularity.

3 Order(1) Memory
Drawing on these observations, we propose Order(1) operations as
the central design principle for memory management. Our design
strives to operate in constant time for any memory-management
operation, independent of the operand size. This ensures that with
very large memories, common memory operations such as allo-
cation and mapping remain fast. Furthermore, current processors
support various page sizes, and O(1) OS management of memory
may enable better utilizing this support [18, 24], But this is not
enough: Intel and ARM processors support only a few page sizes,
and large pages have alignment restrictions so the system must
resort to small pages in many cases. For example, on x86-64, large
pages are powers of 512 times bigger than 4KB (2MB, or 1GB), so
allocations may still use many pages to satisfy a request. When
swapping pages in or out, 2MB pages are expensive to swap and
Linux instead fragments them into 4KB pages.

Today’s systems memory management operations require per-
page activities. When allocating memory (e.g. mmap(MAP_ANONYMOUS)
in Linux), the operating system separately allocates every page. Sim-
ilarly, when mapping a file, the OS separately creates a page-table
entry for every page of the mapped region. This cost is amelio-
rated with demand paging, which only performs these operations
on reference. However, for sparse access to large data sets, the
fundamental linear operation cost remains.

For example, Figure 6b shows the cost to memory-map a file on
tmpfs. If the page table is pre-populated (MAP_POPULATE), the
cost linearly increases with file size. In contrast, Figure 1b shows
the cost of accessing one byte from each page of a mapped file.
Here, the cost of demand faulting in the file (MAP_PRIVATE) for
large files is more than 50x that of pre-populating page tables. As
file sizes increase, the overhead of generating mappings increases
linearly.

With O(1) operations, allocating memory could be done in con-
stant time, at the cost of wasting memory that is unused. Similarly,
mapping a file could also happen in constant time rather than in
small pieces as the file is accessed. While mapping files currently
is expensive and hence rare, if made fast it could be much more
efficient than standard file system APIs. Given that data is already

Towards O(1) Memory HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

0

50

100

150

200

250

300

350

4 16 64 256 1024

Ti
m
e	
in
	m

icr
os
ec
on

ds

File	Size	- KB

Demand	alloc
Populate	alloc

0

100

200

300

400

500

600

4 16 64 256 1024

Ti
m
e	
in
	m

icr
os
ec
on

ds

File	Size	- KB

Demand	read
Populate	read

(a) Time of a mmap() operation on afile on tmpfspopulating
the mapping and using demand paging.

0

50

100

150

200

250

300

350

4 16 64 256 1024

Ti
m
e	
in
	m

icr
os
ec
on

ds

File	Size	- KB

Demand	alloc
Populate	alloc

0

100

200

300

400

500

600

4 16 64 256 1024

Ti
m
e	
in
	m

icr
os
ec
on

ds

File	Size	- KB

Demand	read
Populate	read

(b) Total time to access one byte of each page of a file on tmpfs us-
ing a pre-populated mapping compared to on-demand mapping.

Figure 1: Cost of memory-mapping operations.

in memory, it is natural to simply expose that data to programs
directly rather than forcing the kernel to interpose on every access.

To demonstrate the power of O(1) memory management tech-
niques, we demonstrate a design leveraging this principle. File-only
memory performs most memory operations on the granularity of
a whole file, rather than on individual pages. We follow with dis-
cussions of how processor hardware can further reduce the cost of
memory operations.
3.1 File-only Memory

Our work draws on the observation that operating systems already
know how to manage large quantities of persistent data efficiently
through the file system. Compared to the memory system, files
maintain metadata at coarse granularity (e.g., permission is granted
for the whole file and not individual blocks). Modern file systems,
when possible, translate addresses in long extents (e.g., Ext4, NTFS)
rather than individual blocks. Furthermore, unused blocks are rep-
resented by a single bit in a bitmap, as compared to the complex
per-page metadata memory maintained by memory management
systems. Finally, most storage devices operate in a regime where
they are far from full, so file systems are optimized for situations
where space is available. As a result, they contain many of the
mechanisms needed to efficiently manage large quantities of per-
sistent memory. Unlike past efforts to back all memory in files (e.g.,
Opal [4]), we propose to remove the memory layer above files.

Within the operating system, we propose that all user-mode
memory be allocated as files, backed by a memory file system such
as Linux’s tmpfs. When launching a process, code segments, heap
segments, and stack segments can all be represented as separate
files, so there is no need to allocate individual pages. Creating a
thread stack becomes allocating a file with a single extent contain-
ing a region of memory and mapping it into the address space.
There is no need to update metadata about the individual pages of
the stack. When a process allocates memory, it maps a file into its
address space. For persistent data, such as program code or data,
this may be a named file in the file system. For volatile data, this
may be a temporary file. Memory permissions can be managed at
the granularity of the whole file, and the file system is responsible

4) W SB 10000: This benchmark calls worker w sb
10000 times, after the malloc or mmap call, to
measure its average execution time.

5) RAW WP 1: This benchmark calls worker w wp
once and then measures the time for worker r wp.

6) RAW WP 10000: The benchmark calls
worker w wp once and then calls worker r wp
10000 times to measure its average execution time.

7) W WP 1: This benchmark measures the perfor-
mance of calling worker w wp once after the malloc
or mmap call.

8) W WP 10000: This benchmark calls
worker w wp 10000 times, after the malloc or
mmap call, to measure its average execution time.

Two distinct kinds of page faults can happen while
accessing memory pages. A page access could lead to
a major page fault, which involves disk IO to bring
in data from disk into main memory and update the
corresponding page table entry. Alternatively, an access
can generate a minor page fault which does not involve
any disk IO, but updates the page table entry to map
the accessed virtual page to a free physical page or a
special page (e.g. zero page). For the results presented
in the following sections, any reference to faults implies
minor page faults, and we do not concern ourselves
with major page faults.

Note that we measure the performance of reads
after writing to the allocated pages first (III-B.1,III-
B.2,III-B.5,III-B.6). This was necessary because read-
ing without writing would lead to a conclusion that
malloc based allocation performs faster on reads. While
reading newly allocated pages without writing, the page
faults generated in case of malloc are quite inexpensive
since the OS does not have to allocate new physical
pages and simply maps all virtual page to a zeroed
out page. As a result, the corresponding reads to this
location are not meaningful. In case of file backed
memory pages, the values read lead to costly page faults
which traverse inode data structures to map file blocks
to virtual pages.

Apart from these microbenchmarks, we also run
memcached which is discussed in detail in Section IV.

IV. EVALUATION

Here we present an analysis of our results obtained
from running the microbenchmarks.

1) RAW SB 1: Fig 2 shows the results for this exper-
iment while accessing different number of pages (note
that the vertical axis is in logarithmic scale). Malloc

0.001

0.01

0.1

1

10

1 2 16 64 256 1k 4k 16k 12k

Ti
m
e-
(m

s)

#-of-Pages

malloc pmfs

Fig. 2. RAW SB 1: Time to access pages

0

20

40

60

80

100

120

140

160

1 2 16 64

#(
of
(fa
ul
ts

#(of(Pages

malloc pmfs

Fig. 3. W SB 1: Number of page faults while accessing pages

was found to be 6% more expensive than PMFS for
12K pages. An analysis based on perf data shows that
the last level cache misses for malloc are more than
for PMFS. Given that TLB and cache misses are same,
we suspected that this difference could be attributed to
conflict misses in LLC. However, these conflict misses
should have been visible for 10000 iterations also. We
have also verified that there is no system interference
during this time for malloc. We were not able to explain
this anomaly.

2) RAW SB 10000: The number of page faults and
the average time taken to run these benchmarks are
similar for both malloc and PMFS.

3) W SB 1: As shown in Fig 4, malloc performs
worse than PMFS for larger number of pages accessed.
For instance, at 12K pages malloc takes 22% longer
than PMFS to complete the benchmark. This is because
of the way VM handles LRU policy for anonymous
memory. Every time a page is allocated, it is either
placed in an active list or inactive list. Inserting into
these list requires acquiring multiple locks. To amortize
the cost of this process, the VM layer batches the

Figure 2: Time to allocate memory pages using anonymous
memory (malloc) and memory mapping a file in PMFS.

for allocating physical memory for the file. Rather than reference
counting pages, we propose to only count references to files.

This approach (allocating memory as files) is already used in
select cases: one current use of tmpfs is to provide file-system
controls over memory allocation, such as quotas or recovery of
large in-memory data sets after a process crash.

To demonstrate that using the file system instead of memory
system to manage memory, we compared the cost of allocating
data using anonymous memory (MAP_ANON) against allocating data
through a file in the PMFS file system for persistent memory [7].
Figure 7 shows that across a range of sizes, using the file system to
allocate memory has little extra cost.

Just moving allocation to the file system is not enough achieve
O(1) operations. However, file systems make some of that easier.

Memory allocation: Further reductions in the cost of mem-
ory operations are possible moving more work to the file system.
For example, all management of virtual memory can be done at
the granularity of files. File systems can efficiently allocate large
contiguous extents, which reduces the per-page cost of allocation.
Furthermore, metadata that is currently maintained about individ-
ual pages (clean, dirty, referenced, locked) will instead be managed

HotOS ’17, May 08-10, 2017, Whistler, BC, Canada Michael M. Swift

Mapped	File

Process	1	Page	Table Process	2	Page	Table

Shared	Mapping

3

Figure 3: Efficient shared mappings.

for the entire file. This simplifies data structures and reduces the
CPU overhead of memory management.

We propose that memory is only reclaimed in the unit of a file,
such as when a process unmaps a file (e.g., munmap()), or when the
process terminates. The operating system does not scan for idle
pages to reclaim, scan dirty page to swap out, and the heap need not
identify unused pages to release with madvise(). Another potential
benefit of managing memory with files is reclamation under (rare)
memory pressure: if applications use a file API to access non-critical
data (i.e., discardable data such as caches), the OS can reclaim the
memory by deleting non-critical files. This provides many of the
benefits of transcendent memory [21].

O(1) operation is only possible if most memory can be allo-
cated contiguously. We observe that heap allocators address the
same problem: how to allocate contiguous memory with very little
overhead. We propose using techniques from heaps, such as slab
allocators [3], to manage physical memory.

Memory mapping: Working with entire files can speed mem-
ory mapping, but creating a page-table entry for each page is in-
herently a linear cost. However, the constant overhead of mapping
can be reduced with whole files. In addition, as files are stored in
memory, it is possible to pre-create page tables, so that mapping be-
comes changing a single pointer in a page table to refer to existing
page tables [13]. This is complicated in that it requires mapping files
at the natural granularities of page table structures (e.g., 2MB, 1GB).
Another mechanism for efficiency is to share mappings across pro-
cesses, which is easy if they are aligned on page-table boundaries
(again, 2MB, 1GB, etc.). These can be accomplished by creating a
pointer from one process’s page table to an internal page-table node
of another process sharing the file. Figure 3 shows how aligned
mappings can be efficiently shared. To make mapping even more
efficient, pre-created page tables can be stored persistently, so that
even when mapping a file the first time, an existing page table can
be re-used for O(1) operations.

Persistence management: As memory is large and persistent,
we assume there will generally be no swapping to disk either for
capacity or for writing back dirty file data. Thus, there is no need
to track the clean/dirty/referenced status of most memory, which
avoids the need for page reclamation algorithms (e.g., clock, 2-
queue). Those applications that need swapping could implement it
themselves using techniques service such as userfaultd [5].

V
ir

tu
al

A

dd
re

ss

Sp
ac

e

Ph
ys

ic
al

A

d
d

re
ss

Sp

ac
e

BASE 1 LIMIT 1

OFFSET 1

BASE 2 LIMIT 2

OFFSET 2

Range
Translation 1

Range
Translation 2

Figure 4: Range translations.

The use of files for memory also makes it simple to separate
out memory management from persistence [12], in that all data
lives in files that can be marked at any time as volatile or persistent
to indicate whether they should survive process terminations and
system restarts.

We note that storing volatile data in persistent memory intro-
duces its own complexities and overhead. In particular, for security
purposes memory must be zeroed out before being reused. For
volatile data, the OS explicitly erase memory before reusing it
following a failure. This is currently a linear-time operation and
suggests the need for new techniques to efficiently erase memory
in constant time.

Memory locking: Currently letting a device access memory
often requires locking the page in memory; even devices that sup-
port page faults through an IOMMU incur high penalties [15]. With
file-only memory, data is implicitly pinned in memory, as pages are
never reclaimed or relocated until the file is explicitly unmapped.

We note that there are some optimizations that become more
difficult when moving memory management to the file system.
Specifically, Linux merges adjacent memory regions when possi-
ble (i.e., same flags). This reduces the size of internal metadata,
and provides the benefits of growing regions (decreased overhead)
without the costs of guaranteeing they can. In addition, some oper-
ations that depend on page-level mappings, such as guard pages or
copy-on-write, cannot easily be supported.
3.2 Hardware Optimizations

Enabling O(1) memory operations in software can be helped by
improved hardware support for memory. With current page-base
virtual memory, processors fundamentally require per-page opera-
tions to create page tables or handle TLB misses, and hence O(1)
memory is not completely achievable. For example, in our experi-
ments we observed that it was faster to make a read() system call
to read 16KB than to access data already mapped into a process if it
would cause TLB misses.

But, changes to how a processor performs address translation
can dramatically reduce the cost of accessing large memory, and
can benefit from OS support for O(1) memory. In particular, pro-
posed range translations [9] allow mapping an arbitrary length of
contiguous physical memory to contiguous virtual memory using
a fixed size structure comprising a base, limit, and offset, as shown
in Figure 4. With this structure, any contiguous physical range of
memory can be added to the address space by populating a single
entry in a range table (analogous to a page table, but a different

Towards O(1) Memory HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

RTEC RTED RTEF RTEG

RTEA RTEB RTEE RTEH RTEI

CR-RT

Range Translation or
Range Table Entry

BASE LIMIT

1247 1247

OFFSET + Protection

064

Figure 5: Range table and entries

data structure). The processor adds this entry to a range TLB on a
reference to any address in the range. Figure 9 shows how the table
efficiently represents translations.

We observe that range translations complement our proposed
file-only memory: memory managed as extents in a file can be
efficiently mapped by assigning one virtual memory range to each
extent. Similarly, unmapping a file can be a single operation to
update the range table and shoot down the entry in the TLB. Thus,
we believe that in concert with advances on the operating system
for O(1) memory operations, there must be concurrent advances
in processor memory management to support efficient software
designs.

4 Order(1) Memory
Drawing on these observations, we propose order(1) operations as
the central design principle for memory management. This design
strives to achieve constant-time for any memory-management op-
eration, independent of the operand size. This ensures that with
very large memories, common memory operations such as alloca-
tion and mapping, remain fast. Furthermore, current processors
support various page sizes, and O(1) OS management of memory
may enable better utilizing this support [18, 24], But this is not
enough: Intel and ARM processor support only a few page sizes,
and large pages have alignment restrictions so the system must
resort to small pages in many cases.

Today’s systems memory management operations require per-
page activities. When allocating memory (e.g. mmap(MAP_ANONYMOUS)
in Linux), the operating system separately allocates every page. Sim-
ilarly, when mapping a file, the OS separately creates a page-table
entry for every page of the mapped region. This cost is amelio-
rated with demand paging, which only performs these operations
on reference. However, for sparse access to large data sets, the
fundamental linear operation cost remains.

For example, Figure 6a shows the cost to memory-map a file on
tmpfs. If the page table is pre-populated (MAP_POPULATE), the
cost linearly increases with file size. In contrast, Figure 6b shows
the cost of accessing one byte from each page of a mapped file.
Here, the cost of demand faulting in the file (MAP_PRIVATE) for
large files is more than 50x that of pre-populating page tables. As
file sizes increase, the overhead of generating mappings increases
linearly.

With O(1) operations, allocating memory could be done in con-
stant time, at the cost of wasting memory that is unused. Similarly,
mapping a file could also happen in constant time rather than in
small pieces as the file is accessed. While mapping files currently
is expensive and hence rare, if made fast it could be much more
efficient than standard file system APIs. Given that data is already
in memory, it is natural to simply expose that data to programs
directly rather than forcing the kernel to interpose on every access.

To demonstrate the power of O(1) memory management tech-
niques, we demonstrate two concrete designs leveraging this prin-
ciple. First, file-only memory performs most memory operations
on the granularity of a whole file, rather than on individual pages.
Second, physically based mappings exploit physical addresses to
allow efficient mapping operations. We follow with discussions of
how processor hardware can further reduce the cost of memory
operations.
4.1 File-only Memory

Our work draws on the observation that operating systems already
know how to manage large quantities of persistent data efficiently
through the file system. Compared to the memory system, files
maintain metadata at coarse granularity (e.g., permission is granted
for the whole file and not individual blocks). Modern file systems,
when possible, translate addresses in long extents (e.g., Ext4, NTFS)
rather than individual blocks. Furthermore, unused blocks are rep-
resented by a single bit in a bitmap, as compared to the complex
per-page metadata memory maintained by memory management
systems. Finally, most storage devices operate in a regime where
they are far from full, so file systems are optimized for situations
where space is available. As a result, they contain many of the mech-
anisms needed to efficiently manage large quantities of persistent
memory.

Within the operating system, we propose that all user-mode
memory be allocated as files, backed by a memory file system such
as Linux’s tmpfs. When launching a process, code segments, heap
segments, and stack segments can all be represented as separate
files, so that noneed to allocate each individual page. Creating a
thread stack becomes allocating a file with a single extent contain-
ing a region of memory and mapping it into the address space.
There is no need to update metadata about the individual pages of
the stack.

When a process allocates memory, it maps a file into its address
space. For persistent data, such as program code or data, this may be
a named file in the file system. For volatile data, this may be a tem-
porary file. Memory permissions can be managed at the granularity
of the whole file, and the file system is responsible for allocating
physical memory for the file. Rather than reference counting pages,
we propose to do reference counting for reclamation of whole files.

This approach (allocating memory as files) is already used for
in select cases: one current use of tmpfs is to provide file-system
controls over memory allocation, such as quotas or recovery of
large in-memory data sets after a process crash.

As a preliminary experiment, we compared the cost of allocating
data using anonymous memory (MAP_ANON) against allocating
data through a file in the PMFS file system for persistentmemory [7].
Figure 7 shows that across a range of sizes, using the file system to

HotOS ’17, May 08-10, 2017, Whistler, BC, Canada Michael M. Swift

4

Fig. 3. Amount of time taken in mmap() call with map_populate normalized
to mmap() with map_private in TMPFS

systems. Time taken for executing mmap() with map_private
does not change with file size because there is no extra work
that needs to be done for bigger file sizes as compared to
smaller files. Typically, it takes almost 8 micro-seconds in
TMPFS and almost 15 micro-seconds in DAX to map a file
with map_private. With map_populate, the number of page
table entries that needs to be populated increase with file size.
The bigger the file, the more the page table entries. Hence the
time taken in executing mmap() with map_populate increases
linearly with the file size. So, in the systems with non-volatile
memories, where the file size will be huge (in GBs), the
overhead of populating page table will be considerably large.

B. Page Fault

Fig. 4. Amount of time taken in reading the mapped file with map_private
and map_populate in DAX

From Figure 4 and 5 , we can see that the time taken in
reading one byte per page of the file does not depend upon

Fig. 5. Amount of time taken in reading the mapped file with map_private
and map_populate in TMPFS

file size when the file is mapped with map_populate. Since
the page table entries are already present in this case, there
are no page faults. Therefore, accessing one byte per page
consumes almost negligible time. It can be seen from the plot
that the time to read the file of size up to 128 KB is zero with
map_populate. On the other hand, when the file is mapped
with map_private, time to access all pages in the file increases
with the file size. This is due to the increasing number of page
faults. Also, handling page faults during program execution
takes more time as compared to the time it takes to populate
page tables during mmap() call. The extra overhead during
page faults handling is due to the switching of control between
process and kernel on each page fault.

VI. CONCLUSION AND FUTURE WORK

Handling page faults takes significant amount of time. Page
faults can be avoided by creating the page table entries during
memory mapping the file in process’s address space. However,
the overhead of populating page tables is also significantly
large. As the systems will start to use persistent memory in
place of DRAM, it will become even more important to look
for better data structures to handle virtual to physical address
translations. Reducing the time taken in populating page tables
have potential to improve performance. The concept of Re-
dundant Memory Mapping is reported to efficiently map large
ranges of contiguous virtual memory to contiguous physical
memory. Next step for the project would be to incorporate
Redundant Memory mapping support in kernel and measure
the performance improvements.

VII. ACKNOWLEDGMENT

We would like to thank Professors Mark Hill and Michael
Swift for their guidance through the course of this project. I
would like to thank Jayneel Gandhi and Mihir Patil for helping
me set up the infrastructure needed for this project. I would
also like to thank Sanketh Nalli for his valuable advice.

(a) Time to of a mmap() operation a file on tmpfs populating the
mapping (MAP_POPULATE) relative to the time to use demand
paging (MAP_PRIVATE).

4

Fig. 3. Amount of time taken in mmap() call with map_populate normalized
to mmap() with map_private in TMPFS

systems. Time taken for executing mmap() with map_private
does not change with file size because there is no extra work
that needs to be done for bigger file sizes as compared to
smaller files. Typically, it takes almost 8 micro-seconds in
TMPFS and almost 15 micro-seconds in DAX to map a file
with map_private. With map_populate, the number of page
table entries that needs to be populated increase with file size.
The bigger the file, the more the page table entries. Hence the
time taken in executing mmap() with map_populate increases
linearly with the file size. So, in the systems with non-volatile
memories, where the file size will be huge (in GBs), the
overhead of populating page table will be considerably large.

B. Page Fault

Fig. 4. Amount of time taken in reading the mapped file with map_private
and map_populate in DAX

From Figure 4 and 5 , we can see that the time taken in
reading one byte per page of the file does not depend upon

Fig. 5. Amount of time taken in reading the mapped file with map_private
and map_populate in TMPFS

file size when the file is mapped with map_populate. Since
the page table entries are already present in this case, there
are no page faults. Therefore, accessing one byte per page
consumes almost negligible time. It can be seen from the plot
that the time to read the file of size up to 128 KB is zero with
map_populate. On the other hand, when the file is mapped
with map_private, time to access all pages in the file increases
with the file size. This is due to the increasing number of page
faults. Also, handling page faults during program execution
takes more time as compared to the time it takes to populate
page tables during mmap() call. The extra overhead during
page faults handling is due to the switching of control between
process and kernel on each page fault.

VI. CONCLUSION AND FUTURE WORK

Handling page faults takes significant amount of time. Page
faults can be avoided by creating the page table entries during
memory mapping the file in process’s address space. However,
the overhead of populating page tables is also significantly
large. As the systems will start to use persistent memory in
place of DRAM, it will become even more important to look
for better data structures to handle virtual to physical address
translations. Reducing the time taken in populating page tables
have potential to improve performance. The concept of Re-
dundant Memory Mapping is reported to efficiently map large
ranges of contiguous virtual memory to contiguous physical
memory. Next step for the project would be to incorporate
Redundant Memory mapping support in kernel and measure
the performance improvements.

VII. ACKNOWLEDGMENT

We would like to thank Professors Mark Hill and Michael
Swift for their guidance through the course of this project. I
would like to thank Jayneel Gandhi and Mihir Patil for helping
me set up the infrastructure needed for this project. I would
also like to thank Sanketh Nalli for his valuable advice.

(b) Total time to access one byte of each page of a file on tmpfs
using a pre-populated mapping (MAP_POPULATE) compared to
on-demand mapping (MAP_PRIVATE).

Figure 6: Cost of memory-mapping operations.

4) W SB 10000: This benchmark calls worker w sb
10000 times, after the malloc or mmap call, to
measure its average execution time.

5) RAW WP 1: This benchmark calls worker w wp
once and then measures the time for worker r wp.

6) RAW WP 10000: The benchmark calls
worker w wp once and then calls worker r wp
10000 times to measure its average execution time.

7) W WP 1: This benchmark measures the perfor-
mance of calling worker w wp once after the malloc
or mmap call.

8) W WP 10000: This benchmark calls
worker w wp 10000 times, after the malloc or
mmap call, to measure its average execution time.

Two distinct kinds of page faults can happen while
accessing memory pages. A page access could lead to
a major page fault, which involves disk IO to bring
in data from disk into main memory and update the
corresponding page table entry. Alternatively, an access
can generate a minor page fault which does not involve
any disk IO, but updates the page table entry to map
the accessed virtual page to a free physical page or a
special page (e.g. zero page). For the results presented
in the following sections, any reference to faults implies
minor page faults, and we do not concern ourselves
with major page faults.

Note that we measure the performance of reads
after writing to the allocated pages first (III-B.1,III-
B.2,III-B.5,III-B.6). This was necessary because read-
ing without writing would lead to a conclusion that
malloc based allocation performs faster on reads. While
reading newly allocated pages without writing, the page
faults generated in case of malloc are quite inexpensive
since the OS does not have to allocate new physical
pages and simply maps all virtual page to a zeroed
out page. As a result, the corresponding reads to this
location are not meaningful. In case of file backed
memory pages, the values read lead to costly page faults
which traverse inode data structures to map file blocks
to virtual pages.

Apart from these microbenchmarks, we also run
memcached which is discussed in detail in Section IV.

IV. EVALUATION

Here we present an analysis of our results obtained
from running the microbenchmarks.

1) RAW SB 1: Fig 2 shows the results for this exper-
iment while accessing different number of pages (note
that the vertical axis is in logarithmic scale). Malloc

0.001

0.01

0.1

1

10

1 2 16 64 256 1k 4k 16k 12k

Ti
m
e-
(m

s)

#-of-Pages

malloc pmfs

Fig. 2. RAW SB 1: Time to access pages

0

20

40

60

80

100

120

140

160

1 2 16 64

#(
of
(fa
ul
ts

#(of(Pages

malloc pmfs

Fig. 3. W SB 1: Number of page faults while accessing pages

was found to be 6% more expensive than PMFS for
12K pages. An analysis based on perf data shows that
the last level cache misses for malloc are more than
for PMFS. Given that TLB and cache misses are same,
we suspected that this difference could be attributed to
conflict misses in LLC. However, these conflict misses
should have been visible for 10000 iterations also. We
have also verified that there is no system interference
during this time for malloc. We were not able to explain
this anomaly.

2) RAW SB 10000: The number of page faults and
the average time taken to run these benchmarks are
similar for both malloc and PMFS.

3) W SB 1: As shown in Fig 4, malloc performs
worse than PMFS for larger number of pages accessed.
For instance, at 12K pages malloc takes 22% longer
than PMFS to complete the benchmark. This is because
of the way VM handles LRU policy for anonymous
memory. Every time a page is allocated, it is either
placed in an active list or inactive list. Inserting into
these list requires acquiring multiple locks. To amortize
the cost of this process, the VM layer batches the

Figure 7: Time to allocate memory pages using anonymous
memory (malloc) and memory mapping a file in PMFS.

allocate memory has little extra cost.

Just moving allocation to the file system is not enough achieve
O(1) operations. However, file systems make some of that easier.

Memory allocation: Further reductions in the cost of memory
operations are possible moving more work to the file system. For
example, all management of virtual memory can be done at the gran-
ularity of files. File systems can efficiently allocate large contiguous
extents, which reduces the per-page cost of allocation. Furthermore,
metadata that is currently maintained about individual pages (clean,
dirty, referenced, locked) will instead be managed for the entire file.
This simplifies data structures and reduces the CPU overhead of
memory management. It is necessary to better manage memory for
contiguity. Linux manages pages using a buddy allocator, but does
not aggressively merge pages, so there may be contiguity present
that is not available for use. Alternate designs, such as using slab
allocator for page allocations, may be better.

Towards O(1) Memory HotOS ’17, May 08-10, 2017, Whistler, BC, Canada

In this design, memory is only reclaimed in the unit of a file:
when a process unmaps a file (e.g., munmap()), or when the process
terminates. The operating system does not scan for idle pages to
reclaim, scan dirty page to swap out, and the heap need not identify
unused pages to release with madvise(). Another potential benefit
of managing memory with files is reclamation under (rare) memory
pressure. If applications cache objects in files and only open the file
when using it, access patterns can be tracked at coarse granularity
(an entire file), and data can be reclaimed the same granularity. This
provides many of the benefits of transcendent memory [21].

Memory mapping: Working with entire files can speed mem-
ory mapping, but it is inherently a linear cost to create a page-table
entry for each page given hardware. However, the constant over-
head of mapping can be reduced with whole files. In addition, as
files are stored in memory, it is possible to pre-create page tables,
so that mapping becomes changing a single pointer in a page table
to refer to existing page tables [13]. However, this is complicated
in that it requires mapping files at the natural granularities of page
table structures (e.g., 2MB, 1GB). Another possibility is to reserve
a ranges of page-table aligned virtual addresses (again, 2MB, 1GB,
etc.) for temproary shared mappings. After mapping a file once, this
alignment allows the mapping’s page table structures to be directly
used by other processes, and when the file is close the range can be
re-used for another file.

Persistence management: As memory is persistent, we as-
sume there will be no swapping to disk. Thus, there is no need
to track the clean/dirty/referenced status of most memory, which
avoids the need for page reclamation algorithms (e.g., clock, 2-
queue). The use of files for memory also makes it simple to separate
out memory management from persistence [12], in that all data
lives in files that can be marked at any time as volatile or persistent,
indicating whether they should survive process terminations and
system restarts.

Memory locking: Currently letting a device access memory
often requires locking the page in memory; even devices that sup-
port page faults through an IOMMU incur high penalties [15]. With
file-only memory, data is implicitly pinned in memory, as pages are
never reclaimed or relocated until the file is explicitly unmapped.
4.2 Physically Based Mappings

We observe that when files are mapped into a process, they generate
unique page table entries for every process. While there has been
some effort to share page tables entries across processes [6, 22], it
is not widespread, partially because it cannot ensure that files are
mapped at the same address in every process. This hinders sharing
page tables in general.

We observe that processors already manage a single address
space shared by all processes: the physical address space. If pro-
grams referred to memory using physical addresses (which we do
not advocate), those addresses would be guaranteed to be common
to all processes.

We build on this observation with physically based mappings,
which are virtual addresses generated algorithmically, such as by
adding an offset to the physical address of memory. If the algorithm

PBM

PBMPBM

Process 1

Process 2

Phys Mem

Figure 8: Physically Based Mappings.

RTEC RTED RTEF RTEG

RTEA RTEB RTEE RTEH RTEI

CR-RT

Range Translation or
Range Table Entry

BASE LIMIT

1247 1247

OFFSET + Protection

064

Figure 9: Range table and entries

is the same for all processes, then the virtual address for this mem-
ory can be guaranteed to be (a) the same in all processes, and (b)
have no collisions as physical memory has no colliding addresses.

Having common addresses simplifies sharing page tables because
the virtual addresses are the same. Two processes with the same
accesses to memory, such as a mapped file, can point to the same
sub-tree of a page table as they are guaranteed to map it at the same
location. It may be necessary to maintain two sets of page tables to
allow different permissions (read vs read/write).

Using physically based mapping requires allocating memory
objects contiguously in physical memory. However, we already
observe that most programs do not allocate their entire data set in
one large contiguous chunk, but instead call an allocator repeatedly
to allocate small regions, and internally the allocator repeatedly
call the OS to allocate ranges of memory. These allocations are
candidates for physically based mappings.

Physically based mappings provide some benefits even on ex-
isting hardware. However, their support for simple mapping can
provide much better benefits with additional hardware support.
4.3 Hardware Optimizations

Enabling O(1) memory operations in software can be helped by
improved hardware support for memory. With current page-base
virtual memory, processors fundamentally require per-page opera-
tions to create page tables or handle TLB misses, and hence O(1)
memory is not completely achievable. For example, in our experi-
ments we observed that it was faster to make a read() system call
to read 16KB than to access data already mapped into a process if it
would cause TLB misses.

But, changes to how a processor performs address translation
can dramatically reduce the cost of accessing large memory, and

HotOS ’17, May 08-10, 2017, Whistler, BC, Canada Michael M. Swift

can benefit from OS support for O(1) memory. In particular, pro-
posed range translations [9] allow mapping an arbitrary length of
contiguous physical memory to contiguous virtual memory using
a fixed size structure comprising a base, limit, and offset. With this
structure, any contiguous physical range of memory can be added
to the address space by populating a single entry in a range table
(analogous to a page table, but a different data structure). The pro-
cessor adds this entry to a range TLB on a reference to any address
in the range. Figure 9 shows how the table efficiently represents
translations.

We observe that range translations complement our proposed
file-only memory: memory managed as extents in a file can be
efficiently mapped by assigning one virtual memory range to each
extent. Similarly, unmapping a file can be a single operation to
update the range table and shoot down the entry in the TLB. Thus,
we believe that in concert with advances on the operating system
for O(1) memory operations, there must be concurrent advances
in processor memory management to support efficient software
designs.

5 Conclusions
Forthcoming memory technologies allow, for the first time, systems
with more than enough memory. Having grown up in a time of
scarcity, current operating systems are not prepared to deal with
this new bounty. We conjecture that how systems manage memory
should be reinvestigated and rethought to achieve O(1) operations,
from processors, through the operating system, and up to language
runtimes and applications. There is a new opportunity to rethink
how memory is managed and used, for trading space for time, and
to shape how memory is considered.

References
[1] N. Agrawal, W. J. Bolosky, J. R. Douceur, and J. R. Lorch. A five-year study of

file-system metadata. ACM Transactions on Storage, 3(3), Oct. 2007.
[2] K. Bailey, L. Ceze, S. D. Gribble, and H. M. Levy. Operating system implications

of fast, cheap, non-volatile memory. In Proceedings of the 13th USENIX Conference
on Hot Topics in Operating Systems, 2011.

[3] J. Bonwick. The slab allocator: An object-caching kernel memory allocator. In
Proceedings of the USENIX Summer 1994 Technical Conference, June 1994.

[4] J. S. Chase, H. M. Levy, M. J. Feeley, and E. D. Lazowska. Sharing and protection
in a single-address-space operating system. ACM Trans. Comput. Syst., 12(4), Nov.
1994.

[5] J. Corbet. Page faults in user space: Madv_userfault, remap_anon_range(), and
userfaultfd(), Oct. 2014.

[6] X. Dong, S. Dwarkadas, and A. L. Cox. Shared address translation revisited. In
Proceedings of the 11th European Conference on Computer Systems, 2016.

[7] S. R. Dulloor, S. K. Kumar, A. S. Keshavamurthy, P. Lantz, D. Reddy, R. Sankaran,
and J. Jackson. System software for persistent memory. In Proceedings of EuroSys,
2014.

[8] P. Faraboschi, K. Keeton, T. Marsland, and D. Milojici. Beyond processor-centric
operating systems. In Proceedings of the Workshop on Hot Topics in Operating
Systems, 2015.

[9] J. Gandhi, V. Karakostas, F. Ayar, A. Cristal, M. D. Hill, K. S. McKinley, M. Ne-
mirovsky, M. M. Swift, and O. Unsal. Range translations for fast virtual memory.
IEEE Micro Special Issue: Micro’s Top Picks from Architecture Conferences, 3(3),
May/June 2016.

[10] H. Garcia-Molina, R. J. Lipton, and J. Valdes. A massive memory machine. In A. R.
Hurson, L. L. Miller, and S. H. Pakzad, editors, Parallel Architectures for Database
Systems, pages 408–416. 1989.

[11] S. Ghemawat and P. Menage. Tcmalloc: Thread-caching malloc. http://
goog-perftools.sourceforge.net/doc/tcmalloc.html.

[12] J. Guerra, L. Marmol, D. Campello, C. Crespo, R. Rangaswami, and J.Wei. Software
persisent memory. In Proceedings of the Usenix Annual Technical Conference, June
2012.

[13] J. Huang, A. Badam, M. K. Qureshi, and K. Schwan. Unified address translation
for memory-mapped ssds with flashmap. In Proceedings of the 42Nd Annual
International Symposium on Computer Architecture, pages 580–591, 2015.

[14] Intel Corp. 5-level paging and 5-level EPT. https://software.intel.com/sites/
default/files/managed/2b/80/5-level_paging_white_paper.pdf, Dec. 2016.

[15] Intel Corp. Intel virtualization technology for directed i/o, rev
2.4. http://www.intel.com/content/dam/www/public/us/en/documents/
product-specifications/vt-directed-io-spec.pdf, June 2016.

[16] S. Kannan, A. Gavrilovska, and K. Schwan. pvm: Persistent virtual memory for
efficient capacity scaling and object storage. In Proceedings of the 11th European
Conference on Computer Systems, 2016.

[17] J. Kim and Y. Kim. Hbm: Memory solution for bandwidth-hungry processors. In
Hot Chips Tutorials, 2016.

[18] Y. Kwon, H. Yu, S. Peter, C. J. Rossbach, and E. Witchel. Coordinated and efficient
huge pagemanagementwith ingens. In Proceedings of the 12th USENIX Symposium
on Operating Systems Design and Implementation, 2016.

[19] B. C. Lee, P. Zhou, J. Yang, Y. Zhang, B. Z hao, E. Ipek, O. Mutlu, and D. Burger.
Phase-change technology and the future of main memory. IEEE Micro, 30(1),
2010.

[20] H. T. Lue, S. H. Chen, Y. H. Shih, K. Y. Hsieh, and C. Y. Lu. Overview of 3d nand
flash and progress of vertical gate (vg) architecture. In Proeedings of the 11th
International Conference on Solid-State and Integrated Circuit Technology, Oct
2012.

[21] D. Magenheimer, C. Mason, D. Mccracken, and K. Hackel. Transcendent memory
and linux. In Ottawa Linux Symposium, 2009.

[22] D. McCracken. Shared page tables in the linux kernel. In Proceedings of the
Ottawa Linux Symposium, 2003.

[23] T. P. Morgan. Intel shows off 3d xpoint memory per-
formance. https://www.nextplatform.com/2015/10/28/
intel-shows-off-3d-xpoint-memory-performance/, Oct. 2015.

[24] J. Navarro, S. Iyer, P. Druschel, and A. Cox. Practical, transparent operating
system support for superpages. In Proceedings of the 5th USENIX Symposium on
Operating System Design and Implementation, 2002.

[25] I. Newsroom. Intel and Micron produce breakthrough memory technol-
ogy. http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/
intel-and-micron-produce-breakthrough-memory-technology, July 2015.

[26] J. T. Pawlowski. Memory as we approach a new horizon. In Hot Chips Tutorials,
2016.

[27] S. M. Rumble, A. Kejriwal, and J. Ousterhout. Log-structured memory for dram-
based storage. In Proceedings of the Usenix Conference on File and Storage Tech-
nologies, 2014.

[28] TechInsights. Technology roadmap of dram for three major man-
ufacturers. https://www.techinsights.com/uploadedFiles/Public_
Website/Content_-_Primary/Marketing/2013/DRAM_Roadmap/Report/
TechInsights-DRAM-ROADMAP-052013-LONG-version.pdf, 2013.

http://goog-perftools.sourceforge.net/doc/tcmalloc.html
http://goog-perftools.sourceforge.net/doc/tcmalloc.html
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
https://software.intel.com/sites/default/files/managed/2b/80/5-level_paging_white_paper.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-specifications/vt-directed-io-spec.pdf
https://www.nextplatform.com/2015/10/28/intel-shows-off-3d-xpoint-memory-performance/
https://www.nextplatform.com/2015/10/28/intel-shows-off-3d-xpoint-memory-performance/
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
http://newsroom.intel.com/community/intel_newsroom/blog/2015/07/28/intel-and-micron-produce-breakthrough-memory-technology
https://www.techinsights.com/uploadedFiles/Public_Website/Content_-_Primary/Marketing/2013/DRAM_Roadmap/Report/TechInsights-DRAM-ROADMAP-052013-LONG-version.pdf
https://www.techinsights.com/uploadedFiles/Public_Website/Content_-_Primary/Marketing/2013/DRAM_Roadmap/Report/TechInsights-DRAM-ROADMAP-052013-LONG-version.pdf
https://www.techinsights.com/uploadedFiles/Public_Website/Content_-_Primary/Marketing/2013/DRAM_Roadmap/Report/TechInsights-DRAM-ROADMAP-052013-LONG-version.pdf

	Abstract
	1 Introduction
	2 Motivation
	3 Order(1) Memory
	3.1 File-only Memory
	3.2 Hardware Optimizations

	4 Order(1) Memory
	4.1 File-only Memory
	4.2 Physically Based Mappings
	4.3 Hardware Optimizations

	5 Conclusions
	References

