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Abstract

The need for rapid policy development and Machine Learn-
ing (ML) to catch up with the increasing demands on Oper-
ating Systems made by evolving hardware and applications
has exposed the lack of a data-plane abstraction for efficient
data movement between OS subsystems. OQUEUES are a new
data-plane abstraction designed to aid in flexible data-driven
policy design. They express a novel observer paradigm, uti-
lizing weak observers for history introspection and strong
observers for exactly-once view semantics. We evaluate the
utility and scalability of OQUEUES and use them to imple-
ment several ML-based policies for a file-prefetcher.
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1 Introduction

Machine Learning (ML) driven policies have shown signifi-

cant benefits in fields such as cloud computing [3], databases [21],

networking [1, 22], and CDN management [5]. However, Op-
erating Systems (OSes) rely on myriad resource-management
policies which have yet to take advantage of ML, despite
showing significant promise [1, 2, 4, 6, 8, 9, 11]. We believe
that one primary reason data-driven ML policies have not
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been widely adopted for OSes is the friction between the
data requirements of ML policies and the current structure of
OSes. This makes providing data to such policies a challenge.

Consider a file system prefetcher that predicts when and
where an access to a file location will occur. Predicting ac-
cesses can depend on many sources of information, such
as the state of the scheduler, virtual memory, caches, or
disk. Currently, ensuring information from different OS sub-
systems is easily available, or observable, to a data-driven
policies requires modifications to the OS kernel, which can
be cumbersome and error-prone. This becomes untenable as
multiple data-driven policies are added.

We believe that to increase adoption of ML-driven OS
policies, a unified data-plane is required to facilitate cross-
subsystem state observation. Such a data-plane should de-
liver the following properties: (i) enable observation of data
across subsystem boundaries with minimal code restructur-
ing; (ii) support notifications, enabling developers to sub-
scribe to data sources and receive notifications when data
is available; (iii) support historical querying of data, for ex-
ample, getting the last five file accesses when building a
file-prefetcher; (iv) restrict the mode of all communication to
message passing semantics, while ensuring implementations
are as efficient as shared memory.

We propose a new primitive that provides these capa-
bilities — Observable Queues (OQUEUES). OQUEUESs unify
communication and observation into a single primitive, pro-
viding kernel policy developers with observability across
different subsystems. Policies can then access whichever
OQUEUE has the data they desire, instead of manually modi-
fying each subsystem to capture desired data.

To achieve these properties, OQUEUESs introduce the new
concept of observers to the standard producer-consumer par-
adigm. Observers, instead of consuming items from a queue,
can inspect the history of messages or receive messages as
they are produced. Support for observers enables different



subsystems to have access to each other’s data when making
decisions.

In this paper, we discuss the design, implementation, and
use of this primitive in the OS. A preliminary, unoptimized
implementation of OQUEUES shows an average-case over-
head of 12% over that of multi-producer, multi-consumer
queues, due to supporting observers. We find that overheads
remain largely constant as additional policies or data collec-
tion are introduced. Finally, we show a proof-of-concept by
implementing a file-prefetcher with two learned policies.

2 Background & Motivation

Learned policies for OS. Prior work [1,7,9, 11] has studied
the use of ML to make OS policy decisions. Orca [1] makes
decisions about the TCP congestion window and delay to
improve network utilization. Heimdall [11] and LinnOS [9]
make decisions about routing I/O requests to disk. MLLB [4]
examines load balancing for scheduling in the Linux kernel.
Klieo [6] examines memory tiering for heterogeneous mem-
ory. Overall, these studies demonstrate the potential benefit
for ML-driven policies in the OS.

However, each of these studies focuses on a single subsys-
tem and. None suggest or provide a data-plane abstraction
for cross-subsystem data movement required for learned
policies, since supporting such behavior was not their goal.

Support for building Learned policies. LAKE [8] and
KMLib [2] are frameworks for deploying ML-based poli-
cies in the OS. Both systems fall short of enabling cross-
subsystem data views for ML deployment.

KMLib: KMLib [2] provides mechanisms to run models in the
kernel but forces the policy developer to implement the data
movement, significantly reducing developer productivity.
LAKE: LAKE [8] introduces a feature store to enable cross-
subsystem observation. LAKFE’s feature store does not meet
developer needs for multiple reasons. The API is focused
on data capture and query semantics, and support for noti-
fications was a non-goal. Any attempt to add notifications
requires using notification chains, a Linux feature to call
callbacks registered by other subsystems. Using notification
chains will lead to data duplication because data must be
copied to the chain and LAKE feature store, separately. Sim-
ilarly, supporting consumers will require explicit queues
to allow mutually exclusive access to data, leading to data
duplication. Further, LAKE requires kernel recompilation
each time a new data capture point is created, making the
introduction of dynamic policies challenging. Prime facie,
rearchitecting LAKE’s feature store using ring-buffers on
top of eBPF arrays could resolve some of the kernel recom-
pilation challenges. However, it would not fix the lack of
support for notifications and consumers, which require the
code changes described above. These code changes require
kernel recompilation and reboot, slowing development.
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Need for a cross-subsystem data plane abstraction A
cross-subsystem data plane abstraction is required to enable
models that depend on the state of multiple subsystems. For
example, MLLB benefits from information about how pro-
cesses interact with NUMA nodes and information about
timeslices on the specific processes. [4] Without explicit sup-
port for cross-subsystem data sourcing, this information is
sequestered behind module boundaries, and making it acces-
sible requires code modification. This means that the kernel
needs to be recompiled and the OS rebooted, resulting in
significantly slower development of new policies and appli-
cation downtime.

Design Goals for data-plane abstractions. To support
ML in the kernel, we outline design goals for data-plane
abstractions that enable ML support and are useful for sub-
system communication. These goals are: (i) support for notifi-
cations; (ii) support for historical data queries; (iii) ubiquitous
message passing. Notification support allows dynamic inser-
tion of policy execution because APIs that access and change
data are interposable. Historical data queries are required for
several ML models such as Heimdall and LinnOS [8, 9, 11, 12],
which use information about the last several I/O requests.
Finally, message passing must be ubiquitous in a data-plane
abstraction; otherwise, subsystems may exchange data out-
side the view of tracking mechanisms.

OQUEUES provide kernel developers a simple data-plane
abstraction that meets these design goals. OQUEUESs further
ensure that overheads to a particular OQUEUE with no con-
sumers and no other subsystems registered for notifications
is negligible. Emphasis on parsimony makes OQUEUEs effi-
cient while achieving each the design goals.

3 OQUEUES

We first provide an example subsystem we would like to
improve with ML and OQUEUEs, then describe OQUEUES’s
design, its declarative interface, and implementation.

3.1 Preliminary Example and Terms

In a file system (FS), programs make requests to an API,
which in turn makes requests to a page cache, which may
make requests to disk. A prefetcher can improve its perfor-
mance by prefetching data into the page cache. To inform
its decisions, the prefetcher should be able to receive a noti-
fication each time the FS requests something from the page
cache and view a history of previous requests made by the FS.
In figure 1, we illustrate the data flow between the prefetcher,
FS, scheduler, and page cache. We describe the components
of that dataflow when using OQUEUES below.

Policies Policies process data from consumers and observers
and produce values that are either used to make decisions
directly or fed to other policies in the system.
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Figure 1. A file system (FS) prefetcher using OQUEUEs. (D: An FS
produces a read request via the Read-OQ. (2): A page cache con-
sumes a request from the Read-OQ and performs the read. 3: The
prefetcher strongly observes this Read-OQ request and determines
what the next prefetch should be, if any. @: To source data for the
prefetcher’s policy, it asks for the history of the last few processes
that ran and their quanta end time from the Quanta-0Q. ®: The
prefetcher produces a request to the Prefetch-OQ. (©: The page
cache reads that prefetch request and executes it. (): The quanta
runtime was produced for use by the scheduler, and the history
was persisted only when (@ was declared by the prefetcher.

Consumers and Producers Producers enqueueing values,
while consumers dequeueing values. Together these provide
the simple abstraction of a messaging queue. Arrows @) and
@ in figure 1 show an example: the file system produces
read requests consumed by the page cache.

Strong Observers Strong observers provide a mechanism
to allow exactly-once message views. The primary use of
strong observers is to ensure that certain policies run when
a particular piece of data changes. A prefetcher policy that
should be triggered when a file read request occurs, as in
figure 1 (3, can register itself to strongly observe the read
request and thus run after the new request occurs. Addition-
ally, multiple strong observers can observe the same value
exactly once each. If a particular consumer dequeues a value
before a strong observer gets its chance, the value is persisted
until that observer consumes it.

Weak Observers In contrast to strong observers, weak ob-
servers do not support exactly-once message views. Instead,
they allow for queries of the history of a particular OQUEUE,
including values that may have already been consumed or
observed. In the prefetcher example, if the policy wanted
to employ a history-based ML model, it could use the last
10 quanta runtime to determine the next prefetch. Weak
observation provides this history as shown in figure 1 @.

3.2 Declarative Interfaces

OQUEUES require that each producer, consumer, and observer
explicitly attach themselves before using the OQUEUE. This
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allows each OQUEUE to dynamically respond to each at-
tachment by optimizing the OQUEUE. Thus, if no observers
or consumers are present, no data is ever captured. While
OQUuEUES might be ubiquitous in the system, costs for them
are only incurred when the data is required by a consumer or
observer. In our file-prefetcher example, if a new prefetcher
policy desired a history of accesses, OQUEUE must declare
the size of the history it was interested in when declaring a
weak observer, see table 1 for details. This enables efficient
capture and storage of only features currently in use.

3.3 Implementation

We implement OQUEUES on top of lock-free ring-buffers in
Linux in userspace and in Asterinas [15] in kernel space,
which allows consumer and producer semantics. Then, to
support observers, our Rust implementation forces messages
to implement the Copy, Clone, Sync, and Send traits. To sup-
port strong observers, there is an additional pointer within
the queue for each observer. This pointer is used to ensure
that the observer reads all messages exactly once before they
are deleted. To implement weak observers, we employ an
atomically packed valid flag and version that are used by
reading the flags, reading data, and finally validating the
flags to ensure the data is valid.

3.4 Discussion

OQUEUE as a synchronization primitive. OQUEUE im-
plementations must wait for data or space to be available
in various situations. Currently we busy-wait, but there are
various ways to synergize with OS schedulers, similar to the
Synthesis Kernel [13]. For example, the scheduler could be
OQuEuE-aware, and the OQUEUE itself could act as a syn-
chronization primitive between kernel threads. The kernel
could have a specially optimized path for transferring control
directly from a producing to a consuming thread. It would
also be possible to have enqueue operations directly invoke
waiting consumers. OQUEUE-aware scheduling would reduce
the overhead of message-based communication.

Temporal Queries on OQUEUES. While OQUEUES pro-
vide a powerful primitive to make model deployment and
data-pipeline iteration easier and faster, observer semantics
can admit a more powerful interface. A Temporal Query
Language (TQL) [10] is generally used to search through
time-series data. We propose allowing observers to prede-
fine data queries using a TQL. The goal is for OQUEUE to
reduce data capture overheads by introducing checks at the
producer site for the disjunction of all subscribed observers’
queries. By not enqueuing those data elements, the producer
would not incur the overheads of enqueuing unused data.
Additionally, extending OQUEUEs to a TQL query interface
would reduce programmer effort when transforming raw



Table 1. The OQUEUE API. put, take, and strong_observe are blocking. Non-blocking variants are available but omitted for brevity.

API Description

OQueue: :attach_producer() -> Producer Get a producer handle

OQueue: :attach_consumer() -> Consumer Get a consumer handle

OQueue: :attach_strong_observer() -> StrongObserver Get a strong observer handle

OQueue: :attach_weak_observer(n: int) -> WeakObserver | Get a weak observer handle specifying the max size of

Producer: :put(value: T)
Consumer::take() -> T

StrongObserver: :strong_observe() -> T
WeakObserver: :history(n: int) -> [T]

history the observer is interested in
Enqueue a message

Dequeue a message

Observe a message from the queue

Get the most recent n messages in the queue

data into ML tensors, because query languages are the un-
derlying abstraction of dataframes, a familiar interface for
most ML engineers.

Simplifying MLOps with OQUEUEs. MLOps [14] is the
cycle of development used for fast ML iteration. It includes
a Data collection phase, Model development phase, and a
Deploy phase. OQUEUES with TQL abstract the direct manip-
ulation of the system by the developer because the desired
data can be materialized when needed during feature se-
lection and the Model phase. Consider that we could view
the data in each OQUEUE as a column in a massive virtual
database; then TQL queries over this database would only
materialize the exact data required to train a model or com-
pare features. This TQL query tracking reduces developer
effort during the Data phase of the MLOps cycle.

4 FEvaluation

To evaluate OQUEUES, we measure their scalability as com-
munication primitives and iteratively improve a prefetcher
with them.

Setup. All testing was performed on Linux 6.12.10 (bench-
marking an OQUEUE-aware kernel is future work). All runs
were on AMD Ryzen 9 8945HS (8c/16t) with SMT on.

We measure OQUEUE performance using an RPC or "ping-
pong" microbenchmark between threads. This benchmark
represents the common case among communicating subsys-
tems; therefore, it is especially important for performance. In
particular, performance is sensitive to how control is trans-
ferred from producers to consumers and observers.

We measure two mechanisms: Busy-waiting by execut-
ing an empty loop, and Yield-waiting by looping on an OS
scheduler yield. We measured OQUEUE performance and
scalability compared against state-of-the-art "rigtorp" mes-
sage queues [16, 17], which only support busy-waiting. To
measure the overhead of using the OQUEUE data structure
without any control transfer overhead, we measured the cost
of passing an argument to a function, 7 ns, vs. the same done
after placing the argument in an OQUEUE, 11 ns. Thus, the
data structure overhead is small for inter-subsystem calls
and demonstrates an ideal transfer of control mechanism.
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RPC for Strong Observers As shown in figure 2a, increas-
ing the number of strong observers does not significantly im-
pact message throughput. Busy-waiting has inferior scaling
as it uses a full core for each thread, forcing many accesses to
transfer data between cores. This increases contention even
when only one core can progress. Yield-waiting has higher la-
tency but better scaling, due to the cost of context-switches
and avoiding contention between threads. We believe an
OQuEuE-aware scheduler could keep latencies close to busy-
waiting with improved scaling.

We also compare against the "rigtorp" MPMC [16] and
SPSC [17], showing a 12% slow-down between our imple-
mentation and state-of-the-art queues which do not support
observers. We have not implemented all of the optimizations
present in “rigtorp", so we believe reaching the performance
of at least MPMC "rigtorp" is possible. All measurements use
ring-buffers of length 2 because RPC does not have more
than one message in flight at a time.

RPC for Weak Observers As shown in figure 2b, RPC
throughput remains constant with an increase in weak ob-
servers. The data is shown for weak observers accessing
histories of length 2 and 64 (using corresponding ring-buffer
sizes). Each weak observer runs every 10 ms and reads the en-
tire available history (2 or 64), meaning that weak observers
perform more work with a history of 64, likely accounting
for the small decrease in performance.

4.1 Using OQUEUE for FS Prefetching

We perform a case study on file-prefetching using OQUEUES
on Asterinas [15], a monolithic kernel implemented in Rust.
Asterinas includes a cache per file, and we add OQUEUES to
Asterinas to collect data. We create two ML-driven policies
that are deployed as prefetchers. The model within each
ML-driven policy predicts the next file offset to prefetch. We
train a perceptron which attains 99% accuracy with 2 weights
and 1 bias, and we train a linear regression model. We use a
microbenchmark deploying either a data collector “policy”
for data collection for training or an actual prefetching policy
during model deployment, thereby specializing these models
to this set of accesses. We also deploy a next-page prefetcher
to express how simple it is to make these changes.
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Figure 2. Solid red and blue are OQUEUE busy-wait and yield, resp.
Dashed and green are "rigtorp" MPMC and SPSC, resp.

Data Collection To collect data, we create a strong ob-
server on the OQUEUE that records the file reads we are
interested in observing. This same data is used to train all
the remaining policies. We also create a strong observer that
records scheduler quanta to a file. However, this information
had no effect on model performance and thus was not used.

Deploying Policies using OQUEUEs The file-prefetcher
policy listens on an OQUEUE for file operations as a strong
observer and makes a decision about what to prefetch, en-
queuing that decision to the OQUEUE the file system uses
to perform prefetches. Once OQUEUEs have been added to
Asterinas’ prefetcher, the process of deploying a new policy
only requires 10s of LoC and less than an hour per policy.

4.2 Results

We deploy a heuristic policy and two learned policies in
Asterinas. We also compared against no prefetching and a
sequential prefetcher already available in Asterinas. Table 2
shows the performance increase and improved cache hit rate
created by all policies. These measurements demonstrate
the range of policies that can be implemented rapidly. The
sequential prefetcher runs inside the page cache code and
stores its state in the page cache. The OQUEUE strided heuris-
tic prefetcher uses a strong observer to receive notifications
for reads, and then a weak observer on the read history to
detect strided accesses by an individual thread. The OQUEUE
regression and perceptron prefetchers only use the most
recent read.

Comparison to other Frameworks. We compare the lines
of code required for our microbenchmark to take the same
features compared to various systems such as LAKE, KMLib,
and Heimdall, refer to table 3 for details [2, 8, 11]. LAKE
does not support feature capture during inference within its
artifact. Instead its benchmarks do not use its feature store.
Heimdall takes over 50 LoC for its bespoke data movement
out of the block_io subsystem. With OQUEUE however, it
takes 7 LoC to persist data to the file system and 4 LoC for
inference, due to OQUEUE’s declarative interface.

Table 2. Comparison of Table 3. Lines of Code compari-
prefetcher performance using son for various systems, moving
OQUEUE (OQ) and others. the same data.

Prefetcher ‘ Time ‘ Hit rate System ‘ Collection ‘ Inference
None 17.3s 0.0% LAKE 62 LoC No support
Sequential 17.3s 0.1% KML Traces No Support
0OQ heuristic 16.4s 49.0% Heimdall | 62 LoC 53 LoC
0Q regression | 16.0s | 57.5% OQUEUE 7LoC 4LoC

OQ perceptron | 16.0s 57.3%

5 Related Work

Other systems exist for data-plane management, both in
and out of the kernel. However, to our knowledge, no other
system provides the semantics and performance potential of
OQUEUES.

Kafka Kafka is a platform for event streaming [18]. It lets
producers publish events, and consumers subscribe to "top-
ics" to observe data. Kafka consumers have the semantics
of OQUEUE’s strong observers because they can be grouped
such that messages are delivered to only one consumer, but
messages are assigned to a consumer when sent (published
into a specific partition). This could result in a consumer
waiting for a message while one is available in a different
partition, violating the semantics of a queue.

ROS Robot Operating System (ROS) is an extension of Linux
for robot controllers [20]. ROS includes a communication
primitive called “topics” which implement strong observer
semantics but neither consumers nor weak observers.

DBOS Database Operating System (DBOS) uses a database
for all communication [19]. Database tables are similar to
OQuUEUES but cannot dynamically elide data collection or
storage because database interfaces do not require policies
to declare their interest ahead of time. Further, DBOS imple-
ments message consumption by deleting the message from
the table thus, it will no longer be available for observation.

6 Conclusion

In this work, we introduced OQUEUES, a new data-plane ab-
straction for communication between OS subsystems. OQUEUES
are ubiquitously deployed throughout the OS and respond
dynamically to new observers and consumers. To achieve
this, OQUEUEs ensure that only observed/consumed data are
ever created in the first place. With the aid of OQUEUEs, pol-
icy developers can easily deploy and iterate over ML-driven
OS policies, while metadata manipulation is automatically
optimized for only active policies.
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