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Abstract

Hardware capabilities offer an alternative to how access control is
commonly implemented in processors today, i.e., through enforce-
ment of permission checks on virtual memory at the time of address
translation. Despite conceptual strengths of capability hardware, it
is challenging for existing capability-oblivious software stacks to
be compatible with capability hardware and to interoperate with
capability-aware software, hindering faster adoption. Prior attempts
to achieve this sacrifice the inherent advantages of capabilities. They
require trusting a software central authority (e.g., the OS kernel) for
capability-based isolation and limit the scope of capability-based
memory sharing to individual virtual address spaces. This paper
proposes the idea of caplification, a novel mechanism to enable
seamless co-existence of capability-aware and capability-oblivious
software stacks. We concretely implement our proposed idea on
a modern RISC-V capability hardware and show how it enables
running a commodity unmodified (or capability-oblivious) Linux
OS. Our design retains the full advantages provided by hardware
capabilities, such as creating fine-grained hardware-isolated mem-
ory compartments both in user- and kernel-space. We evaluated
our prototype system both on QEMU emulation and on hardware
RTL simulation. We find that the performance of our system is com-
parable to prior baseline designs, while offering cost improvements
in scenarios of secure data sharing.
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1 Introduction

Isolation plays an important role in preventing undesired inter-
ference between software components. Modern systems have pre-
dominantly relied on virtual memory access control (VMAC) for
isolation (Figure 1 (a)), where a trusted central authority (e.g., the
OS kernel) configures a global isolation policy (e.g., via page tables).
The central authority is entrusted to effect all permission changes
on behalf of all security principals running in isolated domains.

Hardware capability-based security [14, 28], in contrast, uses
capabilities to implicitly define isolation policies. A capability is an
unforgeable token that binds together a memory location and the
permissions granted for accessing it. Hardware enforces isolation
policies based entirely on the capability presented for each memory
access, regardless of which software principal presents it. Prior work
has discussed the benefits of capability-based security over VMAC-
based mechanisms [16, 28, 36, 57, 58, 62, 65, 68]. Capabilities reduce
the trusted computing base (TCB) by removing trust in a central
authority, prevent bugs such as the confused deputy [9] by avoiding
ambient authority, and facilitate resource sharing thanks to their
context-independent nature. More recent work [68] has extended
the base capability model with support for exclusive ownership
and revocable delegation, further improving the expressiveness of
fine-grained memory safety and flexible isolation.

However, one important challenge to the practicality of hardware
capabilities is in providing compatibility and interoperability between
capability-based models and capability-oblivious software stacks.

Prior capability-based designs either do not directly support
capability-oblivious software [68] (Figure 1 (b)) or have important
limitations. Most follow the strategy of stacking capabilities on top
of virtual memory [7, 15, 17, 26, 61, 63] (Figure 1 (c)). Capabilities in
such designs reference virtual addresses rather than physical ones.
A prominent example is CHERI [61].

Such a strategy sacrifices two important properties of capabili-
ties. Firstly, capabilities are no longer context-independent. Rather,
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Figure 1: Comparison of hardware isolation mechanisms,
using RISC-V as an example. Solid arrows represent writable
permissions. Dotted arrows represent the pathways for soft-
ware to access physical memory. Shaded regions represent
structures that contain capabilities or capability-aware soft-
ware components. The asterisked mechanism (d) is our work.
Labels va, pa, and cap represent virtual addresses, physical ad-
dresses, and capabilities, respectively. The magnifying glass
icon (Q) indicates locations of checks on the memory access.

the memory resources a capability references now depend on the
virtual address space it is used in, and consequently software can
no longer share memory by directly passing capabilities. Secondly,
it re-introduces ambient authority in the OS kernel, which is still in
the TCB even for capability-based isolation. A malicious or buggy
kernel can compromise capability-based isolation by corrupting
page mappings or permissions. This limits existing designs to be
applicable largely to in-process isolation on a trusted OS.

Our work. We introduce the concept of caplification designed to
address this problem. Caplification allows existing software that
is not capability-aware, i.e., is capability-oblivious, to work seam-
lessly on a hardware platform with hardware capabilities. The key
idea is simple: It turns capability-oblivious virtual memory accesses
into capability-based accesses by adapting existing memory pro-
tection data structures (e.g., page tables) to be capability-based
(Figure 1 (d)). We refer to a data structure thus adapted as caplified
(short for capabilitified). A traditional capability-oblivious system
allows privileged software to configure the address translation data
structures with arbitrary physical addresses and access permissions
(Figure 1 (a)). Instead, in a caplified address translation system, the
virtual address maps to a physical capability. This way the software
uses regular virtual memory accesses, but these are translated into
hardware capabilities under the hood. Since all memory accesses
are ultimately capability-based, caplification retains the full benefits
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of capabilities, including context independence and eliminating
the need for trusted central authority in software. Caplification
thus provides a consistent way for software following the two
programming models—capability-oblivious and capability-based—
to interact seamlessly, enabling incremental migration of existing
capability-oblivious software to a capability-based model. As caplifi-
cation retains all the advantages of hardware capabilities, it enables
capabilities as a fundamental isolation primitive in various software
contexts, e.g., both user-space and kernel-space.

We demonstrate the concept of caplification on a concrete hard-
ware and software co-design called CAPLIFIVE. CAPLIFIVE caplifies
the PMP (Physical Memory Protection) data structure on RISC-V [59,
60] to fuse CAPSTONE [68], a recent capability-based design, with
the capability-oblivious model of RISC-V. We present both func-
tional emulation on QEMU [5] and hardware RTL implementations
of CapLIFIVE, and show that it:

(1) supports unmodified capability-oblivious Linux stack;

(2) runs capability-aware fault domains in both user- and
kernel-space, on an untrusted capability-oblivious Linux kernel;

(3) allows capability-oblivious software to share virtual memory
pages with capability-based software, while utilizing hardware
capability-based isolation underneath for both.

All three points are difficult to achieve with prior designs. For
example, the strategy proposed in [61] cannot achieve (2) and (3),
while it requires extensive software changes to the Linux kernel
to achieve (1). Section 3 discusses prior approaches in more detail
and explains how they fail to achieve the above goals. CAPLIFIVE
shows for the first time how to run a commodity OS like Linux on
capability-based architectures, without intrusive changes to the OS
and without sacrificing the full benefits of hardware capabilities.
Contribution. We propose caplification, a novel way to fuse hard-
ware capabilities into a capability-oblivious software stack. Our
prototype design, CAPLIFIVE, and its implementation are both pub-
licly available [39, 40, 53, 67].

2 Background

Virtual memory access control (VMAC). The predominant way
modern hardware enforces security protection on memory is through
access control at the point of address translation, i.e., when virtual
memory is translated to physical memory via page tables. It relies
on ambient authority to control which software can modify the
page table. Software runs at one of a fixed number of privilege levels.
For example, RISC-V [60] specifies three privilege levels: U-mode,
S-mode, and M-mode. An OS kernel, typically running in S-mode, is
allowed to configure the page tables of processes, typically running
in U-mode, merely by virtue of running at a high privilege level.
Hardware capabilities. In contrast to VMAC, hardware capa-
bilities are physical memory pointers which carry with them the
security access permissions directly. It is sufficient and necessary
for a software running on a capability-based hardware architecture
to present a valid capability to access the corresponding memory.
The validity of the access is checked by the hardware directly, with-
out the need to consult privileged software at the time of access.
Granting of permissions to a memory location is implicit when a
software passes the associated capability; no specific data structures
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need to be updated explicitly. This is in contrast to how isolation
policies modifications are effected in VMAC.

Advantages of capabilities. Prior work has demonstrated advan-
tages of capability-based isolation over VMAC [28, 32]. Capabilities
avoid ambient authorities [28] since isolation policy changes are
implicitly handled with capability passing, rather than explicitly as
in VMAC. Capabilities provide finer-grained memory protection
than virtual pages, making them also suitable for ensuring memory
safety [15, 62], not just for isolation. Capabilities also have context-
independent semantics that does not change with its environment,
facilitating data exchange across the whole software system.

For example, consider an isolated software component A wishing
to share a memory region with another isolated software compo-
nent B. For VMAC-isolated components to share memory, the OS
kernel needs to set up page mappings in their respective virtual
address spaces to shared physical memory frames. This both adds to
the performance overhead and brings the OS into the TCB. VMAC
requires that A and B run in the unprivileged user-space. In con-
trast, in a capability-based system, A merely needs to delegate a
capability to B, which is a cheap hardware-supported operation. In
addition, capabilities work in any context: They work when A and
B are kernel modules as well as when they are user applications.
New capability hardware. Existing work highlights some per-
ils with hardware capability designs [28], such as capability leaks.
Recent hardware capability designs, such as CAPSTONE [68], is
designed to address these and improve expressiveness over the
classical idea of capabilities. In the example above, such new de-
signs allow A to delegate its memory region to B in such a way
that (1) guarantees B exclusive access to the memory region, and
(2) enables A to regain its own access to the memory region and
revoke B’s access. In a setup where A and B distrust each other,
such sharing primitives avoid security issues such as time-of-check-
to-time-of-use (TOCTTOU) attacks [13]. They also avoid extra data
copies which are necessary with classical hardware capabilities.

3 Problem

Hardware capabilities present a different programming model from
the traditional VMAC mechanism. Capability-oblivious software
which uses VMAC only provides a memory address when accessing
memory, whereas in capability-based designs, software needs to
explicitly present a capability. This has been a roadblock to the
adoption of hardware capabilities. Compatibility and interoperabil-
ity between capabilities and capability-oblivious software are thus
crucial goals. We summarize the desired goals as follows:

(G1) supporting unmodified capability-oblivious software stacks;
(G2) supporting isolated capability-aware fault domains in both
user- and kernel-space without trusting the privileged software;
(G3) enabling capability-aware and capability-oblivious software
to share memory using capabilities as the underlying mechanism.
Issues with prior work. Prior hardware-capability-based designs,
summarized in Table 1, are not designed to achieve the above goals
together. Most existing efforts to retrofit capabilities into capability-
oblivious software systems place capabilities on top of virtual mem-
ory [62]. Specifically, bound and permission checks on addresses
are performed before address translation and page-based permis-
sion checks. We refer to this strategy as virtual-memory-backed
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capabilities (VMBC), illustrated in Figure 1 (c). The privileged soft-
ware such as the OS kernel has complete control over the address
translation process. As such, the OS kernel needs to be trusted to en-
force proper isolation. When software components intend to share
memory through capabilities, they must also rely on the OS kernel
to map the shared virtual pages to the same physical locations.

Many such VMBC-based designs have been proposed, but they
fail to achieve the above goals G1-G3. CHERI [62] adopts VMBC
and supports a hybrid mode that allows mixing capability-aware
and capability-oblivious code. It fails to achieve goals G2 or G3, as
evidenced by the existing software stacks built on it. For example,
CheriBSD [41, 62] is a FreeBSD variant adapted to use CHERI capa-
bilities for memory safety. It requires full trust in the kernel, and
supports capability-based isolation only for in-process isolation.
CheriOS [16] is a single-address-space OS on CHERI which uses
capabilities for isolating processes. It relies on a trusted nanoker-
nel for isolation through heavy use of software-enforced (rather
than hardware) capabilities. Similarly, CHERI-TrEE [56] builds TEE
primitives using CHERI capabilities. CHERI-TTEE relies on a trusted
monitor for critical tasks such as memory allocation and revoca-
tion. Both CheriOS and CHERI-TTEE require software stacks that
are built from scratch and capability-aware. It is unclear how ei-
ther CheriOS or CHERI-TTEE supports existing capability-oblivious
software stacks. CAP-VM [44] uses the intravisor, a trusted in-
process component, to isolate multiple compartments within the
same virtual address space with capabilities. It uses the CHERI
hybrid mode [61] to support unmodified applications which are
capability-oblivious. But to run capability-based software, the code
has to run inside a process with a dedicated virtual address-based
capability, for which the OS has to be trusted, and has no direct way
of passing capabilities to other capability-aware software domains.
ORC [45] replaces the CHERI hybrid mode design in CAP-VM
with the pure capability mode (thus requiring applications to be
capability-aware) to sacrifice compatibility for finer-grained shar-
ing and more efficient memory deduplication. Similar to CAP-VM,
ORC relies on a trusted intravisor for all granting and revoking all
capabilities, and imposes tight constraints on the use of capabilities
(e.g., they cannot be stored in memory).

Apart from VMBC, other prior designs also fail to achieve G1-
G3. For example, CODOM:s [57, 58] is a design that does not adopt
VMBC. Instead, it exposes two ways of addressing memory directly,
regular virtual memory addresses and hardware capabilities. It has
a fixed set of registers which translate into hardware capabilities,
which is different from our goal of making arbitrary virtual address
capability-based. The full benefits of capability-based memory ad-
dresses, for instance providing memory safety, cannot be leveraged
using such a design. In addition, the design has the drawback of
relying on a software TCB, including the OS kernel.

4 Caplification of a Software Stack

We propose caplification, a conceptually simple but novel way to
achieve all three goals G1-G3 simultaneously.

4.1 Core Idea of Caplification

A conceptual isolation model. Caplification enables a novel iso-
lation model illustrated in Figure 1 (d). The software is divided into
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Table 1: Summary of existing hardware-capability-based sys-
tem designs compared with caplification (our work).

Design

CheriBSD [41, 61]
CheriOS [16]
CHERI-TrEE [56]
CAP-VM [44]

ORC [45]

CODOM [57]
Caplification (our work)

Nax axx Q@
N3 > % > % =8
Y= xxx @

isolated fault domains, which are the basic units of capability-based
isolation. Domains follow no privilege hierarchy but each has its in-
ternal privilege hierarchy mirroring that in a VMAC system, which
we refer to as the internal structure of the domain. The internal
structure allows a capability-oblivious software stack (e.g., an un-
modified Linux stack) to run inside a domain. Each domain fully
controls its own internal structure and communicates with other
domains about their capability configuration only when needed,
such as when sharing memory.

In the internal structure of a domain, the highest privilege level

(CinFigure 1(d)) is capability-aware while the lower privilege levels
are capability-oblivious. When software from a lower privilege level
accesses memory, it provides a virtual address which is translated
into a physical address in a way identical to VMAC, but the physical
address is subsequently mapped to a capability provided by the same
domain. Thus, all memory accesses, including ostensibly capability-
oblivious ones, are ultimately based on capabilities. Capability-
oblivious software, no matter the privilege level, is bounded by
the capabilities its domain holds. As a result, capabilities can thus
be used for both user-space and kernel-space isolation. Domains
may also share memory simply by passing (physical) capabilities,
without involving privileged software.
Caplifying memory protection data structures. The core idea
behind caplification is to map physical addresses to hardware ca-
pabilities through adjustments to an architectural data structure
relevant to memory protection. Caplification replaces addresses
and permissions in such a data structure with hardware capabilities,
which are unforgeable in software. This ensures that capabilities are
the fundamental isolation mechanism on the system and allows
each individual isolated component to manage the data structure
itself, instead of relying on a trusted central authority. In contrast,
VMAC-based architectures allow privileged software to write arbi-
trary values to such data structures. For example, the OS kernel can
set arbitrary frame numbers and permissions in page table entries.
Caplification illustrated. To illustrate the idea of caplification in
more detail, consider a typical VMAC-based architecture with three
privilege levels, PLg through PLj, as illustrated in Figure 2 (a). PLo
is the lowest privilege level and typically runs user application code,
while PLjy is the highest privilege level that usually runs firmware.
PL; typically runs the OS kernel, which controls the page table. PL;
has access to a memory protection data structure (MPDS) that all
memory accesses from the two lower privilege levels are checked
against. Examples of MPDS include the PMP in RISC-V [59, 60] and
GDT in x86 [1, 23], and MPU in ARM [2].

Caplifying such an architecture results in the architecture illus-
trated in Figure 2 (b). The direct effect of caplification is that the
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Figure 2: A VMAC-based system before and after caplification.
Solid arrows indicate which software components control
which architectural structures. Dotted arrows indicate the
pathway of a memory access from PLy. Shaded areas repre-
sent capability-aware software components or structures.

MPDS becomes capability-based. Caplification replaces any entry
in the MPDS that originally represents a pair of memory region
bounds and its access permissions with a capability, which, in addi-
tion to also including such information, is unforgeable. All creation
and manipulation of capabilities follow strict rules enforced by
the hardware, which ensures the authority they convey cannot be
expanded (i.e., monotonic [20, 62]). Consequently, the highest privi-
lege level PL; becomes capability-aware and handles capabilities
directly. This includes changing capability bounds and permissions,
as well as setting the caplified data structure to them. PLy has ac-
cess to instructions that write capabilities into the MPDS, which
amounts to sharing those capabilities with the lower privilege levels
PLy and PL;, which use them implicitly.

Memory accesses. All memory accesses become capability-based
after caplification. Accesses from PLy and PL; use capabilities im-
plicitly through the caplified MPDS. In contrast, PLy software uses
capabilities explicitly for memory accesses. We deem it practical
to impose a capability-based programming model on PLy, as PL;
typically does not run significant amounts of code, and the cost
of adapting PLy software to use capabilities explicitly for access-
ing memory is thus much lower than that of adapting PLy and
PL; software, Moreover, making PLj use capabilities explicitly has
the added benefit of enabling a pure capability environment con-
sisting entirely of PL;, software, suitable for software migrated or
developed anew with a capability-aware toolchain.

Domains with full privilege hierarchies. When all memory
accesses become capability-based, either implicitly or explicitly, the
whole software stack can be isolated using capabilities into isolated
units or domains. Systems using caplification are special in that each
domain has a full privilege hierarchy inside it, with its own software
at each level. This is called the internal structure of the domain. The
memory accesses each domain can perform are defined by the set
of capabilities the domain holds, regardless of the privilege level
the domain accesses memory from. Domains are not fixed but can
instead be created and destroyed during run-time, and there is no
limit to the number of domains. The threat model (Section 4.2)
we consider assumes that the domains are mutually-distrusting.
The interaction between domains in caplification follows directly
from that in capability-based architecture designs. The example in
Figure 2 (b) shows two domains, domy and domy.
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4.2 Threat model

Our trust assumptions made are standard and common in prior
work on capability-based architectures [62, 68]. By default, the hard-
ware does not assume any trust between domains concerning data
confidentiality or integrity. Rather, it expects that software to explic-
itly pass capabilities with appropriate permissions where it wants to
trust software external to its domain. When discussing the security
of any domain, we assume that the software running within a given
domain trusts other software in its domain—otherwise, it can opt
to place untrusted software in a separate domain. Trusted software
is assumed to bug-free. A domain need not trust any other domain;
it can assume that all the other domains are arbitrarily faulty and
malicious. Within each domain, we consider the firmware and the
OS kernel as trusted. We assume the hardware implementation is
trusted and bug-free. Microarchitectural side-channel attacks are
out of scope as they correspond to hardware design and implemen-
tation details below the ISA. Following prior work, availability, or
safeguarding against denial-of-service attacks, is considered with a
single domain assumed trusted.

4.3 Key Technical Challenges

Domain switching. A hardware thread can switch between dif-
ferent domains. Synchronous domain switching happens when
a domain voluntarily calls into a different domain. Within each
domain, since the privilege hierarchy is associated with its own
trust model (e.g., the OS kernel in PL; should be able to control
all communication from a process in PLy), we only allow PL3 to
perform synchronous domain switching. Asynchronous domain
switching is performed without intervention from a domain itself
when an interrupt occurs.

Exception and interrupt handling. Exceptions and interrupts
need to be treated carefully among mutually-distrusting domains.
This has been a challenge on VMAC-based architectures, which face
a dilemma regarding whether privileged software should handle
asynchronous exceptions or interrupts. For example, Ahoi attacks
show how host-injected exceptions can trick a confidential virtual
machine otherwise protected by a TEE to leak secrets or execute
attacker-controlled code [46, 47]. With caplification, we strictly
distinguish exceptions and interrupts as different types of events.
Exceptions are events that directly result from the execution of an
instruction in a domain, while hardware interrupts (H-interrupts)
are externally generated events that target a hardware thread as
a whole. We let each domain handle its own exception directly,
without involving other domains on the system. This can be done
safely, as caplification has confined resources a domain can access

37

SACMAT ’25, July 8-10, 2025, Stony Brook, NY, USA

by the capabilities it holds and localized the effects of privileged
states to the domain itself. H-interrupts, on the other hand, are in
general not specific to any domain and do not reflect the domain
state. Handling them safely thus requires switching to an interrupt
handling domain, which we refer to as domyg. As a way to dele-
gate interrupt handling to capability-oblivious software in another
domain, domjy; can post a virtual interrupt (V-interrupt) to it. The
receiving domain handles the V-interrupt in the same way as a
capability-oblivious software stack handles an interrupt. In partic-
ular, the resumed domain can unilaterally mask the V-interrupt
delivery. Such control prevents an untrusted party from injecting
asynchronous interrupts at chosen times to lead the domain into an
inconsistent state, as demonstrated in several attacks [11, 46, 47].

Figure 3 illustrates examples of interrupt and exception handling
in a caplified system. If, during the execution of domy, the inter-
rupt controller raises an interrupt to the CPU, the CPU performs a
domain switch from domy to domjy (1), which receives and han-
dles the H-interrupt and then posts a corresponding V-interrupt
to domy when resuming the latter’s execution (2). The domain
domy then handles the V-interrupt within itself as in a VMAC-
based system, involving a trap into the kernel interrupt handler (3)
followed by a return (4). In another example, when an exception
occurs during the execution of domy, it is handled entirely within
domy itself, trapping into the kernel exception handler (a) which
then returns to the excepted process after handling (b).
Localizing privileged states. Some registers have system-wide
impact on software execution. For example, the interrupt enabling
bit affects whether the whole system can receive and handle hard-
ware interrupts. We say that those registers are the privileged states.
Since the full privilege hierarchy is now confined to domains, which
are not allowed to interfere with each other, it is necessary to lo-
calize privileged states. The localization follows two strategies,
depending on the semantics of the specific state. For states that
control code behaviours, we simply make them domain-local, i.e., a
domain has its own copy of such states that is only effective within
the domain itself. States with system-wide effects are virtualized so
that their effects are confined within the domain. Such examples
include states related to interrupt handling which are adapted to
work with virtualized interrupts. As with the first class of states,
we also give those states their domain-local copies.

5 CapPLIFIVE: Supporting Caplification on
CAPSTONE

We demonstrate CAPLIFIVE, a concrete hardware and software co-
design of caplification on RISC-V using CAPSTONE ISA [68].

CAPSTONE. CAPSTONE is a recent capability-based architecture
design with improved expressiveness of capabilities, which enables
revocable capability delegation and exclusive ownership through
additional capability types and operations. In particular, linear capa-
bilities never overlap with other existing capabilities, and revocation
capabilities are snapshots of capabilities which can later be used
to revoke all capabilities derived from them and at the same time
restore the original snapshot capabilities. Such features of Cap-
STONE are particularly useful as building blocks for isolation, and
we choose it as the base capability design to build on for this reason.
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Figure 4: Memory access from different parts of a CAPLIFIVE
domain internal structure. The shaded areas are capability-
aware software components or data structures.

RISC-V. RISC-V [60] is an open ISA design that adopts VMAC. A
typical RISC-V system consists of three privilege levels: the U-, S-,
and M-modes, from the least to the most privileged. We choose
RISC-V for its open-source software and hardware support.

5.1 Instruction Set Architecture

Central in CAPLIFIVE is an ISA adapted from CAPsTONE-RISC-V [54].
We have released the specification publicly [53].

Capabilities. CAPLIFIVE adopts the 128-bit capability format in
CapsTONE. Each capability records its type, bounds, a cursor ad-
dress, permissions, and an ID of a node in the revocation tree,
a hardware-maintained data structure that tracks the capability
derivation relationships and validity. Every 128-bit-aligned mem-
ory location is tagged with a single tag bit to indicate whether it
contains a capability (when the bit is set) or an integer. More details
are available in the CAPsTONE work [68].

cpmps: caplified PMP. PMP (Physical Memory Protection) is a set
of registers (pmpcfgs and pmpaddrs) in RISC-V [60] that define a
list of physical address ranges and their respective access permis-
sions. All those registers are only accessible in M-mode. A RISC-V
implementation may provide 0, 16, or 64 PMP entries. For a memory
access by S/U-modes, the CPU looks up the physical address in the
PMP entry list and enforces the access permissions specified in the
first matching entry. We caplify PMP into a list of n registers, cpmpg
— cpmpy—1, each containing a capability. Each memory access, in-
cluding the physical address and access type, is checked against all
cpmps and is permitted when at least one of them permits it.
C-mode: capability-aware M-mode. The original M-mode in
RISC-V becomes capability-aware in CAPLIFIVE. For clarity, we
refer to M-mode, thus adapted, as C-mode (C for Capability). Most
C-mode capability-aware registers and instructions derive from
CaPsTONE. C-mode directly manipulates capabilities and uses them
explicitly for memory accesses (Figure 4 (a)). Specifically, it can hold
capabilities in general-purpose registers x1 — x31 and use them in
capability instructions. For memory accesses, the original load/store
instructions, e.g., LD and SD, require capabilities as the base address
operand in C-mode. C-mode can use the added instructions LDC and
STC to load and store capabilities in memory. In addition, C-mode
gains access to CSRs (control and status registers) cepc, ctvec, and
cscratch. They replace the original mepc, mtvec, and mscratch
to accept capability values. C-mode software can actively perform
synchronous domain switches using CALL and RETURN instructions.
The CALL instruction calls into other domains. It expects in its
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operand a sealed capability — a capability that represents a domain
execution context. A corresponding RETURN returns from such calls.
Exposing memory to S/U-modes. C-mode sets up physical mem-
ory protection for U-mode and S-mode through cpmps. C-mode uses
the CCSRRW (capability control and status register read and write)
instruction to exchange capabilities between general-purpose reg-
isters and cpmps. Once set, the capabilities in cpmps are implicitly
used for memory accesses from S/U-modes (Figure 4 (b)).
System reset and compatible mode. Upon system reset, CAPLI-
FIve does not immediately enter C-mode. Instead, it starts in the
compatible mode (not to be confused with the modes in privilege
levels) whose behaviour is identical to that of a RISC-V system.
This allows reusing existing M-mode firmware to initialize the CPU
and the I/O devices. After initialization, the M-mode software can
enter the capability mode through a CAPENTER instruction, which
immediately replaces M-mode with C-mode. CAPENTER also creates
the genesis capabilities, from which all later capabilities that exist
on the system are derived. This operation is one-way - the system
cannot switch back to the compatible mode without a full reset.
Interrupt and exception handling. Following the design of Cap-
STONE, CAPLIFIVE provides a register cih that stores the sealed ca-
pability to dompyg, the H-interrupt handler domain. An H-interrupt
amounts to an asynchronous domain switching to dompg. CAPLI-
F1vE allows the H-interrupt handler domain to post V-interrupts by
extending the RETURN instruction with an additional operand for
specifying the bit map of the V-interrupts to post. The in-domain ex-
ception and V-interrupt handling mechanism mirrors the exception
and interrupt handling mechanism in RISC-V [60]. The only differ-
ences are the changes for localizing privileged states. To S-mode
and U-mode software, such adjustments are transparent.
Domain switching. For both types of domain switching, CApLI-
F1vE performs the necessary save and restore operations to protect
domain data, including the CSRs that are local to each domain.
Missing out a CSR can lead to serious security and functionality
consequences. For example, failing to save or restore the C-mode
trap vector ctvec prevents the involved domains from delivering
their exceptions and V-interrupts to the desired locations.
Synchronous and asynchronous domain switching requires sav-
ing and restoring different parts of the context. Since domains
control when synchronous domain switching takes place, they
can perform the necessary context save/restore by themselves in
software. The exceptions are some CSRs that can affect C-mode
execution right after a synchronous switching, such as mip and
mideleg. The hardware needs to swap those CSRs atomically. For
asynchronous domain switching, as the original domain cannot
control when it takes place, the hardware needs to perform all the
necessary context saves and restores for the domain.

5.2 Software Stack

The various software components in a CAPLIFIVE system interact
with one another, both across domains and within the same domain,
through well-defined interfaces, as briefly described below.

Supervisor Binary Interface (SBI). CAPLIFIVE Supervisor Binary
Interface (SBI) is the interface between the capability-aware C-mode
software and the legacy software in the S/U modes. It extends the
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Table 2: SBI exposed to capability-oblivious software.

Function Semantics
dom-create creates a new domain
dom-call synchronously invokes a domain

submits a domain to the scheduler as a new thread
creates a new memory region

shares a memory region with a domain

queries information about a memory region
counts the memory regions held by the domain

dom-schedule
region-create
region-share
region-query
region-count

Table 3: Sharing modes for cross-domain arguments.

Sharing mode | Capability type Post-call revocation
default non-linear Yes
borrowed linear Yes
shared non-linear No
transferred linear No

RISC-V SBI [42] with support for capability-based isolation. Table 2
summarizes the functions available through CapLIFIVE SBL
Domain Binary Interface (DBI). The DBI defines the interface
between C-modes of domains. This includes, for example, functions
to request an entry into S-mode and to share a memory region in
the form of a capability.

Interrupt Handler Interface (IHI). Each domain (except for the
H-interrupt handler domain itself) can interact with the H-interrupt
handler domain through a synchronous call. The interrupt handler
interface defines the format of such communications.
Capability-based inter-domain communication. CAPLIFIVE
allows applications to take advantage of the expressiveness of capa-
bilities for inter-domain communication. This is achieved by using
the appropriate capability type. Conceptually, each argument has
a pair of attributes. The first attribute is a sharing mode which
captures the desired change in ownership and exclusiveness of the
argument. It translates into the capability type and whether revoca-
tion should be performed after the call returns, as shown in Table 3.
The second attribute is the sharing permission, which dictates the
restrictions on the access permissions the callee has to the argu-
ment. The available values for the sharing permission include in
(read-only), out (write-only), inout (read-write), exe (execute-only),
and full (read-write-execute).

Threading. CApLIFIVE supports multithreading and multiprocess-
ing. It multiplexes all software threads on a single hardware thread
(i-e., a hart in the RISC-V terminology). By default, the first domain
to run after system resets (domy) is special in this respect as it plays
a direct role in scheduling threads. Note that this does not violate
our threat model as domy is still unable to break data confidentiality
or integrity. Specifically, domg has the permission to configure the
hardware timer interrupts through the memory-mapped CLINT
timer registers (mtimecmp and mtime as specified in the RISC-V
ISA [60]). The domain domg can use the interrupt handler interface
to request the H-interrupt handler domain to switch to a different
thread with a specified domain domy. During the execution of a
thread other than the one domg runs on, whenever an H-interrupt
occurs (including timer interrupts), the H-interrupt handler domain
takes control and resumes the execution of domg. The H-interrupt
handler domain can choose to delegate the H-interrupt to domg
as a V-interrupt. The in-domain interrupt handler in domg can
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henceforth perform scheduling of userspace threads along with
the domains they invoke, but without being aware of CAPLIFIVE
domains. When the userspace thread that invoked the other thread
is scheduled to run again, it can choose to resume the execution of
the thread that domx belongs to.

6 Implementation

Our prototype implementation of CAPLIFIVE consists of two parts:
the hardware architecture and the software stack. We present two
implementations of the hardware architecture: CAPLIFIVE-QEMU
and CAPLIFIVE-RTL. CAPLIFIVE-QEMU extends QEMU [5] with
CAPLIFIVE features. Its goal is to explore the expressiveness of
CAPLIFIVE. Since it only emulates the hardware behaviour at the
ISA level, it is unsuitable for cycle-level performance evaluation.
CapLIFIVE-RTL instead focuses on the register-transfer level (RTL),
which models the cycle-level behaviours of the hardware. CapLI-
F1ve-RTL modifies CVA6 [30], an open-source RISC-V core. We
have released all source code publicly [39, 40, 67].

6.1 CarprrLiFive-QEMU

The CAPLIFIVE-QEMU implementation is straightforward. We make
use of helper functions to implement most CAPLIFIVE operations,
instead of implementing them as inline code in the TCG IR.

6.2 Software Stack

We created a compiler, CAPLIFIVE-CC, for developing C-mode pure-
capability software. We used it mainly to support the prototype
software implementation for CAPLIFIVE. CAPLIFIVE-CC takes as
input C code with CapLIFIVE-specific annotations and intrinsics. It
implements all pointers as capabilities, and allows specifying the
capability type through annotations. CAPLIFIVE-CC also supports
in-domain and cross-domain abstract binary interfaces (ABIs) and
recognizes intrinsics that expose CAPLIFIVE-specific operations.

We use CAPLIFIVE-CC to develop the C-mode software, CAPLI-
F1ve-SBL It provides the extended supervisor binary interface to ex-
pose CapLIFIVE-specific isolation operations to lower privilege lev-
els (Section 5.2). We modified OpenSBI [43] to perform a CAPENTER
in the last stage of the booting process. CAPLIFIVE-CC takes over
control, performs its own initialization, including setting up C-
mode-specific CSRs and the H-interrupt handler domain, before
handing over control to S-mode. S-mode runs an unmodified Linux
kernel with a kernel module (modcaplifive), which exposes a U-
mode interface through IOCTLs. U-mode provides libcaplifive
which includes wrappers of the IOCTL interface.

6.3 CarrLiFIvE-RTL

We implement CAPLIFIVE-RTL as a basis for our performance evalu-
ation in Section 8. For simplicity, our implementations leave out the
handling of linearity, i.e., they do not prevent duplicating linear ca-
pabilities. Nor do our implementations include reference counting
to recycle allocated nodes.

Overview. We build CapLIFIVE-RTL on CVA6 [70], a 6-stage in-
order RISC-V CPU in SystemVerilog. Figure 5 presents an overview
of the CAPLIFIVE-RTL design, with added and modified components
highlighted. We consider a setup with a single CPU core with an ISA
based on RV64IMAC [54]. Most changes to CVA6 concentrate on the
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Figure 5: A simplified overview of CApPLIFIVE-RTL. The
shaded components are added (bold) or modified (regular)
over the original CVA6. Arrows represent data flows.

issue, execution, and commit stages, where maintenance, manipula-
tion, and enforcement of capabilities take place. CAPLIFIVE-RTL also
extends the data cache (D$) to facilitate tagged memory accesses.

Extension to data paths. We extend all general-purpose registers
(GPRs, Operand read in Figure 5) and some CSRs (CSR Regfile) to
optionally hold capabilities, with tag bits indicating whether they
hold capabilities or integers.

Extension to data cache. CAPLIFIVE-RTL extends the data cache
to maintain tags associated with 16-byte-aligned memory locations.
Each cache line in the data cache memory is extended to cache tags.
For each cache miss, the miss unit requests the cache line from the
next level of the memory subsystem, including both data and tags.
The tags are maintained in a separate physical memory region not
directly accessible to software. CAPLIFIVE-RTL caches them in a
blocking write-back write-allocate tag cache.

Node unit. The node unit maintains the revocation tree (Sec-
tion 5.1). It accepts three types of requests from other components:
queries, allocations, and mutations. Queries look up the validity of
specified nodes. Most queries are asynchronous and only synchro-
nized in the commit stage. Allocations speculatively allocate new
revocation nodes. Some instructions need IDs of newly allocated
revocation nodes. Though those instructions may require further
complex changes to the revocation tree, the node IDs can be decided
cheaply in advance. Mutations make actual (architectural) changes
to the revocation tree. The node unit maintains pending mutations
in a mutation buffer and processes them in a state machine using
spare memory bandwidth. Similarly to tags, revocation nodes reside
in a physical memory region that software cannot directly access.
A dedicated writeback write-allocate node cache caches the nodes.
Capability unit. We add a fixed-latency capability unit to perform
simple manipulation on capabilities, e.g., shrinking and tightening.
The capability unit also performs compression and decompression
of capabilities stored in registers. For operations that require valid
capability operands, the capability unit sends corresponding node
queries to the node unit. The commit stage waits until the associated
query is resolved before retiring an instruction or generating an
exception if the query results do not meet the requirements (i.e.,
the capability is invalid). For instructions that might change the
validity of any capability, the commit stage sends the mutation
requests to the node unit after retiring the instructions.
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Load/store unit. The extended load/store unit (LSU) supports
loading and storing capabilities as well as using capabilities for
memory access. In the former case, the off-band tag bit also needs
to be loaded or stored to indicate whether the data is a capability.
This is handled mostly transparently by a modified data cache,
as discussed earlier. In the latter, the LSU performs bounds and
permissions checks, and, similarly to the capability unit, sends
necessary capability validity queries to the node unit.

Domain switcher. The domain switcher performs both synchro-
nous and asynchronous domain switching. The commit stage acti-
vates the domain switcher after retiring an instruction that requires
domain switching or is tagged with a hardware interrupt. Domain
switching involves swapping a number of registers with memory
contents. We implement this as a sequence of load and store re-
quests to the LSU. The other pipeline stages, including existing load
requests and uncommitted store requests in the LSU, are flushed dur-
ing domain switching. The domain switcher redirects the frontend
to the new PC capability cursor at the end of domain switching.

7 Case Studies

Our prototype systems runs Linux as a single domain on RISC-V. In
addition, we present two case studies to showcase compatibility and
interoperability between capability-aware and capability-oblivious
software. They also highlight how capability-based isolation can
directly benefit capability-oblivious software.
Kernel-space isolation: Linux driver (driver). CAPLIFIVE can
be used to compartmentalize kernel components. Our case study
builds on a bio-based null block device driver [37], a Linux kernel
module which simulates a block device and interacts with the other
parts of the kernel through the bio interface. We split the driver into
two components running in separate domains, domy4 and domp.
The main part of the driver runs in S-mode of dom4 alongside the
Linux kernel, while some isolated functions are moved to S-mode
of domp. The component in domy is responsible for interacting
with the kernel, and sharing data with the component in domp. De-
pending on the sharing semantics, CAPLIFIVE uses different types
of capabilities. The data structure representing the null block de-
vice (struct nullb_device)is shared synchronously between two
components through a linear capability (nullb_dev_buf). Linear
capabilities ensure that the physical memory is accessible to only
one component at any given time, providing temporal isolation [69].
Arguments and return values are also passed synchronously be-
tween two components through arg_buf and rv_buf capabilities.
Additional data specific to a function call is shared asynchronously
through a non-linear capability (metadata_buf). This case study
highlights benefits of fine-grained memory isolation in the kernel
possible with CAPLIFIVE, a salient advantage of capability hardware.
User-space isolation: web server (webserver). This case study
shows that CAPLIFIVE can be used for user-space isolation and allows
capability-oblivious user programs to interact with capability-aware
software. Consider a web server setup that consists of three com-
ponents isolated in three domains domy, domp, and domc. The
frontend in domy is a U-mode process. It receives requests from
user and forwards the request to domp directly without kernel
intervention through shared capabilities. The middleware in domp
handles these requests and generates responses accordingly. It can
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then execute external scripts for dynamic content generation if
needed, which run in the backend in C-mode of dom¢. Commu-
nications between the web server and external scripts are only
between domp and dom¢ through shared capabilities.

We assume that the server script in dom¢ is potentially buggy
or backdoored. The attacker may attempt to use the server script to
leak or tamper with dompg and dom 4. They may also target specific
connections, e.g., to leak private data exchanged in one connec-
tion to another. To provide temporal isolation, domp creates domc
without provisioning writable capabilities. For every connection
when domp needs to invoke dom¢ for request handling, it passes
writable capabilities to zeroed memory regions or uninitialized ca-
pabilities. Requests and external scripts are handed from the user
to the component in domy, which forwards them directly to domp
through linear capabilities (socket_buf and script_buf). When
handling the request, domp may request files from domy4 through
a linear capability (file_buf). Domains domp and dom¢ can write
the response to a linear capability (response_buf), which will be
de-linearized once the response is complete. Domain dom4 can then
read the content of the response after a capability revocation, which
it in turn forwards to the user. The three domains share all metadata
asynchronously through a non-linear capability (metadata_buf).

8 Performance Evaluation

We evaluate the performance of our prototype CAPLIFIVE imple-
mentation (Section 6), focusing on the following questions:
EQ1. What is the overhead of individual operations in CAPLIFIVE?
EQ2. How does the overall performance of applications in CAPLI-
FIvE compare with that of the VMAC baseline?
Comparison baselines. We compare against two baselines:
PMP. We compare the caplified PMPs in CAPLIFIVE with the
original physical memory protection (PMP) design in RISC-V, a
feature on RISC-V [60] to enforce memory isolation. This baseline
design follows Keystone [27] and relies on trusted M-mode software
to configure PMPs to provide isolation. Application software traps
into M-mode for domain switching.
No-isolation. We also compare with running all software com-
ponents on RISC-V with no isolation in M-mode.

8.1 Microbenchmarks

We run a collection of microbenchmarks on CApPLIFIVE-RTL simu-
lated with Verilator [51], a cycle-accurate RTL simulator. We use a
single-core setup with 16 cpmp entries, a 2KB 4-way set-associative
tag cache with 8-byte cache lines, a 4KB 4-way set-associative node
cache with 16-byte cache lines. Both baselines are evaluated on un-
modified CVA6 with 16 PMP entries, also simulated with Verilator.
We measure the costs of the different operations below.
Sequential loads/stores. CAPLIFIVE loads or stores data at 8-byte
granularity using a capability sequentially. The PMP baseline per-
forms sequential loads or stores with LD in S-mode on virtual ad-
dresses, and the No-isolation baseline does the same in M-mode on
physical addresses. We also measure the cost of loading or storing
pointers. Those pointers correspond to capabilities in CAPLIFIVE
and 8-byte integers in both baselines. We report the cycles needed
for 128 such operations after the cache is warm, so no TLB misses
or page faults occur.
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Traps and returns. For both CAPLIFIVE and PMP, we measure the
cost of vertical traps, including the context saving time for both
U-to-S and S-to-M/C traps. We also measure the cost of returning
from those traps. For the No-isolation baseline, we report the cost
of plain function calls and returns.

Synchronous domain switching. We consider switching between
domains in various privilege levels. CAPLIFIVE supports isolation
in C-mode, and a domain switch from C-mode of one domain to
that of another constitutes a CALL instruction. Depending on the
application-specific security requirements, the software may need
to save and scrub (i.e., zero) part or all of the GPRs. We also measure
the worst-case cost of such extra operations. Domain switching
from or to a lower privilege level involves the cost of switching
between privilege levels (traps and returns). PMP involves first
trapping into M-mode, followed by an adjustment to the PMP entry
permissions, and a return to the target privilege level with MRET.
We account for the cost of traps and returns from trap separately
from the domain switching operation in M/C-mode itself for both
CaprLIFIVE and PMP. For No-isolation, we evaluate the cost of an
empty function call in M-mode.

Interrupt delivery. We count the cycles between when an inter-
rupt is taken and when the interrupt handler can start handling the
interrupt. We consider the scenario where the interrupt handler is a
different domain from the currently executing one. For CAPLIFIVE,
this is an asynchronous domain switch into the H-interrupt handler
domain. PMP first delivers the interrupt to the M-mode security
monitor, which then switches to the H-interrupt handler domain.
The process is thus the same as that of a synchronous domain
switch, except that the trap into M-mode is now asynchronous due
to an interrupt. For No-isolation, we consider a trap from S-mode
into M-mode due to an interrupt, including the cost of saving the
context based on the Linux implementation.

Inter-domain communication. We evaluate two types of inter-
domain communication. Sharing data between CAPLIFIVE domains
involves creating a revocation capability, an adjustment to the capa-
bility permissions, followed by a revocation after the use by other
domains is complete. Transferring data involves simply passing
a capability. PMP involves copying the data in and out through
a shared buffer for either data sharing and transfer. No-isolation
does not require any operation for data sharing and transfer. We
evaluate the cost of sharing or transferring 1 KB of data.

Results. Table 4 summarizes the results. In both CAPLIFIVE and
the baselines, each 8-byte load or store in the sequential load/store
benchmarks takes around 4 cycles. The gap in pointer loads/stores
between CAPLIFIVE and the baselines is accounted for by its doubled
size of the pointer (capabilities are 16 bytes long). Domain switching
in both CAPLIFIVE and PMP costs more compared to a function call
(No-isolation). The cost comes mostly from swapping of contexts,
including some of the S-mode CSRs for PMP and C-mode CSRs for
CAPLIFIVE. Noteworthy is CAPLIFIVE’s support for isolation and
domain switching in C-mode. Pure C-mode domains can decide
(potentially with the help of a compiler) which part of the context
to save and scrub, depending on which part is live and which part
it considers as sensitive. The resulting cost can be as low as 838
cycles, which, though still 8.4x higher than a plain function call (18
cycles), is 5.4x lower than S-mode domain switching in PMP (742
cycles when considering the cost traps and returning from traps).
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Table 4: Microbenchmark results (measured in cycles).

Microbenchmark CapLIFIVE PMP No-isolation
Sequential loads 511 511 511
Sequential stores 471 445 440
Sequential ptr. loads 766 511 511
Sequential ptr. stores 846 445 440
U-to-S trap 99 93 18
S-to-M/C trap 113 113 18
S-to-U return 67 67 14
M/C-to-S return 158 158 14
Sync. dom. switch (C) 88-308 N/A 18
Sync. dom. switch (S/U) | 614 471 18
Interrupt delivery 951 731 119
Data sharing (1KB) 25 1042 0
Data transfer (1KB) 4 1042 0

Data sharing and transfer incur a small fixed overhead in capability
manipulation in CAPLIFIVE, but have a cost that increases with the
amount of data involved in PMP.

The cost of most operations in CAPLIFIVE is similar to that in PMP,
except for data sharing where CAPLIFIVE significantly reduces
the cost and interrupt delivery where CAPLIFIVE is significantly
more costly. Both have higher cost than No-isolation. CAPLIFIVE
supports the cheaper C/M-mode isolation while PMP does not.

8.2 Macrobenchmarks

We profile our two case studies presented in Section 7, which run
on CAPLIFIVE-QEMU to obtain the occurrences of individual op-
erations and events during execution. We approximate the overall
performance by combining them with the microbenchmark results.
We focus on the cost of interrupt delivery, cross-domain data shar-
ing, and context switches (including the associated traps and re-
turns from traps). Based on the micro-benchmarking results, these
aspects are where we expect to see most performance differences.
Results. Figure 6 summarizes the results. The raw profiling results
are given in Appendix A. The overhead of data sharing is 86%
to 98% lower in CApPLIFIVE compared to PMP. The reduction is
especially evident in webserver, which shares or transfers a larger
amount of data in fewer passes compared to the other two case
studies. The cost of context switching in CAPLIFIVE is higher or
lower than in PMP, depending on the application scenario. As PMP
does not support C/M-mode isolation, it needs to resort to domain
switches from S-mode, which is more costly. For webserver, the
context switching overhead is almost the same between CAPLIFIVE
and PMP (2% higher in CAPLIFIVE). In contrast, for driver, which
only performs S-to-S domain switches, the domain switch cost
in CAPLIFIVE is 19% higher than in PMP. Interrupt delivery in
CAPLIFIVE is 30% more costly. However, this performance impact is
minimal in our case studies as interrupts are rare. Overall, the total
of the three types of overhead in CAPLIFIVE is reduced by 9% in
webserver and increased by 12% in driver, as compared to PMP.

Compared to PMP, CAPLIFIVE has comparable performance and
reduces the overhead of cross-domain data sharing (by up to 98%).
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Figure 6: Summary of macrobenchmark results.

9 Related Work

We have discussed the most relevant prior work in Section 3. We
discuss the broader context motivating our work in this section.
Capability-based security. Early work on capability-based sys-
tems [14, 21, 24, 28, 32] before the 1980s had the ambitious goal
of closing the semantic gap between high-level programming lan-
guages and hardware architectures. Recent work on hardware ca-
pabilities has focused on their potential as a memory safety mecha-
nism, [15, 18, 25, 26, 32, 50, 61, 63]. Beyond hardware capabilities,
prior work has also explored software-based capabilities as an iso-
lation primitive [4, 6, 12, 20, 64]. Such designs require a trusted
software monitor, e.g., a microkernel, to interpret capabilities and
translate them into hardware isolation primitives such as VMAC.
VMAC security extensions. Outside capability-based designs,
prior work has devised extensions to VMAC to accommodate more
isolation needs without breaking compatibility with existing soft-
ware. Designs based on memory protection keys (MPKs), memory
domains, or page groups [8, 19, 48, 49, 52, 55, 66] associate permis-
sions with whole virtual page groups. A common trusted software
monitor either directly controls such permissions or monitors how
the isolated components adjust the permissions. Extended page
table (EPT) designs as found in hardware-assisted virtualization
extensions (e.g., Intel VMX [23], AMD SVM [1], and RISC-V H ex-
tension [60]) extends the numbers of privilege levels and address
translations by one, which leaves application needs such as nested
isolation of the picture [38]. Isolation mechanisms based on the
EPT, with or without VMFUNC, rely on a trusted hypervisor and
lack support for inter-domain sharing [19, 22, 29, 31, 33, 34, 35].
Trusted execution environment (TEE) extensions either rely on a
trusted software monitor to partition the physical memory into
multiple VMAC-based compartments [1, 2, 3], or enforce ad-hoc
restrictions on virtual memory [10, 23].

10 Conclusion

This paper presents CAPLIFIVE, a novel system design that uses the
strategy of caplification to maintain compatibility and interoperabil-
ity between hardware capabilities and capability-oblivious software
stacks without sacrificing the unique advantages of capability-based
isolation. CAPLIFIVE is capable of bringing the benefits of capability-
based isolation to capability-oblivious software and providing a
consistent isolation primitive across all levels of existing capability-
oblivious software stacks.
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A Profiling Results

Table 5 summarizes the profiling results.

Table 5: Summary of profiling results. Each data sharing or
transfer result consists of the number of occurrences and the
total amount of data shared or transferred.

driver webserver
Domain switching (U) 0 2340
Domain switching (S) 14520 2142
Domain switching (C) 0 1292
Interrupt delivery 61 75
Memory access fault 0 13
Asynchronous sharing 7260, 58080 6406, 52972
Sync. immutable sharing | 7260, 745360 630, 245134
Sync. immutable transfer | 0,0 430, 87590
Sync. mutable transfer 0,0 430, 71318




