Final Examination

CS 525 - Fall 2010

Thursday, December 23, 2010, 10:05a-12:05p.

Each question is worth the same number of points.

No electronic devices, notes, or books allowed, except that you may bring one standard-size sheet of paper, handwritten on both sides, into the test. **Give reasoning and justify all your answers**, quoting any theorems you use.

1. (a) Solve the following linear program: If it is unbounded, give a direction of unboundedness.

min
$$-2x_1 + 3x_2 + x_3$$

subject to $x_1 + x_3 \ge 2$,
 $4x_1 - x_2 = -1$
 $(x_1, x_2, x_3) \ge 0$.

(b) Formulate a linear program that finds the Chebyshev approximate solution of the system Ax = b, where

$$A = \begin{bmatrix} 1 & 3 \\ 2 & -1 \\ 4 & 7 \end{bmatrix}, \quad b = \begin{bmatrix} 2 \\ 2 \\ 10 \end{bmatrix}.$$

Write the problem in tableau form. *Do not solve* it, but indicate which element of the tableau would be your first pivot.

2. Solve the following linear program for all values of the parameter t in the interval $(-\infty, \infty)$. For each piece of the solution indicate clearly:

parameter range, solution x(t), and optimal objective value z(t).

min
$$x_1 + 2x_2$$

subject to $-x_1 \ge 4 + t$,
 $x_1 + x_2 \ge -2t$,
 $x_1, x_2 \ge 0$.

3. Consider the following quadratic program:

$$\min x_1^2 - 2x_1x_2 + 4x_2^2 + 2x_1$$

subject to $2x_1 + x_2 \ge 4$,
 x_1, x_2 both free.

- (a) Write down the KKT conditions for this problem.
- (b) Solve the problem using Lemke's method.
- (c) Does the solution change if we change the constraint to an equality constraint: $2x_1 + x_2 = 4$? Explain.
- 4. Suppose that in a two-player zero-sum game, the loss matrix for Player 1 is as follows:

$$A = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 0 & 1 \\ 1 & -1 & 0 \end{bmatrix}.$$

- (a) Write down the expected loss for Player 1, when Player 1 plays a randomized strategy $x = (x_1, x_2, x_3)$ and Player 2 plays a randomized strategy $y = (y_1, y_2, y_3)$.
- (b) Show that Player 1 can achieve a *negative* expected loss (i.e. an expected gain) if if Player 2 plays any strategy other than $(y_1, y_2, y_3) = (1/3, 1/3, 1/3).$
- (c) Show that $\overline{x} = (1/3, 1/3, 1/3)$ and $\overline{y} = (1/3, 1/3, 1/3)$ form a Nash equilibrium pair.
- (d) Let $\bar{x} = (1/3, 1/3, 1/3)$ as in part (c). Is it possible for (\bar{x}, \hat{y}) to be a Nash equilibrium pair, for some strategy vector \hat{y} not equal to (1/3, 1/3, 1/3)? Explain.