
Chapter 3

The Simplex Method

All linear programs can be reduced to the following standard form

minx z = p′x
subject to Ax ≥ b, x ≥ 0,

(3.1)

where p ∈ Rn, b ∈ Rm and A ∈ Rm×n. To create the initial tableau for the simplex method,
we rewrite the problem in the following canonical form:

minxB,xN z = p′xN + 0′xB

subject to xB = AxN − b, xB, xN ≥ 0,
(3.2)

where the index sets N and B are defined initially as N = {1, 2, . . . , n} and B = {n +
1, . . . , n + m}. The variables xn+1, . . . , xn+m are introduced to represent the slack in the
inequalities Ax ≥ b (the difference between left- and right-hand sides of these inequalities)
and are called slack variables. We shall represent this canonical linear program by the
following tableau:

x1 · · · xn 1
xn+1 = A11 · · · A1n −b1

...
...

. . .
...

...

xn+m = Am1 · · · Amn −bm

z = p1 · · · pn 0

. (3.3)

In this tableau, the slack variables xn+1, . . . , xn+m (the variables that make up xB) are the
dependent variables, while the original problem variables x1, . . . , xn (the variables that
make up xN) are independent variables. It is customary in the linear programming literature
to call the dependent variables basic and the independent variables nonbasic, and we will
adopt this terminology for the remainder of the book. A more succinct form of the initial
tableau is known as the condensed tableau, which is written as follows:

xN 1
xB = A −b

z = p′ 0

(3.4)
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46 Chapter 3. The Simplex Method

We “read” a tableau by setting the nonbasic variables xN to zero, thus assigning the
basic variables xB and the objective variable z the values in the last column of the tableau.
The tableau above represents the point xN = 0 and xB = −b (that is, xn+i = −bi for
i = 1, 2, . . . , m), with an objective of z = 0. The tableau is said to be feasible if the values
assigned to the basic variables by this procedure are nonnegative. In the above, the tableau
will be feasible if b ≤ 0.

At each iteration of the simplex method, we exchange one element between B and N,
performing the corresponding Jordan exchange on the tableau representation, much as we
did in Chapter 2 in solving systems of linear equations. We ensure that the tableau remains
feasible at every iteration, and we try to choose the exchanged elements so that the objective
function z decreases at every iteration. We continue in this fashion until either

1. a solution is found, or

2. we discover that the objective function is unbounded below on the feasible region, or

3. we determine that the feasible region is empty.

The simplex method can be examined from two viewpoints, which must be understood
separately and jointly in order to fully comprehend the method:

1. An algebraic viewpoint represented by tableaus;

2. A geometric viewpoint obtained by plotting the constraints and the contours of the
objective function in the space of original variables Rn.

Later, we show that the points represented by each feasible tableau correspond to vertices
of the feasible region.

3.1 A Simple Example
We now illustrate how the simplex method moves from a feasible tableau to an optimal
tableau, one pivot at a time, by means of the following two-dimensional example.

Example 3.1.1.
minx1,x2 3x1 − 6x2
subject to x1 + 2x2 ≥ −1

2x1 + x2 ≥ 0
x1 − x2 ≥ −1
x1 − 4x2 ≥ −13

−4x1 + x2 ≥ −23
x1, x2 ≥ 0.

The first step is to add slack variables, to convert the constraints into a set of general
equalities combined with nonnegativity requirements on all the variables. The slacks are
defined as follows:

x3 = x1 + 2x2 + 1
x4 = 2x1 + x2
x5 = x1 − x2 + 1
x6 = x1 − 4x2 + 13
x7 = −4x1 + x2 + 23.



3.1. A Simple Example 47

(When we use MATLAB to form the initial tableau, it adds the slacks automatically; there is
no need to define them explicitly as above.) We formulate the initial tableau by assembling
the data for the problem (that is, the matrix A and the vectors p and b) as indicated in the
condensed tableau (3.4). The MATLAB command totbl performs this task:

' load ex3.1.1

' T = totbl(A,b,p);

x1 x2 1
x3 = 1 2 1
x4 = 2 1 0
x5 = 1 −1 1
x6 = 1 −4 13
x7 = −4 1 23
z = 3 −6 0

The labels associated with the original and slack variables are stored in the MATLAB structure
T. The point represented by the tableau above can be deduced by setting the nonbasic
variables x1 and x2 both to zero. The resulting point is feasible, since the corresponding
values of the basic variables, which initially are the same as the slack variables x3, x4, . . . , x7,
are all nonnegative. The value of the objective in this tableau, z = 0, is obtained from the
bottom right element.

We now seek a pivot—a Jordan exchange of a basic variable with a nonbasic variable—
that yields a decrease in the objective z. The first issue is to choose the nonbasic variable
which is to become basic, that is, to choose a pivot column in the tableau. In allowing
a nonbasic variable to become basic, we are allowing its value to possibly increase from
0 to some positive value. What affect will this increase have on z and on the dependent
(basic) variables? In the given example, let us try increasing x1 from 0. We assign x1 the
(nonnegative) value λ while holding the other nonbasic variable x2 at zero; that is,

x1 = λ, x2 = 0.

The tableau tells us how the objective z depends on x1 and x2, so for values given above we
have

z = 3(λ) − 6(0) = 3λ > 0, for λ > 0.

This expression tells us that z increases as λ increases—the opposite of what we want. Let
us try instead choosing x2 as the variable to increase, and set

x1 = 0, x2 = λ > 0. (3.5)

For this choice, we have

z = 3(0) − 6λ = −6λ < 0 for λ > 0,

thus decreasing z, as we wished. The general rule is to choose the pivot column to have
a negative value in the last row, as this indicates that z will decrease as the variable cor-
responding to that column increases away from 0. We use the term pricing to indicate
selection of the pivot column. We call the label of the pivot column the entering variable,
as this variable is the one that “enters” the basis at this step of the simplex method.
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To determine which of the basic variables is to change places with the entering variable,
we examine the effect of increasing the entering variable on each of the basic variables.
Given (3.5), we have the following relationships:

x3 = 2λ + 1
x4 = λ

x5 = −λ + 1
x6 = −4λ + 13
x7 = λ + 23.

Since z = −6λ, we clearly would like to make λ as large as possible, to obtain the largest
possible decrease in z. On the other hand, we cannot allow λ to become too large, as this
would force some of the basic variables to become negative. By enforcing the nonnegativity
restrictions on the variables above, we obtain the following restrictions on the value of λ:

x3 = 2λ + 1 ≥ 0 (⇒ λ ≥ −1/2
x4 = λ ≥ 0 (⇒ λ ≥ 0
x5 = −λ + 1 ≥ 0 (⇒ λ ≤ 1
x6 = −4λ + 13 ≥ 0 (⇒ λ ≤ 13/4
x7 = λ + 23 ≥ 0 (⇒ λ ≥ −23.

We see that the largest nonnegative value that λ can take without violating any of these
constraints is λ = 1. Moreover, we observe that the blocking variable—the one that will
become negative if we increase λ above its limit of 1—is x5. We choose the row for which
x5 is the label as the pivot row, and refer to x5 as the leaving variable—the one that changes
from being basic to being nonbasic. The pivot row selection process just outlined is called
the ratio test.

By setting λ = 1, we have that x1 and x5 are zero, while the other variables remain
nonnegative. We obtain the tableau corresponding to this point by performing the Jordan
exchange of the row labeled x5 (row 3) with the column labeled x2 (column 2). The new
tableau is as follows:

' T = ljx(T,3,2); x1 x5 1
x3 = 3 −2 3
x4 = 3 −1 1
x2 = 1 −1 1
x6 = −3 4 9
x7 = −3 −1 24
z = −3 6 −6

Note that z has decreased from 0 to -6.
Before proceeding with this example, let us review the procedure above for a single

step of the simplex method, indicating the general rules for selecting pivot columns and
rows. Given the tableau

xN 1
xB = H h

z = c′ α

(3.6)
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where B represents the current set of basic variables and N represents the current set of
nonbasic variables, a pivot step of the simplex method is a Jordan exchange between a basic
and nonbasic variable according to the following pivot selection rules:

1. Pricing (Selection of Pivot Column s): The pivot column is a column s with a negative
element in the bottom row. These elements are called reduced costs.

2. Ratio Test (Selection of Pivot Row r): The pivot row is a row r such that

−hr/Hrs = min
i

{−hi/His | His < 0}

Note that there is considerable flexibility in selection of the pivot column, as it is often the
case that many of the reduced costs are negative. One simple rule is to choose the column
with the most negative reduced cost. This gives the biggest decrease in z per unit increase in
the entering variable. However, since we cannot tell how muchwe can increase the entering
variable until we perform the ratio test, it is not generally true that this choice leads to the
best decrease in z on this step, among all possible pivot columns.

Returning to the example, we see that column 1, the one labeled x1, is the only possible
choice for pivot column. The ratio test indicates that row 4, labeled by x6, should be the
pivot row. We thus obtain

' T = ljx(T,4,1); x6 x5 1
x3 = −1 2 12
x4 = −1 3 10
x2 = −0.33 0.33 4
x1 = −0.33 1.33 3
x7 = 1 −5 15
z = 1 2 −15

In this tableau, all reduced costs are positive, so the pivot column selection procedure does
not identify an appropriate column. This is as it should be, because this tableau is optimal!
For any other feasible point than the one indicated by this tableau, we would have x6 ≥ 0 and
x5 ≥ 0, giving an objective z = x6 +2x5 −15 ≥ −15. Hence, we cannot improve z over its
current value of −15 by allowing either x5 or x6 to enter the basis, so the tableau is optimal.
The values of the basic variables can be read from the last column of the optimal tableau.
We are particularly interested in the values of the two variables x1 and x2 from the original
standard formulation of the problem; they are x1 = 3 and x2 = 4. In general, we have an
optimal tableau when both the last column and the bottom row are nonnegative. (Note:
when talking about the last row or last column, we do not include in our considerations the
bottom right element of the tableau, the one indicating the current value of the objective.
Its sign is irrelevant to the optimization process.)

Figure 3.1 illustrates Example 3.1.1.
The point labeled “Vertex 1” corresponds to the initial tableau, while “Vertex 2” is

represented by the second tableau and “Vertex 3” is represented by the final tableau.

Exercise 3.1.2. Consider the problem

min z = p′x
subject to Ax ≥ b, x ≥ 0,
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Figure 3.1. Simplex method applied to Example 3.1.1
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(i) Draw the feasible region in R2.

(ii) Draw the contours of z = −12, z = −14, z = −16 and determine the solution
graphically.

(iii) Solve the problem in MATLAB using Example 3.1.1 as a template. In addition, trace
the path in contrasting color that the simplex method takes on your figure.


