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Summary. This paper studies projected Barzilai-Borwein (PBB) methods
for large-scale box-constrained quadratic programming. Recent work on this
method has modified the PBB method by incorporating the Grippo-Lampari-
ello-Lucidi (GLL) nonmonotone line search, so as to enable global conver-
gence to be proved. We show by many numerical experiments that the per-
formance of the PBB method deteriorates if the GLL line search is used. We
have therefore considered the question of whether the unmodified method
is globally convergent, which we show not to be the case, by exhibiting
a counter example in which the method cycles. A new projected gradient
method (PABB) is then considered that alternately uses the two Barzilai-
Borwein steplengths. We also give an example in which this method may
cycle, although its practical performance is seen to be superior to the PBB
method. With the aim of both ensuring global convergence and preserving the
good numerical performance of the unmodified methods, we examine other
recent work on nonmonotone line searches, and propose a new adaptive var-
iant with some attractive features. Further numerical experiments show that
the PABB method with the adaptive line search is the best BB-like method in
the positive definite case, and it compares reasonably well against the GPCG
algorithm of Mor¢ and Toraldo. In the indefinite case, the PBB method with
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the adaptive line search is shown on some examples to find local minima with
better solution values, and hence may be preferred for this reason.

1 Introduction
In this paper the box-constrained quadratic programming (BQP) problem

(L) min g(x) := 3x” Ax — b’x
s.t. {<x<u,

is studied, where A € 9"*" is symmetric but may be indefinite, and b, ¢, u
(with £ < u) are vectors in )". This problem not only is of practical interest
in itself (many applications have been pointed out by Moré and Toraldo [24,
25] and Friedlander and Martinez [17]), but also arises as the trust region
box-constrained subproblem of unconstrained optimization. In addition, the
symmetric linear complementarity problem and the strictly convex linearly
constrained quadratic program can be converted into the form (1.1). Once
the optimal face of the box is identified, (1.1) reduces to the unconstrained
minimization of a quadratic function. This means that an algorithm for (1.1)
has two aspects: (a) to identify the optimal face and (b) to minimize the
function on the face. However, the number of the faces of the box in (1.1) is
combinatorial with n. A major difficulty for solving (1.1) is that of how to
identify the optimal face when the dimension # is large.

Active set methods are a class of efficient algorithms for (1.1) if n is small.
They usually restrict the change in the dimension of the working face by only
dropping or adding one constraint at each iteration. This can be a serious
disadvantage in the large-scale case, where many iterations may be needed to
identify the optimal face if the initial active set and the optimal active set are
significantly different. Another disadvantage is that the methods may require
an accurate solution of the working face, which is inefficient if the current
face is far from the optimal face. In addition, most active set methods use
some kind of matrix factorization, which may be expensive if n is large.

Projected gradient (PG) methods provide an alternative way of solving
large-scale BQP problems. They have the advantage that many constraints
can be added or deleted from the working set on each iteration. They are also
simple and easy to code, and avoid the need for a matrix factorization. Early
references on PG methods can be dated back to Goldstein [20] and Levitin
and Polyak [23], where constant steplengths are used. A modified Armijo
line search is introduced by Bertsekas [3] for the choice of steplength. How-
ever, these early PG methods are often inefficient since their performance
resembles the steepest descent method, which is usually very slow once the
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optimal face is identified. Nevertheless, as we will see, the effectiveness of
projected gradient methods can be significantly improved by incorporating
new and fast gradient methods for unconstrained optimization.

An alternative development for improving the effectiveness of projected
gradient methods has been to make use of the conjugate gradient (CG) method
for finding the minimizer on a face. There have been many conjugate gra-
dient type projection algorithms for the positive definite case. Polyak [26]
first proposes an algorithm that uses the negative projected gradient to leave
a face and conjugate gradients to explore a face. Dembo and Tulowitzki [14]
propose algorithms that can drop and add many constraints from the work-
ing face at each iteration, and do not require the accurate solution of the
working face. Subsequently, Yang and Tolle [32] and Wright [31] have pro-
posed two algorithms that are able to drop and add many constraints on each
iteration, and they show that the algorithms terminate in a finite number of
iterations. Although the analysis presented by Yang and Tolle is elegant, their
algorithm may be inefficient in practice since it requires subproblems to be
solved exactly. Wright [31] proposes to use the PG method until the binding
constraints stay constant on two successive iterations, after which the CG
method is used to explore the current face. Moré and Toraldo [25] argue that
the PG phase of Wright’s algorithm can require many iterations to identify
a suitable face if the starting point is far from the solution. A new algorithm
named GPCG is proposed in [25] that uses the PG method until either a suit-
able face is identified, or the PG method fails to make reasonable progress. At
this stage the current face is explored by using the CG method. Once the CG
method fails to make significant progress, a decision is made whether or not
to switch back to the PG method. This strategy avoids the excessive explo-
ration of non-optimal faces by the CG method. For the GPCG algorithm,
Moré and Toraldo report good numerical results for real problems of up to
15625 variables, and show an improvement over the algorithms of Dembo
and Tulowitzki (see [25]). More recently, Friedlander and Martinéz [17] have
developed a new method that decides to leave or stay the current face by the
so-called “chopped gradient” and they report numerical results comparable to
the algorithm in [25]. In this paper we use the GPCG algorithm as a standard
against which to compare our new PG methods.

In this paper, we are interested in PG-type methods for solving (1.1), but
with a steplength choice influenced by recent work on gradient methods for
unconstrained optimization. We define €2 to be the feasible set of (1.1)

(1.2) Q={xef": L <x<u}
and let P denote the projection operator on to €2, that is

(1.3) P(x) = mid(4, u, x),
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where mid(£, u, x) is the vector whose i-th component is the median of the
set {/;, u;, x;}. Assuming that a feasible point x; is generated, the projected
gradient method computes the next point by

(1.4) Xp+1 = P[xp — o8],

where o > 0 is some steplength and g, = Ax; — b.

For the minimization of a strictly convex quadratic g (x) without con-
straints, the classical (Cauchy) steepest descent (SD) method calculates the
steplength from

2 8k
(1.5) g .
¢ gl Agi

This choice of steplength minimizes g (x) along the steepest descent direc-
tion. The SD method is known to be Q-linearly convergent, but the rate of
convergence can be very slow if the matrix A is badly conditioned (see Ak-
aike [1]), so much so that the method will often fail to solve a problem in a
reasonable time.

A significant development that has completely changed our perspectives
on the effectiveness of gradient methods is due to Barzilai and Borwein [2].
They propose two choices of the steplength

T
Bl _ Sk—15k-1

(1.6) ab
¢ S£_1Yk—l

and

St_1Yk-1
(1.7) af B = A
Yi—1Yk—1

where sy = X3 — X;—; and yx_; = g — gr—1. A feature of these methods is
that they are non-monotonic, that is g (X;) may increase on some iterations,
in contrast to the SD method. Barzilai and Borwein prove an R-superlinear
convergence result for the new formulae, when applied for 2-dimensional
strictly convex quadratics. Also Raydan [27] has shown that the BB method
(with either steplength formula) is globally convergent in the strictly convex
quadratic case. A recent study of Dai and Fletcher [9] has shown that the BB
method with either (1.6), (1.7) or any alternate use of the formulae is likely
to be asymptotically R-superlinearly convergent in the 3-dimensional case,
but not for n > 3. In general, R-linear convergence has been established for
the BB method by Dai and Liao [10] in the n—dimensional case. Numerical
experiments have shown that the BB method is far faster than the SD method.
Moreover, Fletcher [16] has shown that the BB method is not greatly inferior
to the CG method for a convex quadratic with 10° variables. By incorpo-
rating the nonmonotone line search of Grippo, Lampariello and Lucidi [21],
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Raydan [28] has extended the BB method with the choice (1.6) for solving
general unconstrained optimization. A wide range of numerical experience is
reported in [28] on problems of up to 10* variables, showing that the method
compares reasonably well against the Polak-Ribiere and CONMIN conjugate
gradient techniques. Birgin, Martinez and Raydan [4] have extended the work
of Raydan and have proposed efficient projected BB algorithms (SPG1 and
SPG2) for the minimization of differentiable functions on closed convex sets.
The BB method has now received many generalizations and applications, see
Birgin, Martinez and Raydan [5], Dai and Fletcher [9], Serafini, Zanghirati
and Zanni [29] and the references therein. Aside from the BB formulae, there
have also been some other steplength choices which have been shown to work
well, and we consider these later in the section.

The success of these new gradient methods motivates us to re-consider
the projected gradient method (1.4) for BQP problems. The fact that the BB
method is efficient in the exploration of a face indicates there is no need to
make a decision as to whether to leave the current face or to explore it further.
However there are several variants of the BB method, and we first investi-
gate which performs best in the context of a projected gradient method. For
unconstrained optimization the formula (1.6) is generally believed to outper-
form (1.7), but we shall see that this does not seem to be the case here. There
are also other options to evaluate. We refer to the projected gradient method
(1.4) with the steplength given by (1.6) as the projected BB method or PBB
method. For reasons described in §2, we have also been motivated to consider
the alternate use of the BB formulae (1.6) and (1.7)

(1.8) BB = 17k

BBI1 .
app _ Jox o, foroddk;
ap”c, forevenk.

which we refer to as the projected alternating BB or PABB method. We note
that alternating strategies involving the formulae (1.6), (1.7), or modified BB
steplengths have been studied in Dai, Yuan and Yuan [11], Grippo and Sci-
androne [22], and Zanghirati and his cooperators [19,33,29], and that the
formula (1.8) has already been used by Grippo and Sciandrone [22] in the
context of unconstrained optimization. More details of these alternating strat-
egies are given in §2. Our numerical tests in §2 on random positive definite
BQP problems show that the PABB method without line searches is usually
successful and performs more efficiently than the PBB method.
We also note that the steplength (1.6) may be written as

o g;{_lgk—l
k= 7 >
ng_1 Agi—1
which is the SD steplength at the previous point x_;. We express this fact by
saying that the BB steplength (1.6) uses the SD steplength with one delay. A



26 Yu-H. Dai, R. Fletcher

class of BB-like methods with longer delays (retards) has been investigated
by Friedlander et al [18] in the unconstrained case. We have also used one
family of gradient methods from [18] (see (2.3) for the family) in §2 to study
the influence of delays in the calculation of the BB-like steplengths in the
box-constrained case. Our experiments show that there is no advantage in
using more than one delay in the box constrained case.

Although both the PBB and PABB methods have never failed in our exist-
ing tests on BQP problems, even without line searches, we have been able
to construct strictly convex BQP problems in two variables showing that the
unmodified PBB and PABB methods may cycle between several points, and
hence fail to converge. These counter-examples are given in §3. This indicates
that it is not possible to extend the convergence results of the BB method for
positive definite linear systems given in [27], to BQP problems, even if they
are strictly convex. The introduction of some kind of line search is therefore
necessary to ensure the global convergence. As mentioned before, the Grippo-
Lampariello-Lucidi (GLL) nonmonotone line search has been incorporated
with the projected BB method in [4], for the minimization of differentia-
ble functions on closed convex sets. However, as will be shown in §4, the
GLL nonmonotone line search may significantly degrade the performance of
the PBB and PABB methods. In fact, numerical results of the two methods
without line searches are often better than those with the GLL line search.
Therefore in §4 we suggest a simplified adaptive nonmonotone line search
based on the work of Toint [30] and Dai and Zhang [12]. An important differ-
ence between our method and the adaptive techniques in [30] and [12] is that
in our work the initial reference function value is set to be +o0o. We find that
this line search not only guarantees global convergence of the PBB or PABB
method, but also is almost always able to accept the steplength of the unmod-
ified method, and hence is able to preserve its good numerical performance.

It is also important to consider how the PBB and PABB methods compare
with PG methods that incorporate CG steps. For reasons described in §1, we
take the GPCG method of Moré and Toraldo [25] as our standard of com-
parison. Further numerical experiments in §5 on large-scale positive definite
BQP problems show that the PABB method with an adaptive nonmonotone
line search is again the best variant amongst the BB-like projected gradient
algorithms considered in this paper, and it also compares reasonably well
against the GPCG algorithm. However, for indefinite BQP problems, we find
that the PBB method with an adaptive nonmonotone line search can often
find a better solution point than the GPCG algorithm and the other variants
of projected gradient algorithms, and hence is recommended in this case.
Further discussion is given in §6.

The positive definite test problems of this paper mainly arise from [25]
or are generated in a way similar to [24]. We also use the technique in [24]
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to generate random indefinite test problems. Nevertheless, to save time we
use random positive definte test problems with smaller dimensions in §2 to
compare different choices for the steplength. A typical example, which is
based on the problem in [16], will be used in §4 to explain the behaviour of
different nonmonotone line searches.

2 Projected gradient methods without line searches

Throughout this section we assume that the Hessian matrix A is symmetric
and positive definite (SPD). Our first experiments concern the effectiveness
of the formulae (1.6) and (1.7). We shall see in §3 that it is possible for
the projected gradient method to fail if these formulae are used, in contrast
to the unconstrained case for which a global convergence proof [27] exists.
However our results indicate that failure would appear to be very unlikely in
practice. We have generated 15 random box constrained SPD test problems
with n = 1000. The upper and lower bounds are chosen so that a range of
different problems types is generated, with the number of active constraints
at the solution ranging from 14 to 885. Also a range of condition numbers
from 10* to 10° is used. More details on how the problems are generated is
given in §5. The stopping condition is

Q2.1 Vgax)lla < 1077 Igi 2,

where Vgq(x;) is defined by

(8r)i ifx; € (i, u;)
(2.2) [Vga(Xp)]i = { min{(gy);, 0} ifx; =1;
max{(g)i, 0} ifx; = u;.

The results are shown in Table 1, where 104 ig the condition number
of the Hessian and na(x;), na(x*) denote the number of initial active con-
straints and active constraints at the optimal solution x*, respectively. i¢ and
ity give the iteration numbers required by the method for the problem with
and without constraints.

First we consider the PBB method that uses formula (1.6), and we see
that it is very effective in solving all the problems, with an average of 127
iterations, and never more than 218 iterations. The number of iterations is
seen to be somewhat greater than would be needed to solve the unconstrained
problem, but not greatly so. However, in examining the results in more detail,
we observe that, whilst the correct active set is often located at an early stage
in the calculation, it often can take many more iterations before the active
set stays constant for all subsequent iterations. To see this, we have tabulated
two quantities ity and itp. Here it is the first iteration on which the correct
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Table 1. Numerical comparison of BB-like methods

\ Problem I PBB | PABB \
‘ ncond ‘ na(xp) ‘ na(x*) H ity ‘ it ‘ ity ‘ itp H ity ‘ ‘ ity ‘ itp ‘
| 4 | 679 | 39 || 47 | 61 [ 29| 34 || 49 | 59 | 22 | 33 |
| 6 | 117 | 508 || 113 | 195 | 75 | 141 || 115 | 184 | 46 | 57 |
| 6 | 257 | 595 || 115 | 179 | 60 | 115 || 112 | 171 | 46 | 46 |
| 5 | 303 | 801 || 72 | 102 | 33| 49 || 77 | 108 | 31 | 31 |
| 5 | 80 | 149 | 65 | 116 25 | 89 || 93 | 108 | 26 | 52 |
| 6 | 91 | 565 || 105 | 189 | 65 | 104 || 117 | 184 | 47 | 47 |
| 5 | 660 | 885 || 76 | 91 |30 | 48 || 72 | 98 | 32| 32 |
| 4 | 874 | 124 || 52 | 58 | 16 | 30 || 58 | 71 | 16 | 22 |
| 4 | 659 | 746 || 52 | 62 | 18 | 18 || 55 | 60 | 20 | 20 |
| 5 | 343 | 107 || 83 | 117 |21 | 52 || 76 | 93 | 26 | 52 |
| 6 | 390 | 535 || 142 | 218 | 62 | 149 || 110 | 161 | 51 | 73 |
| 6 | 176 | 549 || 128 | 174 | 75 | 97 | 107 | 176 | 57 | 91 |
| 6 | 481 | 14 || 137 | 176 | 43 | 92 || 119 | 162 | 30 | 98 |
| 4 | 35 | 307 | 51 | 59 |13 ] 27 || 48 | 63 | 15| 23 |
| 5 ] 205 | 196 || 75 | 115]27 | 54 || 76 | 113 | 28 | 39 |
\ average | 87.5 | 127 | 39 | 73 || 856 | 121 | 33 | 48 |

active set A(x*) is located, and it is the first iteration on which active set is
identical to A(x*) for all subsequent iterations. It can be seen from Table 1
that typically i is twice as large as it for the PBB method.

We have also tested the projected gradient method that uses formula (1.7),
but find that the resulting method is somewhat inferior to the PBB method.
However, the alternating use of (1.6) and (1.7) in the PABB method gives
better results, as also shown in Table 1. In particular, the correct active set
can be seen to settle down more quickly, resulting in a modest but worth-
while improvement in the total number of iterations. An explanation of this
behaviour may be due to the fact that the steplength (1.7) is smaller than
(or possibly equal to) that in (1.6), which follows from the Cauchy-Schwarz
inequality. Use of the larger steplength (1.6) may cause the current face to be
quitted more often, which may cause slower convergence, and thus mitigate
the advantage that (1.6) seems to have in the unconstrained case. However
the use of (1.7) on every iteration seems to slow down the initial identification
of A(x*), and so is not advantageous. For example, using a set of 50 random
test problems with n = 1000, generated as for Table 1, we show in Table 2
the iteration number at which the correct active set is first identified. (Only
those results where the difference is greater than 5 are tabulated.) Formula
(1.6) wins in 16 of these 21 cases, and on average the margin of improvement
is significantly larger.
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Table 2. Effectiveness of (1.6) and (1.7) in locating the correct active set

(1.6): 30 49 34 31 13 22 62 76 14 25 56
1.7: 36 72 42 40 23 15 55 82 59 35 49

(1.6): 68 15 32 28 56 55 73 35 47 60
1.7: 57 21 21 40 76 62 104 45 58 99

The idea of alternately using the formula (1.6), (1.7) or modified BB step-
lengths has appeared in several references. The alternate use of modified BB
steplengths and the formula (1.8) are currently introduced in [11] and [22] in
the context of unconstrained optimization. [19] and [33] report good numer-
ical results with variable projection methods that switch between (1.6) and
(1.7) every three iterations and use a limited minimization rule . In addition,
Serafini, Zanghirati and Zanni [29] suggest several criteria for the switch-
ing mechanism, and again report better numerical results with the variable
projection methods. On the other hand, they find that the alternating strategy
used in their methods is not suited to the SPG method in [4]. However, we
can see from the above and §4 that the PABB method is somewhat better than
PBB method, at least in the positive definite case. In addition, good numerical
results, but not as good as the PABB method, have been obtained by switch-
ing between (1.6) and (1.7) every migy;;cp iterations for mgyiren = 2, 3. It still
remains to study whether there exists a more efficient alternating strategy
similar to the one in [29] when a nonmonotone line search is used.

We have also considered other BB-like methods, in particular the family
of gradient methods with maximal retards [18], in which the steplength is
defined by

T
(2.3) o = ek,
Si—mYk—m
where m = min(m, k— 1) and m > 1 is some prefixed integer. We compare a
range of values of m with the PBB method (m = 1) and the steepest descent
method. For the steepest descent method, we use the steplength

_ lgex0l3

£ ga(x0 T Aga(x)’
where Vgq(X;) is given in (2.2). For all these methods, a line search is only
carried out on the first iteration. Using a set of 50 random test problems with
n = 1000, generated as for Table 1, we show in Table 3 the number of the
problems that are successfully solved in 2000 iterations by each method.

We see that performance deteriorates significantly as m is increased, and
even for m = 2 it happens that the numerical results are almost uniformly
worse than those for the PBB method.

2.4)
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Table 3. Successful solutions for 50 random SPD problems

We have also made some experiments using the AS and CSDS methods
(see [5]) in the BQP context. However we have found that these do not com-
pete with the PABB method described here. A possible reason may be that
repeatedly changing the active set destroys the theoretical basis (see [9]) that
underpins these methods.

3 Two-dimensional counter-examples

In this section, we describe in detail a 2-dimensional counter-example which
shows that the PBB method without line searches may cycle between five
points. A counter-example with eight cyclic points is also given for the PABB
method.

We consider the following box-constrained quadratic programming prob-

lem
T
mml(x1> (t—l—lt—l) (xl)
2\ x, t—1t4+1 X
s.t. x> =3, x>1,
where t > 31 is some constant. The unconstrained minimizer of the qua-
dratic function is X} = (0, 0)”. By the Karush-Kuhn-Tucker conditions, the

optimal solution of the problem is x* = (—;_T_—%, 1)T. We take the initial
point and steplength to be

-3 1
X = 1 and o] = H—_l

For any x;, we denote X4+, = Xy — o8 to be the point generated by
the unconstrained BB method and g, is the gradient at X;4 ,. Then the
Xr+1 generated by the PBB method is Xg1; = P(Xg+1.,). To simplify the
calculation of x;; ,, we decompose the Hessian as A = 0T DQ, where

_ 2 _
ao(tHle=1y (20 Q=£ L=y
t—1t+1 02¢ 2 \—-11
and consider the orthogonal transformation X = Qx. Correspondingly, we

define g = Qg. Since g = AX, it is easy to show that gy, = (I — o A)gx
and hence

St = 0810 = —ox D)gyi.
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Noting that
5 2
g1 = 0g = 0Ax; = DOx, = —2ﬁ(t
it follows from this and oy = 1/(¢ + 1) that

),
2V/2(t = 1) (—2)
1

Su=U—-aD)g =

r+1
and hence
Ko = A = A7 0 B = 07D o = (_1> :
| / | SERES R
It follows from ¢ > 31 that X, = Xz, 82 = &>, and g = &> ,. Noting that

o — S{Sl . nggl . 1>+ 4
2 = — — — 5
sy, glpg 203+4

we can similarly obtain
_ 2e-1? (z2+2 )
S+ D@+ \ P +2)

20— 1)° (—ﬂ + 8)
X4 =Xy, =—F—— ,
M T e @+ L8

—8t(t — )* <z2+2)

X5, = .
T+ D+ HE 47 2

The point x5, is infeasible and we need to make a projection to obtain Xs,

giving

X3 = X3y

—8r(t>2+2)t — *
xs = P(Xs,) = | (t+ Dt +4) (@ +4)?
1

Finally, we can calculate X¢ , in the same way as for x4 , and X5 . The analyt-
ical expression of Xg ,, is not written here since it is complicated and we only
require that the projection x4 of X¢, is exactly x;, which is readily verified
numerically if ¢ is suitably chosen. In the case that x4 = x;, we know that
ss is parallel to the horizontal axis and hence og = 1/(t + 1) = «;. There-
fore xs.; = x; for i > 1, showing that the projected BB method will cycle
between the five points.

Our numerical experiments show that x, = x; provided that the value
t > 31. This example with + = 100 is illustrated in Figure 1, where x¢ , ~
(—4.2485, —3.2732) and the x; i = 1, ..., 5 are approximately

-3 —0.98020 —1.9412 —1.9214 —0.073174
1) 2.9406 )° 1.9404 )’ \ 19214 )’ 1 ’

respectively.
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3r Xy
oL X,
X, > 2 N
~ : X

10 %y X 5

or /// X5,uox
RS //’
ot ///
3+ ///

xs.u

-4 Il Il Il Il Il Il Il Il Il J
-4.5 -4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5 0 0.5

Fig. 1. A cyclic example of the PBB method

We have also tried different values for the initial steplength o and find that
the above example is not sensitive to the choice «|. For example, in the case
that + = 100, if «; = 0.005 and «; = 0.02 are used, then the projected BB
method produces the same cycle from the sixth iteration. In addition, if a rela-
tively large value is provided for ¢/, then the method converges but takes many
steps to get close to the optimal solution. Figure 2 plots the points {xg, Xo, ... }
generated by the method for the example with + = 100 and «; = 0.175.

It is worth noting that the above example is not suitable for the PABB
method to cycle. The iterations {x; : i =1, ..., 5} generated by the PABB
method are similar to those by the PBB method, namely

-3 —0.98020 —1.9412 —1.9214 —0.073160
1)’ 29406 )° 1.9404 /)~ 1.9214 )~ 1 ’

respectively. However, the PABB method takes a smaller steplength s =
5.4416E-3 from (1.7), whereas a5 = 4.5578E-2 in the PBB method. The
smaller steplength is such that x4 ~ (—0.5717, 1)7 is a relative interior point
of the face {(a, 1)” : a > —3} and hence the next step gives x; = (—%, DT,
which is the optimal solution of the problem. However ther exists a counter-
example showing that it is possible for the PABB method to cycle and not

converge. This is the problem

min L (F) (3664 —4752) () L (60 (x
200 \ x, ) \ —4752 6436 )\ x 80 ) \ x2

s.t. —40 < x; <40, x, <300.
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Fig. 2. A variation of the example of the PBB method

The PABB method cycles between the following eight points x; to Xg

—40 —40 40 40
—44.591 ) \ 300 ) \ 85927 )" \ 45663 )

40 40 38.178 35.054
<34.420) ’ (28.291) ’ (28.291) ’ (25.927> ’
with o = 0.45261, that is the steplength computed by (1.6) based on x;
and xg. For this small example, if the adaptive nonmonotone line search
described in §3 is used, and if L = 10, the PABB method will carry out a line
search at the 18th iteration, and provide a solution Xp4 with ||Vgq(X24)| =
1.4211 x 10~'3 without any other line searches. If L = 4, a line search

happens at the 11th iteration and the same solution is reached at the 16th
iteration.

4 An adaptive nonmonotone line search

The counter-examples in the previous section show that the PBB and PABB
methods without line searches may cycle between several points. Although
our practical experience suggests that such behaviour is atypical, it is nonethe-
less prudent to modify the method by incorporating some sort of line search,
so as to ensure global convergence in all cases. However it is important that
the line search does not degrade the performance of the unmodified method.
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Suppose that the current iteration is X, and the step given by a projected
gradient method is d; = P (X; — oz gx) — Xx. One class of methods (see [15],
[4], etc.) use an Armijo-type line search with acceptability test

4.1 fx +2dp) < £ +0Agl dy,

in which a decreasing sequence of values of A > 0, is tried, starting with A =
1, until the test is satisfied. Here f, is some reference function value used for
comparison,and 8 € (0, 1) is a given constant. One advantage of a line search
in the form (4.1) is that only one projection is required on each line search. In
another traditional class of projected gradient methods (see for example [3]
and [7]), Armijo-type acceptability test involves one projection for each trial
point in order to get next iteration. More exactly, they aim to finda A > 0
such that X4 = P (X — Aoyg) and f (Xer1) < f (X0) + 08f (Kir1 — Xo)-
The studies in [7] and [ 13] show that this class of methods has stronger ability
to indentify the optimal face than those involving the test (4.1). In this paper
we will consider the use of (4.1) since our next object is to design efficient
projected gradient methods for quadratic programming problems subject to
box constraints and one single linear constraint where the projection onto the
feasible set is not so cheap.

It is easy to see that the unmodified PBB/PABB method corresponds to
(4.1) with f, = +o0. In this case, there is no guarantee of global convergence
due to the counter-examples in §3. If f, = f(Xx), then the line search (4.1)
causes the objective function values f(x;) to decrease monotonically and
global convergence can be proved. However, in this case the non-monotonic
behaviour of BB-type methods is lost and the good numerical performance
of the PBB/PABB method is seriously degraded.

Another possible choice for f, is that suggested in the Grippo-Lampari-
ello-Lucidi (GLL) nonmonotone line search [21]. For a given integer M, at
the k—th iteration, this line search calculates f, as follows

4.2) £, = max{f(x¢_;) : 0 <i < min{k, M — 1}}.

This GLL line search was first incorporated with the BB method for uncon-
strained optimization in [28] and good numerical results are reported on a
wide range of test problems. Furthermore, [4] develops two different ver-
sions (SPG1 and SPG2) of the GLL line search for use with the projected
BB method for the minimization of differentiable functions on closed con-
vex sets. The value of M = 10 is recommended in both [28] and [4]. As
will be shown below, this line search with a relatively small value of M can
still degrade the unmodified BB method to a certain extent, although it does
ensure global convergence.

To see by how much the performance of the PBB method is degraded for
BQP problems, a BQP test problem derived from the large-scale quadratic



Projected barzilai-borwein methods large-scale 35

problem of Fletcher [16] is used, which is based on the 3D Laplacian problem
on a box. If a standard 7-point finite difference stencil is used, the matrix A
can be defined by

W _
I W —I
A= -1 W - ,
. e |
where
[T —1I ] 6 —1 ]
1T -1 -1 6 —1
W= -1 7T . , T= -16
L= R |
i —1 T | | -1 6 |

Here T is [ x I, W is block m x m and A is block n x n where [, m, n are
the number of interior nodes in each coordinate direction. The interval length
in each direction is taken to be 4 = 1/(I + 1). Hence the dimensions of the
boxare 1l x Y x ZwhereY = m + 1)h and Z = (n + 1)h. We fix the
unconstrained solution u* to the problem to be function

u(x,y,z) =x(x — Dy(y — YV)z(z — Z)
1
X exp(—sz?(((x )+ =B+ -,

evaluated at the nodal points. The right hand side vector is then taken to be
b = Au*. Similarly to [16], we choose / = m = n = 100 giving a problem
with 10° variables. The parameters o, «, 8, and y are chosen in two different
ways, that is

(@o=20,a=f=y=05 (h)o =50,a =04, B=07, y=0.5.

To construct the upper and lower bounds of the BQP problem, we denote
Umax = ||0* |00 and impose the bound

—FUmax < X; <TUmax, [ =1,..., N =Imn,

where r > 0 is some scalar. A range of values of r is considered, with small
values of r giving rise to BQP problems with many active bounds, large values
giving few active bounds, and r = 400 giving an unconstrained problem.
Table 4 lists the numerical results for different versions of the
PBB method, where #it, #fc, #ls denote respectively the numbers of iter-
ations, function evaluations and line searches required by each version. (By
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Table 4. Testing different line searches for the PBB method

Problem | r | Unmodified | SPG2(M = 10) | SPG2(M = 100) | Adaptive(L = 10)
#it | #fc | #it [ #fc | #ls | #it [ #fc [ #s | #it | #c [ #s

Laplace | 0.1] 499 | 503 | 664 | 974 | 106| 749 | 779 | 15| 499 | 503 | ©
(@ 02| 815 | 820 | 827 | 1282 140| 1047 | 1118| 30 | 1020|1026 | 1
0.4 1306 | 1311 | 1571 | 2490 | 304 | 1445| 1536 | 40 | 1306 | 1311| 0

0.6 | 1408 | 1414 | 1439|2262 | 268 | 1812|1928 | 59 | 1082|1097 | 3

1.2] 692 | 698 | 979 | 1558 | 176| 857 | 938 | 27 | 786 | 803 | 4

5 | 461 | 468 | 867 | 1374 | 161| 815 | 927 | 43 | 720 | 733 | 5

20 | 497 | 503 | 1015| 1677| 196| 487 | 554 | 21 | 537 | 555 | 6

oo | 816 | 822 | 1244|2109 |239| 1137|1239 36 | 816 | 822 | 0

Laplace | 0.1] 1205 | 1208 | 1240 | 1930 | 231 | 1284 | 1348 38 | 1166 | 1177 | 7
(b) |0.2|1123| 1127 [ 1089| 1681 | 191| 1071 | 1119| 18 | 1002 | 1008 | 2
041106 | 1111 | 1301|2080| 251 | 1003 | 1063 | 26 | 1106| 1111 0

0.6 (1219 | 1224 | 1585|2436 | 285| 1716| 1823 | 49 | 1286 | 1310| 14

1.2] 679 | 684 | 1221| 1980|222 896 | 996 | 35 | 679 | 684 | 0

5 | 561 | 567 | 1060|1746 |203| 782 | 854 | 29 | 839 | 847 | 2

20 | 855 | 861 | 1068| 1798|201 | 745 | 824 | 28 | 530 | 538 | 1

oo | 577 | 583 | 1117]1813|218| 731 | 809 | 30 | 577 | 583 | 0

number of line searches we mean the number of iterations on which the unit
step A = 11in (4.1)is not accepted.) The starting pointisu; = 0. A line search
is always carried out on the first iteration of each version since the BB step-
length is initially arbitrary (see §5 for further details). From Table 4 we see
that for the line search used by the SPG2 method with M = 10, substantially
more iterations and function evaluations are required, when compared with
the unmodified PBB method. The performance of the SPG2 method may be
improved somewhat by setting M = 100. However, this choice still degrades
the unmodified PBB method to a noticeable extent.

Because of this behaviour we introduce another kind of nonmonotone line
search. It uses an idea similar to one described by Toint [30] in a nonmono-
tone trust region method for convex programming, and subsequently applied
by Dai and Zhang [12] to the BB method for unconstrained optimization.
The numerical results reported in [12] show that this kind of line search is
particularly suitable for the BB method in the nonquadratic case. The method
again has a reference function value f,, and each iteration must improve on
the reference value. The method involves a small integer parameter L > 0,
and f, is reduced if the method fails to improve on the previous best value of
f in at most L iterations. We dispense with the requirement (such as in (4.1),
for example) to obtain a sufficient reduction in f, since in real computation
any reduction is bounded uniformly away from zero by a small amount (that
is, the inequality v; < v, in real computation means that v; < v, — € for
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some € > 0), and this is sufficient to ensure global convergence. We refer to
this kind of line search as an adaptive nonmonotone line search.

For box constrained quadratic programming, the following simplified
adaptive nonmonotone line search is suitable for the PBB method. Let us
denote by fie the current least value of the objective function over all past
iterates, that is, at the k-th iteration

fbest = m_in f(xi)-
1<i<k

The number of iterations since the value of fi.s; Was obtained is denoted by
[. Also we define the candidate function value f. to be the maximum value
of the objective function since the value of fiesr Was found.

Now let us see how to determine the reference function f;. Suppose that
L is a preset positive integer. Initially, we can set f, = +o00. This choice of
fr allows f(x;) > f(x;) on early iterations. (As observed by Fletcher [16],
requiring f (Xx) < f(X;) on early iterations may degrade the performance of
the unmodified BB method in the unconstrained case.) If the method can find
a better function value in L iterations, then the value of f, remains unchanged.
Otherwise, if | = L, we reset the reference function value f, to f, and reset f,
to the current value f(x;). We initialize f, = 400, frest = fe = f(X1), and
I = 0. The strategy to update f, may be described in matlab-style notation
as follows.

if £ k < f_best,
f_best=f_k, f_c=f_k, 1=0,
else
f c=max{f_c,f_k}, 1=1+1,
if 1=L, f_r=f ¢, f_c=f_k, 1=0, end
end

Under the assumptions that f is twice-continuously differentiable and is

bounded from beblow, a simple argument can prove that the PBB, and PABB

methods with the adaptive nonmonotone line search gives the convergence

relation likm inf ||gx|| = 0 in case of real arithmetic. It can be seen that if
— 00

Joest 18 updated an infinite number of times then global convergence occurs.
Assume the contrary that fi.s is unchanged for all k sufficiently large. In this
case there exists an infinite subsequence of iterations k; on which / = L and
frisreset to f.. Now f. < f, because f, is a recent value of f; for which
fx < fr- Thus the values of f, that are reset on iterations k; are strictly mono-
tonically decreasing. Hence there exists a subsequence on which fj decreases
without bound, which contradicts the fact that fi.s is unchanged. We note
that the above algorithm differs a little from that proposed by Toint [30], in
that f. = f; is reset when [ = L, which is necessary for establishing our
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Table 5. Testing different line searches for the PABB method

Problem | r | Unmodified | SPG2(M = 10) | SPG2(M = 100)
#it | #fc | #it | #fc | #ls | #it | #fc | #s
Laplace | 0.1 | 356 | 360 | 363 | 396 | 22 | 356 | 368 | 3

(a) 02 | 549 | 554 | 445 | 492 | 25 | 635 | 656
04 |524 | 529 | 529 | 581 | 26 | 632 | 650
06 | 578 | 584 | 712 | 783 | 37 | 613 | 634
1.2 | 610 | 616 | 645 | 719 | 34 | 665 | 684
5 | 649 | 656 | 520 | 574 | 27 | 689 | 710
20 | 551 | 557 | 725 | 800 | 38 | 591 | 615
oo | 736 | 742 | 561 | 614 | 30 | 563 | 580

Laplace | 0.1 | 616 | 619 | 637 | 674 | 27 | 755 | 771
(b) 02749 | 753 | 614 | 653 | 25 | 563 | 579
0.4 | 493 | 498 | 569 | 622 | 29 | 523 | 542
0.6 | 720 | 725 | 646 | 706 | 37 | 664 | 680
1.2 766 | 771 | 635 | 725 | 42 | 839 | 859
5 | 870 | 876 | 597 | 661 | 34 | 597 | 621
20 | 601 | 607 | 586 | 671 | 37 | 762 | 780
oo | 658 | 664 | 768 | 823 | 32 | 730 | 751

I SN clie) U o) W) Nie )\ I O IEN Be) W Mo NIV IRV |

convergence result, whereas Toint obtains global convergence in a somewhat
different way.

Numerical results are also reported in Table 4 for the PBB method using
the adaptive nonmonotone line search with L = 10. We can see that very few
line searches are needed, and the numerical results are closely similar to the
unmodified PBB method.

Different versions of the PABB method have also been tested and the
numerical results are listed in Table 5. The numerical results using the adap-
tive nonmonotone line search with L = 10 are not tabulated explicitly, since
they are exactly the same as the unmodified version. Thus the aim of finding
a modification which requires no line searches at all (excluding the first iter-
ation) has been achieved in this case. In fact we could have used the smaller
value of L = 4 and the same conclusion would hold. In other words, for these
problems the unmodified PABB method is always able to find a smaller func-
tion value in at most 4 iterations. Overall, the unmodified (or L = 10 version)
wins in 10 of the 16 cases, as against the better of the GLL nonmonotone
line search with either M = 10 or M = 100, although the discrepancy is not
quite as large as in Table 4. When compared with the results in Table 4, we
see that the PABB method performs better than the PBB method and is not
so much influenced by the line search.
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To sum up, we feel that the adaptive nonmonotone line search preserves
the properties of the unmodified PBB and PABB methods very well. At the
same time, we also see that in several cases, the number of iterations and func-
tion evaluations can be usefully decreased if a few line searches are done.
One example is the PBB method with the adaptive line search with L = 10
for Laplace(a) with » = 0.6. Therefore it still remains to study whether there
exists some line search strategy which can not only ensure the global conver-
gence but also improve the performance of the unmodified PBB and PABB
methods uniformly.

5 Further numerical experiments

In this section, we further test the unmodified PBB and PABB methods against
the GLL nonmonotone line search, the adaptive nonmonotone line search,
and the GPCG conjugate gradient method. Some practical problems in [25]
and random test problems are used in these tests.

We use the same linesearch procedure as in [4]. The constant 6 in (4.1) is
set to 10™*. The initial value of X in (4.1) is 1. If the current A does not satisfy
the line search condition, then we do a quadratic interpolation to obtain a new
trial value A,y . In the case that A < 0.1 or A,y ¢ [0.1, 0.94], we simply
set Ayery = 0.5X. The following stopping condition, recommended in [25], is
used in all our tests:

IVgax)lla < 1075 1gi 2,

where Vgq(x;) is given in (2.2). Since the BB steplength is not defined on
the first iteration, in our algorithm we set the initial trial steplength to be
o] = ||Vq9(xk)||;ol. Similarly to the algorithm [4], we set oy = omax if
SZ_I Vi—1 < 0 and restrict & € [®min, ¥max] for other a;’s. The values oty
and oy, are 10739 and 107, respectively.

Firstly, we test different versions of the PBB and PABB methods for some
practical problems from [25] for which A is positive definite. We number the
obstacle problem (A), obstacle problem (B), and elastic-plastic problem as
Problems 1, 2, 3 (see Table 6). For Problem 3, as in [25] we use three values
of ¢ namely 5, 10, and 20. Results from a variety of different initial points
are given in the table, where e denotes the n-dimensional vector whose com-
ponents are all one, 0 is the origin, 1 and u are the corresponding lower and
upper bounds varying with the problem, and v = %(l +u).

Table 6 shows the number of function evaluations for the PBB and PABB
methods using the two different nonmonotone line searches. For both the
PBB and PABB methods, use of the adaptive nonmonotone line search with
L = 10 requires no line searches after the first iteration, thus repeating the
outcome of the unmodified methods. In fact, for the PABB method, the same
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Table 6. Numerical results for some practical problems in [25]

P n nfree | X PBB PABB GPCG
M =10 [L:lO M=10[L=10‘
1 5625 | 2122 211(14) 187 154(6) 131 119
1 5625 | 2122 251(20) 310 202(8) 147 146
1 10000 | 3843 345(24) 296 200(7) 245 157
1 10000 | 3843 583(41) 537 272(8) 206 211
1 15625 | 6108 466(36) 410 324(8) 180 188
1 15625 | 6108 868(66) 595 310(14) 346 238
2 5625 | 4171 257(15) 171 126(6) 148 131
2 5625 | 4171 207(11) 231 174(8) 165 120
2 5625 | 4171 247(15) 218 148(7) 136 90
2 10000 | 7588 365(26) 329 195(6) 237 174
2 10000 | 7588 432(26) 359 195(8) 205 168
2 10000 | 7588 211(13) 199 172(6) 193 127
2 15625 | 11990 598(40) 433 358(8) 275 234
2 15625 | 11990 601(40) 367 237(10) 320 216
2 15625 | 11990 509(37) 350 324(13) 213 177
3(5) | 5625 | 3953 862(63) 451 373(12) 273 244
3(5) | 5625 | 3953 511(32) 357 355(8) 377 221

3(5) | 10000 | 7016
3(5) | 10000 | 7016
3(5) | 15625 | 10961
3(5) | 15625 | 10961

1091(78) 897 550(19) 433 307
1077(67) 915 553(18) 417 326
>2000(132) 1406 | 668(20) 628 402
1637(113) 1049 | 511(10) 557 385

£ O O OIE O O O EOEOE O E AL SNLE SISO SO S

3(10) | 5625 | 2073 163(13) 246 136(3) 202 140
3(10) | 5625 | 2073 210(12) 167 126(3) 144 111
3(10) | 10000 | 3632 359(25) 377 218(6) 229 174
3(10) | 10000 | 3632 290(17) 289 217(5) 197 139
3(10) | 15625 | 5789 314(22) 480 261(9) 288 217
3(10) | 15625 | 5789 605(44) 372 265(10) 234 167
3(20) | 5625 1025 76(4) 126 66(1) 88 67
3(20) | 5625 1025 77(2) 75 70(1) 66 50
3(20) | 10000 | 1768 115(6) 145 89(3) 133 82
3(20) | 10000 | 1768 118(5) 92 105(2) 80 59
3(20) | 15625 | 9248 97(5) 241 82(2) 133 113
3(20) | 15625 | 9248 159(8) 105 130(3) 120 73

conclusion holds for any L > 4. Thus the adaptive nonmonotone line search
continues to give results that are close to the unmodified method. For the PBB
and PABB methods using the GLL nonmonotone line search with M = 10,
the number of line searches is listed in brackets after the number of function
evaluations. In the M = 10 case the PBB method is significantly worse. The
most efficient algorithm overall (excluding the GPCG method) is the PABB
method using the adaptive nonmonotone line search with L = 10, although
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in the 3(10) and 3(20) cases, there is not much to choose between the M = 10
and L = 10 line searches.

For the above practical problems, [25] provides numerical results for
the GPCG method which combines the gradient projection technique and the
conjugate gradient method. In Table 6 we show the number of Hessian-vector
products needed by the GPCG method. Exactly how to measure these results
against those for the PABB method is not entirely clear. On a one-to-one basis
however, the PABB method with L = 10 is inferior, but not by an amount
more than about 50%. Thus the PABB method is not totally uncompetitive,
and there is some reason to think that for box constrained non-quadratic
problems, the PABB method may prove to be a promising choice.

Secondly, we have tested the methods on some random SPD test problems
generated in a way similar to [24]. We follow [24] in using the five parameters
n, ncond, ndeg, na(x*), and na(x;). In particular, we denote A = PDPT
where

P = (I —2wswi)(I — 2waw3)(I — 2ww) ),
and where w|, w;, and w3 are random unit vectors, and D is a diagonal matrix
whose i-th component is defined by

logd; = -

1
1ncond, i=1,...,n.

The parameter ncond in the above relation specifies the condition number of
A. In our tests, we have fixed n = 10* and ncond = 6.

We generate a solution x* with components chosen randomly in the inter-
val (—1, 1). The choice of active set A(x*) depends on the integer parameter
na(x*). Random numbers y; in (0, 1) are generated fori = 1,... ,n and i
is selected for A(x*) if u; < %X*). This algorithm is also used to select
the active constraints .4 (x;) at the starting point on the basis of the parameter
na(x;). Components of x; that are not in A(x;) are set to HTM’

The values of 1, u and b can now be determined using the parameter
ndeg. This parameter specifies the extent to which the resulting problem will
be close to being dual degenerate, in the way described in [24]. We determine
the value of Vg (x*) = r by setting |r;| = 1074 for i e A(x*), where u;
is randomly generated in (0, 1). Finally we set b = Ax*™ — r and define

Li=-1, wu=+4+1, r =0,
fori ¢ A(x*), and

L=xf w=+I1, r >0,
or

li=—-1, w, =x, r <0,

fori € AX*).



42 Yu-H. Dai, R. Fletcher

Table 7. Numerical results for random SPD test problems

|na(x*) | na(x)| ndeg| GPCG | PBB(M =10)| L = 10| PABB (M = 10) | L = 10|

1000 | 1000 | 1 [43(105)| 173(152) 109 131(126) 122
3 [40(107)|  176(153) 145 129(114) 124
6 [30(100)| 171(154) 127 130(121) 116
9 |45(101)| 170(152) 149 121(112) 127
1000 | 5000 | 1 |35(107)| 186(165) 155 132(123) 145
3 [36(105)] 157(136) 143 135(129) 110
6 | 40098) | 180(157) 169 116(112) 117
9 |34(106)| 178(155) 157 135(124) 124
1000 | 9000 | 1 |[42(100)| 183(166) 147 123(113) 122
3 [45(116)|  160(137) 124 155(150) 118
6 |44(106)| 169(147) 131 119(115) 137
9 [42(106)| 198(177) 135 142(134) 125
5000 | 1000 | 1 [32(100)| 129(111) 134 150(139) 114
3 [46(110)|  159(140) 124 127(123) 130
6 |76(118)| 209(188) 147 134(125) 117
9 |78(111)| 205(186) 138 136(123) 135
5000 | 5000 | 1 |41(107)| 173(155) 131 126(114) 104
3 [43(116)]  194(165) 130 145(138) 107
6 |81(124)| 211(189) 167 160(145) 143
9 |83(118)| 168(148) 158 146(137) 129
5000 | 9000 | 1 [32(110)| 154(137) 117 128(125) 111
3 [53(109)|  184(166) 162 134(130) 104
6 |63(107)| 188(161) 168 151(140) 137
9 [91(130)| 174(153) 168 167(155) 216
9000 | 1000 | 1 | 30(92) | 149(133) 111 149(138) 90
3| 41091) | 140(120) 103 121(118) 114
6 |84(120)| 203(186) 145 114(108) 116
9 |91(129)| 134(118) 151 148(137) 107
9000 | 5000 | 1 | 27(92) | 168(149) 144 112(105) 114
3 166(106)| 164(145) 137 136(132) 97
6 |90(127)| 148(128) 130 120(113) 130
9 |89(124)| 154(136) 167 133(128) 111
9000 | 9000 | 1 |40(107)| 200(171) 139 123(112) 114
3 [53(111)]  185(165) 126 131(122) 124
6 [80(116)| 204(182) 132 144(138) 115
9 |88(126)| 143(124) 156 121(112) 127

Table 7 shows the number of function evaluations required by the GPCG
method and by several projected gradient methods. Listed in brackets in the
columns headed PBB(M = 10) and PABB(M = 10) are the number of iter-
ations. For the GPCG method, we also provide the number of Hessian-vector
products in brackets similarly to [24]. From Table 7, similar conclusions can
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Table 8. Numerical results for random indefinite test problems

|na(x)| negeig| GPCG | PBB(M =10)| L =10| PABB(M =10)| L =10]|

1000 | 1000 | 268(208)|  196(170) 158 253 (193) 180
2500 | 235(203)|  179(157) 165 234 (211) 229
5000 | 277(202)|  199(176) 151 225 (195) 142
9000 | 232(176)|  205(190) 240 283 (252) 183
5000 | 1000 | 254(174)|  221(185) 165 248 (217) 351
2500 | 219(209)|  161(136) 256 160 (143) 157
5000 | 375(331)|  174(149) 174 177 (163) 181
9000 | 338(230)|  288(257) 178 153 (140) 156
9000 | 1000 | 244(174)|  215(180) 174 168 (147) 473
2500 | 253(194)|  177(153) 179 185 (156) 169
5000 | 243(195)|  313(262) 233 365 (279) 242
9000 | 371(236)|  264(219) 215 184 (155) 118

Table 9. Winners of the methods according to function value

| methods | 1 | 2 | 3 | 4 | 5 |
| winners | 17 | 6 | 50 | 7 | 40 |
| 1:i | — | 26:94 | 20:100 | 23:97 | 21:99 |
| i3 [20:100 | 15:105 | — | 28:92 | 54:66 |

be drawn as from Table 6. The GPCG method requires fewer function eval-
uations and Hessian-vector products, but the projected gradient methods are
not totally uncompetitive and can solve the problems in a reasonable num-
ber of iterations. As in Table 6, for both the PBB and PABB methods with
the adaptive nonmonotone line search, we again find that no line searches
are done from the second iteration. Likewise this property again holds for
the PABB method provided that L > 4. The PABB method is again more
efficient than the PBB method. In addition, we also see from Table 7 that all
these methods are not much influenced by the parameter ndeg.

Finally, we have tested the methods for random indefinite problems. In
this case, a parameter negei g is used to specify the number of negative eigen-
values of A. Given an integer negeig € [1, n], we generate random numbers
w;in (0, 1) fori =1, ..., n and change the sign of the i-th element of D if
w; < negeig/n.lIf the diagonal matrix D has [ entries less than zero, then the
active set A(x*) of any local minimizer x* has at least / entries. In addition,
we still use the parameters n, ncond, and na(x;) to generate the matrix A,
the vector b, and the starting point x; as before. The feasible set is defined by
setting ] = —e and u = e. Again, we fix n = 10* and ncond = 6 but change
the parameters na(x;) and negeig.
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In the indefinite case, some modifications are necessary for the PABB
method and the GPCG method. For the PABB method, we use the formula
(1.6) at the k—th iteration if s,{_zyk,z < 0 happens and hence oy | = omax-
We change to using (1.7) if both s,{_lyk,] > ( and the previous steplength
a1 is calculated by (1.6). For the GPCG method, it is possible that p,{Apk <
0 and hence the steplength either in the gradient projection procedure or in
the conjugate gradient procedure is not well defined. In this case, we remedy
the method by setting oy = ||Vgq(x)||5. Further, if the same happens in
the conjugate gradient procedure, we then terminate the procedure and do a
line search on the next iteration. The numerical results in Table 8 show that
the modified GPCG method works well.

Although Table 8 suggests that the PBB method using the adaptive non-
monotone line search with L = 10 provides relatively good performance, it
is difficult to read too much into this comparison since different methods may
find different local minimizers. In addition, it still remains to study what the
best adaptation of the GPCG method in [25] is to the indefinite case. There-
fore we only conclude that all of these methods can provide a solution in a
reasonable number of iterations. In addition, we note that fewer line searches
are done in both the PBB and PABB methods with the adaptive nonmonotone
line search with L = 10.

In our numerical experiments, however, we observe quite often that the
PBB and PABB method reach a point at which function value is less that the
point generated by the GPCG method. We have run each pair (na(xo), negeig)
10 times and so have obtained 120 groups of function values. In Table 9 we
show comparisons between various methods numbered 1-5, which stand
for GPCG, PBB with M = 10, PBB with L = 10, PABB with M = 10,
and PABB with L = 10, respectively. Given a collection of methods S C
{1,2,3, 4,5}, we say that the method i is the winner for some problem if
it provides the least function value amongst all the methods in S. From the
second line of Table 9, we can see that the PBB method with L = 10 is the
best. Further, if we compare the winners of the GPCG method with other
methods separately (see the third line of the table), the GPCG method wins
only about 20 of the problems. The separate comparison of the PBB method
with L = 10 with other methods (see the fourth line) further shows that this
method has a strong ability to get a better solution. Therefore from the quality
of the solution for indefinite problems, our numerical results favor the use
of the adaptive nonmonotone line search and the use of (1.6) in calculating
steplengths. One possible explanation is that, the adaptive nonmonotone line
search allows bigger jumps on the function value since the reference function
value f, can be very large even infinity and hence increase the possibility of
finding the global solution. In addition, noting that the steplength in (1.6) is
always not less than the one in (1.7) if s,{_lyk_l > (0, the PBB method tends
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to use longer steplengths than the PABB method and this might increase the
nonmonotone behaviour of the algorithm and be helpful in getting a better
solution.

6 Concluding remarks

In this paper, we have carefully considered using new gradient projection
methods for BQP problems, both in cases where the matrix A is positive
definite, and where it may be indefinite. Since the projected BB-like methods
can be used in both the identification of the optimal face and the exploration
of the face, a procedure to judge where the optimal face is reached is not
necessary. Consequently, the new gradient projection methods are easy to
code and work well in practice.

Although both the PBB and PABB methods without line searches are usu-
ally successful for solving BQP problems and perform very well, there is no
theory to guarantee global convergence. Two-dimensional counter-examples
have been constructed such that the methods cycle between several points.
Therefore some kind of line search is shown to be necessary to ensure the
global convergence of these methods.

In the case that the GLL line search is applied, the performance of any
of the unmodified methods is noticeably degraded, although this effect is
not so severe if a large value of M is used (but this may be unsatisfactory
if the methods are used to solve non-quadratic box constrained problems).
This has led us to consider the use of a kind of adaptive nonmonotone line
search. The technique of choosing the reference function value adaptively
is similar to that proposed in [30] and applied to the BB method for uncon-
strained optimization in [12]. The basic idea of the line search is to keep the
reference function value f, unchanged if a smaller function value is found in
L iterations, and otherwise to reset f; to the maximum function value since
the last overall best function was found. A difference between the adaptive
line search of this paper and the adaptive techniques in [30] and [12] is that
here the initial reference function value f, is set to be +00. Our numerical
experiments show that our new adaptive line search can preserve the good
performance of the unmodified PBB/PABB method very well, particularly
for the PABB method. Thus for the PBB method using the adaptive line search
with L = 10, only a few line searches are required, whereas the choice L = 4
is usually sufficient for the PABB method.

For positive definite BQP problems, the PABB method is seen to perform
better than the PBB method. However, in the indefinite case, the PBB method
is preferred since the differences between the two methods are not great but
the PBB method more often finds a solution with smaller function value.
Due to the success of the adaptive line search and the alternate BB formula
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(1.8), it is likely that that projected gradient algorithms will prove to be very
effective for minimizing nonquadratic functions subject to box constraints
or general convex constraints. In a forthcoming paper, we shall extend this
work to design efficient projected gradient methods with adaptive line search
for solving the large-scale quadratic programming problems subject to box
constraints and one single linear constraint, as this is another situation in
which the projection operation can be efficiently carried out.

Acknowledgements. The authors would like to thank the two anonymous referees for
their useful suggestions and comments.
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