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AN ALGORITHM FOR DEGENERATE NONLINEAR
PROGRAMMING WITH RAPID LOCAL CONVERGENCE∗

STEPHEN J. WRIGHT†

Abstract. This paper describes and analyzes an algorithmic framework for solving nonlinear
programming problems in which strict complementarity conditions and constraint qualifications are
not necessarily satisfied at a solution. The framework is constructed from three main algorithmic
ingredients. The first is any conventional method for nonlinear programming that produces esti-
mates of the Lagrange multipliers at each iteration; the second is a technique for estimating the set
of active constraint indices; the third is a stabilized Lagrange–Newton algorithm with rapid local
convergence properties. Results concerning rapid local convergence and global convergence of the
proposed framework are proved. The approach improves on existing approaches in that less restric-
tive assumptions are needed for convergence and/or the computational workload at each iteration is
lower.
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1. Introduction. Consider the following nonlinear programming problem with
inequality constraints:

NLP: min
z

φ(z) subject to g(z) ≤ 0,(1.1)

where φ : R
n → R and g : R

n → R
m are twice continuously differentiable functions.

In this paper we describe an algorithmic framework for this problem that converges
superlinearly to a solution z∗ under mild assumptions on the functions φ and g in
the neighborhood of z∗. Rapid convergence can be proved even for difficult problems,
such as those with complementarity constraints or with equality constraints of the
form h(x) = 0 that have been split into two inequalities h(x) ≤ 0, h(x) ≥ 0. The
use of less-than-ideal formulation techniques such as the latter is well known in the
case of linear programming, for which production software contains presolvers or
preprocessors that remove many such infelicities before they can cause difficulties for
the underlying algorithm. Since for nonlinear programming it is often difficult to
detect and remedy poor formulations at the level of the modeling language or the
mathematical formulation, we should aim to design algorithms that perform as well
as possible in a variety of difficult circumstances.

Optimality conditions for (1.1) can be derived from the Lagrangian for (1.1),
which is

L(z, λ) = φ(z) + λT g(z),(1.2)

where λ ∈ R
m is the vector of Lagrange multipliers. The Karush–Kuhn–Tucker
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(KKT) conditions are satisfied at a point (z∗, λ∗) if

∇zL(z∗, λ∗) = ∇φ(z∗) +

m∑
i=1

λ∗
i∇gi(z

∗) = 0,(1.3a)

0 ≥ g(z∗) ⊥ λ∗ ≥ 0,(1.3b)

where the notation “⊥” signifies that g(z∗)Tλ∗ = 0. We call a point z∗ at which
these relations are satisfied a KKT point or stationary point. The set A∗ of active
constraints at z∗ is defined as follows:

A∗ = {i = 1, 2, . . . ,m | gi(z∗) = 0}.(1.4)

In this paper, we develop an algorithmic framework (“Framework INEQ”) that
exhibits local superlinear convergence under mild assumptions. It dispenses with
constraint qualifications altogether and does not require strict complementarity. It
assumes only that a KKT point exists and that a certain second-order sufficient con-
dition is satisfied at this point. Framework INEQ incorporates an “outer strategy”
whose purpose is to ensure good global convergence properties and an “equality con-
strained phase” (the “EQ phase”) which is activated when the set of active constraints
has apparently been identified. We do not dwell on the outer strategy further; tech-
niques involving merit functions, filters, and a variety of algorithms for generating
steps can be used for this purpose. Rather, the focus of this paper is on the EQ
phase and Framework INEQ. In the EQ phase, a “stabilized Lagrange–Newton” al-
gorithm (Algorithm SLN) is applied to the optimality conditions for the subproblem
obtained by enforcing the apparently active constraints as equalities. Algorithm SLN
is described in section 4.

The cost of each iteration in the EQ phase of Framework INEQ is essentially the
same as in most nonlinear programming algorithms that use second derivatives, ex-
cept for the solution at some iterations of an ancillary linear program. In particular,
computation of the step requires solution of a single linear system whose structure and
sparsity are almost identical to the well-known “augmented system” matrix that arises
in many interior-point and sequential quadratic programming approaches. Our ap-
proach includes various checks (which are inexpensive, apart from the linear program
mentioned above) to ensure that the algorithm does not get trapped at a nonoptimal
point because of incorrect identification of the active set.

The remainder of the paper is structured as follows. In the remainder of this
section, we summarize the previous literature on superlinearly convergent algorithms
based on weaker-than-usual assumptions, and compare it to the approach of this
paper. In section 2, we give some background on optimality conditions for (1.1) and
for the equality constrained nonlinear optimization problem, focusing in particular
on the critical cone that is used in the specification of the second-order condition.
Section 3 discusses computable estimates of the distance of a given point (z, λ) to
the primal-dual solution set for (1.1) in the vicinity of a point satisfying the second-
order condition. Algorithm SLN for the equality constrained problem is presented and
analyzed in section 4, and we comment on the similarity of the linear systems solved at
each iteration of this approach to the corresponding systems for the quadratic penalty
and augmented Lagrangian methods. We present Framework INEQ for solving (1.1)
in section 5, along with local and global convergence results. Finally, we discuss some
consequences of the second-order assumption in section 6, and outline the behavior
of the approach on a particular degenerate problem.
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1.1. Previous work. Other work on algorithms that retain rapid local conver-
gence properties under weakened conditions has been performed by Fischer [5, 6],
Wright [16, 15], Hager [8], and Izmailov and Solodov [11]. Wright [15] proposed a
stabilized sequential quadratic programming method (“stabilized SQP”) in which a
linear-quadratic minimax problem is solved at each iteration. Rapid local convergence
is proved for the case in which the Mangasarian–Fromovitz constraint qualification
(MFCQ) and strict complementarity hold. This approach also required a starting
point that is not too close to the “relative boundary” of the primal-dual solution
set. By using a more restrictive second-order condition, Hager [8] dispensed with the
constraint qualifications and strict complementarity assumptions. He proved rapid
convergence provided that the primal-dual starting point is located in a neighbor-
hood of a particular primal-dual solution satisfying his second-order condition. Fis-
cher [5] proposed an algorithm in which an additional quadratic program is solved
between iterations of SQP in order to adjust the Lagrange multiplier estimate. He
proved superlinear convergence under conditions that are weaker than the standard
nondegeneracy assumptions, but stronger than the ones made in this paper. In [6],
Fischer described a more general framework for generalized equations that includes
the stabilized SQP approach as a special case. By using assumptions similar to those
of Hager [8] (in particular, the stronger second-order condition), he proves local su-
perlinear convergence.

Wright [16] described superlinear local convergence properties of a class of in-
exact SQP methods and showed that the stabilized SQP approach of [15, 8] and
Fischer’s method [5] could be expressed as members of this class. This paper also in-
troduced a modification of standard SQP that enforced only a subset of the linearized
constraints—those in a “strictly active working set”—and permitted slight violations
of the unenforced constraints. Still it achieved superlinear convergence under weaker-
than-usual conditions. More recently, Wright [17] described a constraint identification
procedure that distinguishes between weakly active constraints (those for which the
Lagrange multiplier component is zero, for all Lagrange multiplier vectors satisfying
the KKT conditions) and strongly active constraints. Rapid local convergence of a
stabilized SQP approach based on this identification technique is proved under MFCQ
and a certain second-order condition.

The approach of Izmailov and Solodov [11] is similar to the one described here
in that it uses explicit estimates of the active constraint set A∗ and crossover to an
equality constrained phase at the final approach to the solution. The second-order
assumption of [11] is the same as those used here, although we also consider situations
in which these conditions hold uniformly on a compact subset of the set of multipliers
satisfying the KKT conditions. The main difference between Framework INEQ and
the approach of [11] is that the latter requires computation of a matrix that projects
(approximately) onto the kernel of the active constraint Jacobian. This projection can
be quite expensive to compute in practice; the singular-value-decomposition approach
presented in [11] is not practical for large problems as it yields a dense matrix in
general even when the constraint Jacobian is sparse. By contrast, the linear system
to be solved at each iteration of our equality constrained phase is quite similar to those
that are solved at each iteration of a conventional SQP or primal-dual interior-point
method. Another difference is that Framework INEQ includes checks that detect
errors in the estimation of the active set. These checks are essential to preventing
convergence to a nonoptimal point and in yielding a global convergence result.

We believe that by choosing an appropriate outer strategy, the approach of this
paper can be incorporated readily into algorithms (and software) with good global



676 STEPHEN J. WRIGHT

convergence properties, thereby enhancing the performance of such algorithms in
problems that exhibit degeneracy at the solution.

2. Assumptions, notation, and basic results. We now review the optimality
conditions for (1.1) and its equality constrained counterpart, and outline the assump-
tions and notation that are used in subsequent sections. We treat the inequality
constrained problem (1.1) in section 2.1 and the equality constrained problem in sec-
tion 2.2.

2.1. The inequality constrained problem. Recall the KKT conditions (1.3).
The set of “optimal” Lagrange multipliers λ∗ is denoted by Sλ, and the primal-dual
optimal set is denoted by S. Specifically, we have

Sλ
def
= {λ∗ |λ∗ satisfies (1.3)}, S def

= {z∗} × Sλ.(2.1)

Given the optimal active set A∗, defined in (1.4), we define several related index
sets. For any optimal multiplier λ∗ ∈ Sλ, we define the set A∗

+(λ∗) to be the “support”
of λ∗, that is,

A∗
+(λ∗) = {i ∈ A∗ | λ∗

i > 0}.

We define A∗
+ (without argument) as

A∗
+

def
= ∪λ∗∈Sλ

A∗
+(λ∗);(2.2)

this set contains the indices of the strongly active constraints. Its complement in A∗

is denoted by A∗
0, that is,

A∗
0

def
= A∗\A∗

+.

This set A∗
0 contains the weakly active constraint indices, those indices i ∈ A∗ such

that λ∗
i = 0 for all λ∗ ∈ Sλ. It is easy to show, using convexity of Sλ, that there exists

a particular vector λ̂ ∈ Sλ such that

λ̂i = 0 for all i /∈ A∗
+; λ̂i > 0 for all i ∈ A∗

+.(2.3)

We define the following second-order sufficient condition at some point (z∗, λ∗) ∈
S: There is a scalar υ > 0 such that

wT∇2
zzL(z∗, λ∗)w ≥ υ‖w‖2,

for all w such that
∇gi(z

∗)Tw = 0 for all i ∈ A∗
+,

∇gi(z
∗)Tw ≤ 0 for all i ∈ A∗

0.
(2.4)

Condition 2s.1 in [16, Section 3] assumes that (2.4) holds for all λ∗ ∈ Sλ, for a fixed
υ > 0. In other works (see Hager and Gowda [9] and Fischer [6, Lemma 5]), the
condition on ∇2

zzL(z∗, λ∗) in (2.4) is assumed to hold at just one multiplier λ∗ ∈ Sλ,
but for all w satisfying the condition

∇gi(z
∗)Tw = 0 for all i ∈ A∗

+(λ∗),
∇gi(z

∗)Tw ≤ 0 for all i ∈ A∗\A∗
+(λ∗).

(2.5)

Since A∗
+(λ∗) ⊂ A∗

+ for all λ∗ ∈ Sλ, we might expect that the set of vectors w defined
by (2.5) is in general a superset of the set defined in (2.4). In fact, the two sets are
identical, as the following simple result shows.
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Lemma 2.1. The direction sets defined in (2.4) and (2.5) coincide, for any vector
λ∗ ∈ Sλ.

Proof. It is clear that the direction set in (2.4) is a subset of (2.5), because

A∗
+(λ∗) ⊂ A∗

+. To prove the reverse inclusion, we use the multiplier λ̂ ∈ Sλ defined
in (2.3). For w satisfying (2.5), we have from (1.3) that∑

i∈A∗
+(λ∗)

λ∗
i∇gi(z

∗) = −∇φ(z∗) =
∑
i∈A∗

+

λ̂i∇gi(z
∗).

Taking inner products of these expressions with w, and using the first relation in (2.5),
we have

0 =
∑
i∈A∗

+

λ̂iw
T∇gi(z

∗).

Then, using the fact that λ̂i > 0 and wT∇gi(z
∗) ≤ 0 for all i ∈ A∗

+, it follows that in
fact wT∇gi(z

∗) = 0 for all i ∈ A∗
+. We also have from (2.5) that wT∇gi(z

∗) ≤ 0 for
all i ∈ A∗

0 = A∗\A∗
+. Hence, w satisfies the conditions in (2.4), as claimed.

A less restrictive second-order condition, stated in terms of a quadratic growth
condition of the objective φ(z) in a feasible neighborhood of z∗, is discussed by Bon-
nans and Ioffe [3] and Anitescu [1].

Our standing assumption for the problem (1.1) in this paper is as follows.
Assumption 1. The KKT conditions (1.3) hold at z∗ (that is, S 
= ∅) and the

functions φ and g are twice Lipschitz continuously differentiable in a neighborhood of
z∗.

In the following result, our claim that z∗ is a strict local minimizer means that
there exists a neighborhood of z∗ such that f(z∗) ≤ f(z) for all z in this neighborhood
with g(z) ≤ 0, and that this inequality is strict if z 
= z∗.

Theorem 2.2. Suppose that Assumption 1 holds and that the second-order con-
dition (2.4) is satisfied at some λ∗ ∈ Sλ. Then z∗ is a strict local minimizer of (1.1).

Proof. For the proof, see Robinson [14, Theorem 2.2].

2.2. The equality constrained problem. Consider now the nonlinear pro-
gramming problem with equality constraints defined by

min
z

φ(z) subject to h(z) = 0,(2.6)

where φ : R
n → R and h : R

n → R
p are twice continuously differentiable functions.

We denote the Lagrangian for (2.6) as follows:

L̄(z, γ)
def
= φ(z) + γTh(z).(2.7)

The KKT conditions for (2.6) at z∗ are that there exists a vector γ∗ ∈ R
p such that

∇zL̄(z∗, γ∗) = ∇φ(z∗) +

p∑
i=1

γ∗
i ∇hi(z

∗) = 0.(2.8)

The second-order sufficient condition is satisfied at some multiplier γ∗ from (2.8) if
there exists υ > 0 such that

wT∇2L̄(z∗, γ∗)w ≥ υ‖w‖2,
for all w such that ∇hi(z

∗)Tw = 0, i = 1, 2, . . . , p.
(2.9)



678 STEPHEN J. WRIGHT

Finally, we define

S̄γ
def
= {γ∗ | γ∗ satisfies (2.8)}, S̄ def

= {z∗} × S̄γ .(2.10)

Assumption 2. The KKT conditions (1.3) are satisfied at z∗ (that is, S̄ 
= ∅) and
the functions φ and h are twice Lipschitz continuously differentiable in a neighborhood
of z∗.

Similarly to Theorem 2.2, we have that z∗ is a strict local solution of (2.6) when
this assumption is satisfied and the second-order condition (2.9) holds for some mul-
tiplier γ∗ satisfying (2.8).

2.3. Notation. We define the distance of a vector x ∈ R
r to a set X ∈ R

r by

dist (x,X) = inf
x̄∈X

‖x̄− x‖,

where here and elsewhere, ‖ · ‖ denotes the Euclidean norm unless a subscript specif-
ically indicates otherwise.

We use order notation in the following (fairly standard) way: If two matrix,
vector, or scalar quantities M and A are functions of a common quantity, we write
M = O(‖A‖) if there is a constant β such that ‖M‖ ≤ β‖A‖ whenever ‖A‖ is
sufficiently small.

For a vector λ ∈ R
m, we denote by λA the subvector whose components are

λi, i ∈ A. We denote by gA(z) the subvector of the vector function g(z) whose
components are gi(z), i ∈ A.

3. Distance-to-solution estimates. In this section we describe simple formu-
lae for estimating distance to the solution of (1.1) (or (2.6)) from a given primal-dual
point (z, λ) (or (z, γ)). We are interested in two-sided estimates; that is, those that
are bounded both above and below by the true distance to the solution. These esti-
mates are used by the methods of sections 4 and 5 both to decide on acceptability of
a step and as a parameter in the step computation.

We aim for results that hold in a neighborhood of a compact subset of Sλ (or S̄γ)
at which the second-order condition is satisfied.

The following result, which makes use of Assumption 1 and (2.4) at a particular
λ∗ ∈ Sλ, gives a practical estimate of dist ((z, λ),S). We use min(λ,−g(z)) here to
denote the vector whose ith component is min(λi,−gi(z)).

Theorem 3.1. Suppose that Assumption 1 holds at z∗, and that the second-order
condition (2.4) is satisfied at some λ∗ ∈ Sλ. Then there are positive quantities δ0(λ

∗)
and β(λ∗) such that for all (z, λ) with ‖(z, λ)−(z∗, λ∗)‖ ≤ δ0(λ

∗), the quantity η(z, λ)
defined by

η(z, λ)
def
=

∥∥∥∥[ ∇zL(z, λ)
min(λ,−g(z))

]∥∥∥∥
1

(3.1)

satisfies

η(z, λ) ∈ [1/β(λ∗), β(λ∗)]dist ((z, λ),S).

Proof. One side of the result, namely,

η(z, λ) ≤ β(λ∗)dist ((z, λ),S),
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is relatively trivial; for a proof see Wright [16]. The other inequality, namely,

dist ((z, λ),S) ≤ β(λ∗)η(z, λ)

has been examined by a number of authors under different assumptions; see, for
example, Facchinei, Fischer, and Kanzow [4, Theorem 3.6], Wright [16, Theorem A.1],
Hager and Gowda [9], and Fischer [6]. Under the assumptions used here, the result
follows from Theorem 2 of Fischer [6], with Σ0 = {(z∗, λ∗)} in the notation of [6],
where we use [9, Lemma 2] to justify [6, Assumption 1], and also Lemma 2.1 above
to verify that the critical direction set of [9, Lemma 2] is the same as the direction
set defined in (2.4).

We now extend Theorem 3.1 to the case in which (2.4) holds for all λ∗ in a
compact subset of Sλ.

Theorem 3.2. Suppose that Assumption 1 holds for the problem (1.1) at z∗, and
that the second-order condition (2.4) holds for all λ∗ ∈ Vλ, where Vλ is a compact
subset of Sλ. Let us define V = {z∗} × Vλ. Then there are positive constants δ1(Vλ)
and β(Vλ) such that for all (z, λ) satisfying

dist ((z, λ),V) ≤ δ1(Vλ)(3.2)

we have

η(z, λ) ∈ [1/β(Vλ), β(Vλ)]dist ((z, λ),S),

where η(z, λ) is defined in (3.1).
Proof. From Theorem 3.1, we have for any particular λ∗ ∈ Vλ that there are

positive constants δ1(λ
∗) and β(γ∗) such that for any (z, λ) with ‖(z, λ)−(z∗, λ∗)‖2 ≤

δ1(λ
∗) we have

η(z, λ) ∈ [1/β(λ∗), β(λ∗)]dist ((z, λ),S).

The open balls

B(λ∗)
def
= {(z, λ) | ‖(z, λ) − (z∗, λ∗)‖2 < δ1(λ

∗)} for all λ∗ ∈ Vλ

form an open cover of V. Since V is compact, there is a finite subcover, indexed by a
finite set of multipliers, say {λ∗

1, λ
∗
2, . . . , λ

∗
M}. We choose δ1(Vλ) > 0 such that

{(z, λ) |dist ((z, λ),V) ≤ δ1(Vλ)} ⊂ ∪M
i=1B(λ∗

i ),

and set β(Vλ) = maxi=1,2,...,M β(λ∗
i ) to obtain the result.

An active set identification strategy for (1.1) follows immediately from the esti-
mate of Theorem 3.2. Similarly to Facchinei, Fischer, and Kanzow [4, equation (2.5)],
we choose a constant τ ∈ (0, 1) and define

A(z, λ)
def
= {i = 1, 2, . . . ,m | gi(z) ≥ −η(z, λ)τ}.(3.3)

Given a set V defined as in Theorem 3.2, we have, for all (z, λ) with dist ((z, λ),V)
sufficiently small, that

i ∈ A∗ ⇒ −gi(z) ≤ O(‖z − z∗‖) ≤ ‖z − z∗‖τ/β(Vλ)τ ≤ η(z, λ)τ ,

i /∈ A∗ ⇒ gi(z) ≤ (1/2)gi(z
∗) < −η(z, λ)τ ,
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so that A(z, λ) = A∗. We formalize this result as follows.
Theorem 3.3. Suppose that Assumption 1 holds at z∗ and that the second-order

condition (2.4) holds for all λ∗ ∈ Vλ, where Vλ is a compact subset of Sλ. Let us
define V = {z∗} × Vλ. Then there exists δ2(Vλ) > 0 such that for all (z, λ) with
dist ((z, λ),V) ≤ δ2(Vλ), we have A(z, λ) = A∗.

We now use the results of Hager and Gowda [9] to obtain distance-to-solution
estimates for the equality constrained problem (2.6), for multipliers γ in some neigh-
borhood of a compact subset of S̄γ , which we denote by V̄γ . We also introduce the

notation V̄ def
= {z∗} × V̄γ to denote the primal-dual extension of V̄γ .

Theorem 3.4. Consider the problem (2.6), and suppose that (2.8) and (2.9) hold
at (z∗, γ∗) for some fixed υ > 0 and all γ∗ ∈ V̄γ ⊂ S̄γ , where V̄γ is compact. Then there
are positive constants δ̄1(V̄γ) and β̄(V̄γ) such that for all (z, γ) with dist ((z, γ), V̄) ≤
δ̄1(V̄γ), we have

η̄(z, γ)
def
=

∥∥∥∥[ ∇zL̄(z, γ)
h(z)

]∥∥∥∥
1

∈ [1/β̄(V̄γ), β̄(V̄γ)]dist ((z, γ), S̄).(3.4)

Proof. From Hager and Gowda [9, Lemma 2, Theorem 3], we have for any par-
ticular γ∗ ∈ V̄γ that there are positive constants δ̄1(γ

∗) and β̄(γ∗) such that for any
(z, γ) with ‖(z, γ) − (z∗, γ∗)‖2 ≤ δ̄1(γ

∗) we have

η̄(z, γ) ∈ [1/β̄(γ∗), β̄(γ∗)]dist ((z, γ), S̄).

The result now follows from the same compactness argument as in the proof of The-
orem 3.2.

4. An algorithm for the equality constrained problem. In this section,
we describe a locally convergent algorithm for the equality constrained problem (2.6),
and then discuss its relationship to other methods which require the solution of a
similar linear system at each iteration.

4.1. Algorithm SLN and its convergence properties. We obtain the step
from a point (z, γ) by the following process. First, define µ as follows:

µ
def
=

∥∥∥∥[ ∇zL̄(z, γ)
h(z)

]∥∥∥∥
1

= η̄(z, γ).(4.1)

Next, solve the following linear system:[
∇2

zzL̄(z, γ) ∇h(z)
−∇h(z)T µI

] [
∆z
∆γ

]
=

[
−∇zL̄(z, γ)

h(z)

]
.(4.2)

We call the approach “stabilized Lagrange-Newton,” since it is based on solving
the Lagrange-Newton equations that constitute the first-order optimality conditions.

Algorithm SLN.

Given starting point (z0, γ0)
for k = 0, 1, 2, . . .

Define µk by setting (z, γ) = (zk, γk) in (4.1);
Solve (4.2) with (z, γ) = (zk, γk) and µ = µk to obtain (∆zk,∆γk);
Set (zk+1, γk+1) ← (zk, γk) + (∆zk,∆γk);

end (for)
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Lemma 4.1. Suppose that Assumption 2 holds and that (2.9) holds for constant
υ > 0 and all γ∗ ∈ V̄γ , where V̄γ is a compact subset of S̄γ . Then there exist positive
constants δ3(V̄γ), χ1(V̄γ), and χ2(V̄γ) with δ3(V̄γ) ≤ min(1, δ̄1(V̄γ)) such that for all
(z, γ) with

dist ((z, γ), V̄) ≤ δ3(V̄γ),(4.3)

where V̄ = {z∗} × V̄γ , the step (∆z,∆γ) obtained from (4.1), (4.2) satisfies the fol-
lowing relations:

‖(∆z,∆γ)‖1 ≤ χ1(V̄γ)η̄(z, γ),(4.4)

η̄(z + ∆z, γ + ∆γ) ≤ χ2(V̄γ)η̄(z, γ)2.(4.5)

Proof. We omit a detailed proof of this result, since it follows closely the proofs
of Theorems 3.2 and 4.1 in Wright [15]. It is based on a singular value decomposition
of the constraint Jacobian ∇h(z∗), which induces a partitioning of both ∆z and ∆γ
into two orthogonal components. The uniform positive definiteness of ∇2

zzL̄(z, γ) on
the null space of ∇h(z∗)T is crucial to the proof, as is the distance-to-solution result,
Theorem 3.4.

Theorem 4.2. Suppose that Assumption 2 holds. Let V̂γ be a compact subset of

S̄γ , with V̂ = {z∗} × V̂γ , and define

V̄γ = {γ ∈ S̄γ |dist (γ, V̂γ) ≤ ε}(4.6)

for some ε > 0. Suppose that (2.9) holds for all γ∗ ∈ V̄γ and fixed υ > 0. Then there

exists a positive constant δ5(V̂γ , ε) such that if (z0, γ0) satisfies

dist ((z0, γ0), V̂) ≤ δ5(V̂γ , ε),(4.7)

then the sequence {(zk, γk)} generated in Algorithm SLN converges Q-quadratically
to a point (z∗, γ∗) ∈ S̄ and satisfies the relations (4.4) and (4.5) at each iteration.

Proof. This proof makes extensive use of the quantities β̄(V̄γ), δ3(V̄γ), χ1(V̄γ),
and χ2(V̄γ) defined in Theorem 3.4 and Lemma 4.1. For convenience of notation
during this proof, we drop the explicit dependence of the quantities δ3(V̄γ), χ1(V̄γ),

χ2(V̄γ), β̄(V̄γ), δ5(V̂γ , ε) on the sets V̄γ and V̂γ and the scalar ε.
We show that the theorem holds for the following choice of δ5:

δ5
def
= min

(
1

4χ2β̄
,
min(δ3, ε)

4
,
min(δ3, ε)

4χ1β̄

)
.(4.8)

The main part of the proof is to show inductively that the following bounds hold for
all k = 0, 1, 2, . . . :

η̄(zk+1, γk+1) ≤ (1/2)η̄(zk, γk),(4.9a)

dist ((zk+1, γk+1), V̄) ≤ (1 − 1/2k+2)δ3,(4.9b)

‖(∆zk,∆γk)‖1 ≤ min(δ3, ε)/2
k+2,(4.9c)

dist (γk+1, V̂γ) ≤ (1 − 1/2k+1)ε.(4.9d)

We first consider k = 0. From Theorem 3.4 and (4.8), we have

χ2η̄(z
0, γ0) ≤ χ2β̄dist ((z0, γ0), S̄) ≤ χ2β̄δ5 ≤ 1/4.
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Hence, we have from (4.5) that

η̄(z1, γ1) ≤
(
χ2η̄(z

0, γ0)
)
η̄(z0, γ0) ≤ (1/4)η̄(z0, γ0),

so that (4.9a) holds for k = 0. From (4.4) and (4.8), we have

‖(∆z0,∆γ0)‖1 ≤ χ1η̄(z
0, γ0) ≤ χ1β̄dist ((z0, γ0), S̄) ≤ χ1β̄δ5 ≤ (1/4) min(δ3, ε),

so (4.9c) holds for k = 0. For (4.9b), we have

dist ((z1, γ1), V̄) ≤ dist ((z0, γ0), V̄) + ‖(∆z0,∆γ0)‖1

≤ dist ((z0, γ0), V̂) + ‖(∆z0,∆γ0)‖1 ≤ (1/4)δ3 + (1/4)δ3 < (1 − 1/4)δ3.

For (4.9d), we have

dist (γ1, V̂γ) ≤ dist (γ0, V̂γ) + ‖∆γ0‖1 ≤ (1/4 + 1/4) min(δ3, ε) ≤ (1/2)ε,

proving that this bound also holds at k = 0.
We assume now that (4.9) hold for 0, 1, 2, . . . , k, and prove that these estimates

continue to hold when k is replaced by k + 1. For (4.9c), we have

‖(∆zk+1,∆γk+1)‖1

≤ χ1η̄(z
k+1, ηk+1) by (4.9b) and Lemma 4.1

≤ (1/2k+1)χ1η̄(z
0, γ0) by (4.9a)

≤ (1/2k+1)χ1β̄dist ((z0, γ0), S̄) by Theorem 3.4

≤ (1/2k+1)χ1β̄δ5 by (4.7) and V̂ ⊂ S̄
≤ (1/2k+1)(1/4) min(δ3, ε) by (4.8)

= (1/2k+3) min(δ3, ε),

verifying that this bound continues to hold for k+ 1. For (4.9b), we have from (4.9b)
at k and (4.9c) at k + 1 that

dist ((zk+2, γk+2), V̄) ≤ dist ((zk+1, γk+1), V̄) + ‖(∆zk+1,∆γk+1)‖1

≤ (1 − 1/2k+2)δ3 + (1/2k+3)δ3

= (1 − 1/2k+3)δ3,

proving this result for k + 1. For (4.9a), we have

η̄(zk+1, γk+1) ≤ (1/2k+1)η̄(z0, γ0),

so that

χ2η̄(z
k+1, γk+1)

≤ (1/2k+1)χ2η̄(z
0, γ0) by (4.9a)

≤ (1/2k+1)χ2β̄dist ((z0, γ0), S̄) by Theorem 3.4

≤ (1/2k+1)χ2β̄dist ((z0, γ0), V̂) since V̂ ⊂ S̄
≤ (1/2k+1)(1/4) = 1/2k+3 by (4.7) and (4.8).
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Because we have shown that the bound (4.9b) holds when k is replaced by k + 1, we
have from Lemma 4.1 that

η̄(zk+2, γk+2) ≤
(
χ2η̄(z

k+1, γk+1)
)
η̄(zk+1, γk+1)

≤ (1/2k+3)η̄(zk+1, γk+1),

proving that (4.9a) continues to hold at k+1. To prove (4.9d) at k+1, we have from
(4.9c) at k + 1 and δ3 ≤ 1 that

dist (γk+2, V̂γ) ≤ dist (γk+1, V̂γ) + ‖∆γk+1‖1

≤ (1 − 1/2k+1) min(δ3, ε) + (1/2k+3) min(δ3, ε) ≤ (1 − 1/2k+2) min(δ3, ε),

as required.
It follows from (4.9c) that the sequence {(zk, γk)} is Cauchy and hence convergent.

Because of (4.9a), the limit point ((z∗, γ∗), say) must lie in S̄. Finally, Q-quadratic
convergence follows from the following chain of inequalities:

‖(zk+1, γk+1) − (z∗, γ∗)‖2

≤
∞∑

i=k+1

‖(∆zi,∆γi)‖1

≤
∞∑

i=k+1

χ1η̄(z
i, γi) by (4.4)

≤ 2χ1η̄(z
k+1, γk+1) by (4.9a)

≤ 2χ1χ2η̄(z
k, γk)2 by (4.5)

≤ 2χ1χ2β̄
2dist ((zk, γk), S̄)2 by Theorem 3.4

≤ 2χ1χ2β̄
2‖(zk, γk) − (z∗, γ∗)‖2 since (z∗, γ∗) ∈ S̄.

4.2. Discussion. The step (4.2) used by Algorithm SLN is similar to steps that
arise in at least two well-known algorithms for the equality constrained problem (2.6),
neither of which was designed with the issue of degeneracy in mind. The first example
is the quadratic penalty function, which can be defined as

P (z;µ) = φ(z) +
1

2µ
‖h(z)‖2

2.

Algorithms based on this function typically find an approximate minimizer of P (·;µ),
then decrease µ and repeat the process. Under certain assumptions, it is known that
the sequence of minimizers approaches a solution z∗ as µ ↓ 0; see [12, Chapter 17].

It is not difficult to show that the Newton step ∆z for P (·;µ) satisfies the following
system (in conjunction with another vector ∆γ):[

∇2
zzL̄(z, h(z)/µ) ∇h(z)
−∇h(z)T µI

] [
∆z
∆γ

]
=

[
−∇zL̄(z, 0)

h(z)

]
.(4.10)

The similarities between the systems (4.2) and (4.10) are evident. Note, however,
that the upper left block of the coefficient matrix in (4.10) is guaranteed to be similar
to that of (4.2) only when h(z)/µ ≈ γ—a condition that cannot be expected to
hold at many of the iterates visited by the quadratic penalty approach. Hence, the
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system does not have the nice property of (4.2) in which Assumption 2 guarantees
nonsingularity of the coefficient matrix on later iterations.

The augmented Lagrangian for (2.6) is conventionally defined as follows:

L̂(z, γ;µ)
def
= φ(z) + γTh(z) +

1

2µ
‖h(z)‖2

2.

The basic method of multipliers [10, 13, 2] proceeds by finding an approximate mini-
mizer of L̂(·, γ;µ) for fixed γ and µ, then updating γ by the formula γ ← γ + h(z)/µ,
then possibly decreasing µ and repeating the process. When Newton’s method is used
to minimize L̂(·, γ;µ), the step ∆z satisfies the following system:[

∇2
zzL̄(z, γ + h(z)/µ) ∇h(z)

−∇h(z)T µI

] [
∆z
∆γ

]
=

[
−∇zL̄(z, γ)

h(z)

]
.(4.11)

The system (4.11) is indeed very similar to (4.2) when ‖h(z)‖ � µ. The method
of multipliers differs from Algorithm SLN, however, in that the ∆γ component of
the step is not used (since a different formula is used to update γ) and µ is chosen
heuristically rather than via the formula (4.1). Indeed, a main motivation of the
method of multipliers is to obtain convergence to z∗ without driving µ to zero.

We note that steps for the two methods above have traditionally been obtained us-
ing unconstrained minimization algorithms in z alone, rather than the systems (4.10)
and (4.11) above. Hence, small values of µ lead to ill conditioned subproblems—a
problem that still occurs in the formulations (4.10) and (4.11) above in the degenerate
case. Nevertheless, our results in this section, and our observations about numerical
implementations in section 6, suggest that local convergence of both approaches could
be improved by crossing over to Algorithm SLN on later iterations.

5. Extension to equality constrained problems. We now describe an algo-
rithmic framework for the inequality constrained problem (1.1) that is based on the
active constraint identification technique of section 3 and Algorithm SLN of section 4,
along with an “outer strategy” that could be derived from any globally convergent
algorithm. This framework, which we call Framework INEQ, enters an “EQ phase”
when there is reason to believe that it has identified the active constraints correctly.
In the EQ phase, it applies Algorithm SLN to the problem obtained by fixing these
constraints as equalities and ignoring the others. Checks are applied at each iteration
of the EQ phase to ensure that the active constraint identification was in fact correct,
and that the algorithm is not converging to a point that does not solve (or, at least,
is not a KKT point for) the original problem (1.1). When false convergence of this
type is detected, or when the convergence is not sufficiently rapid, Framework INEQ
exits the EQ phase and restores the values of (z, λ) that were in force on entry to this
phase. (Restoration is necessary because components of λ are allowed to become neg-
ative during the EQ phase, making them potentially unsuitable for use as multiplier
estimates for the original problem.) Outside of the EQ phase, the iterates (zk, λk) are
generated by the outer strategy.

We denote by EQ(A) the equality-constrained problem obtained by enforcing a
subset A of the components of g in (1.1) as equalities, that is,

EQ(A): min
z

φ(z) subject to gi(z) = 0 for all i ∈ A.(5.1)

The following result, also noted by Izmailov and Solodov [11, Proposition 3.2], shows
that the solution of the inequality constrained problem satisfying the second-order
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sufficient condition is a solution of the problem EQ(A∗) for the optimal active set A∗

and also satisfies the second-order sufficient condition for this reduced problem.
Theorem 5.1. Suppose that Assumption 1 holds at z∗, and that for some multi-

plier λ∗ ∈ Sλ, the conditions (2.4) are satisfied. Then the equality constrained problem
(5.1) with A = A∗ has local solution z∗ satisfying Assumption 2, and the KKT con-
ditions (2.8) and the second-order condition (2.9) are satisfied by the multiplier λ∗

A∗ .
The next result is a kind of converse of Theorem 5.1. We omit its proof, which is

also simple.
Theorem 5.2. Suppose for some A ⊂ {1, 2, . . . ,m} that z∗ is a point satisfying

Assumption 2 for the problem EQ(A). Suppose too that there is a multiplier vector
λ∗
A satisfying (2.8) such that λ∗

A ≥ 0, and in addition that gi(z
∗) ≤ 0 for all i /∈ A.

Then z∗ satisfies the KKT conditions (1.3) for the problem (1.1).
An important role in detecting incorrect identification of the active constraints is

played by the following test:

kkt-test(z̄, λ̄A,A, B) : There exists λA with λA ≥ 0 and ‖λA‖1 ≤ B such that∥∥∥∥∥∇φ(z̄) +
∑
i∈A

λi∇gi(z̄)

∥∥∥∥∥
1

≤ η̄(z̄, λ̄A)σ,(5.2)

where σ ∈ (.5, 1) is a specified constant. Note that the test can be applied by solving
the linear program

min
λA≥0, ‖λA‖1≤B

∥∥∥∥∥∇φ(z̄) +
∑
i∈A

λi∇gi(z̄)

∥∥∥∥∥
1

,

though it may not be necessary to iterate all the way to optimality.
We are now ready to specify the framework.

Framework INEQ.

O: Given (z0, λ0) with λ0 ≥ 0, τEQ ∈ (0, .5], and σ ∈ (.5, 1); Set k ← 0;

1: (* Estimate active constraints *)
Evaluate η(zk, λk); Set A ← A(zk, λk);
if η(zk, λk) = 0

STOP;

2: (* Test for entry into EQ Phase *)
if η̄(zk, λk

A) ≤ τEQ

zstore ← zk; λstore ← λk;
go to 3;

else
go to 6;

3: (* EQ Phase *)
Given (zk, λk

A), compute (∆zk,∆λk
A) for problem EQ(A) from (4.1), (4.2);

4: (* Test validity of EQ Phase step *)
if ‖(∆zk,∆λk

A)‖1 > η̄(zk, λk
A)σ

go to 5;
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if η̄(zk + ∆zk, λk
A + ∆λk

A) > η̄(zk, λk
A)1+σ

go to 5;
if gi(z

k + ∆zk) > 0 for any i /∈ A
go to 5;

if λk
i + ∆λk

i < 0 for some i ∈ A and
kkt-test(zk + ∆zk, λk

A + ∆λk
A,A, ‖λk

A‖1 + 2) is false
go to 5;

(zk+1, λk+1
A ) ← (zk + ∆zk, λk

A + ∆λk
A);

k ← k + 1;
if η̄(zk, λk

A) = 0
STOP;

go to 3;

5: (* Drop out of EQ phase *)

τEQ ← τEQ/2; zk ← zstore; λk ← λstore;

6: (* Apply outer strategy *)
Compute (zk+1, λk+1) using the “outer” strategy;
k ← k + 1; go to 1;

The main computational costs in each iteration of the EQ phase are (i) the solution
of the single linear system (4.2), which has similar structure and sparsity to systems
that appear in standard methods for nonlinear programming, and (ii) the solution of
the feasibility problem in (5.2). In fact, the latter calculation may not be needed at
every step of the EQ phase, since it is performed only if the new iteration survives the
earlier tests in step 4 and if some components of the Lagrange multiplier estimates have
become negative. In addition, Framework INEQ can be modified easily to perform
this test at only a subset of the EQ-phase iterations, reducing the computational
requirements further.

Our first convergence result shows that if the iterates enter the EQ phase and
remain there, any limit point must be a KKT point for (1.1).

Theorem 5.3. Suppose that Framework INEQ does not terminate finitely and
that the iterates (zk, λk) remain in the EQ phase for all k ≥ K, where K is some
index. Then the sequence {zk} converges R-superlinearly to a limit ẑ which is a KKT
point for (1.1).

Proof. Because of the second test in step 4, η̄(zk, λk
A) approaches zero geomet-

rically. Using the first test in step 4, we have ‖(∆zk,∆λk
A)‖1 ≤ η̄(zk, λk

A)σ, so the

sequence {(zk, λk
A)} is Cauchy and hence convergent, say to (ẑ, λ̂A). Since, from the

third test in step 4, we have gi(z
k) ≤ 0 for all i /∈ A, then gi(ẑ) ≤ 0 for all i /∈ A.

Since |gi(zk)| ≤ η̄(zk, λk
A) ↓ 0 for all i ∈ A, we have gi(ẑ) = 0 for i ∈ A. Therefore, ẑ

is feasible. Further, by taking limits, we have that ∇φ(ẑ) +
∑

i∈A λ̂i∇gi(ẑ) = 0.

Because of the fourth test in step 4, we have either that λk+1
A ≥ 0 for infinitely

many k ≥ K or that kkt-test(zk+1, λk+1
A ,A, ‖λk

A‖1 + 2) is true for infinitely many

k ≥ K (or possibly both). In the former case, we have that λ̂A ≥ 0, so by extending

λ̂A to a full multiplier vector λ̂ by adding zero components at i /∈ A, we conclude that
(ẑ, λ̂) satisfies the KKT conditions (1.3). In the latter case, let λ̃k+1

A be the vector

of multipliers that makes kkt-test(zk+1, λk+1
A ,A, ‖λk

A‖1 + 2) true. Since the sequence

of such vectors is bounded, there is a subsequential limit λ̃A such that λ̃A ≥ 0 and
∇φ(ẑ)+

∑
i∈A λ̃i∇gi(ẑ) = 0. By extending λ̃A to a full multiplier vector λ̃ by adding
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zero components at i /∈ A, we conclude that (ẑ, λ̃) satisfies the KKT conditions (1.3).
In either case, we conclude that ẑ is a KKT point for (1.1).

To verify the rate of convergence, note that for all k sufficiently large, we have
from the first and second tests in step 4 that

‖(zk, λk
A) − (z∗, λ̂A)‖1 ≤

∞∑
j=k

‖(∆zj ,∆λj
A)‖1

≤
∞∑
j=k

η̄(zj , λj
A)σ

≤
∞∑
j=k

(η̄(zk, λk
A)σ)(1+σ)j−k

≤
∞∑
j=k

(η̄(zk, λk
A)σ)1+(j−k)σ

= η̄(zk, λk
A)σ

∞∑
j=k

η̄(zk, λk
A)(j−k)σ2

≤ η̄(zk, λk
A)σ/(1 − η̄(zk, λk

A)σ
2

)

≤ 10η̄(zk, λk
A)σ,

where the final inequality follows from

η̄(zk, λk
A)σ

2 ≤ τσ
2

EQ ≤ (1/2)1/4 < .9.

Since {η̄(zk, λk
A)σ} converges Q-superlinearly to zero with Q-order (1 + σ), we have

that the sequence {zk} converges R-superlinearly to ẑ with R-order 1 + σ, as
claimed.

Our next result shows that if the outer strategy is steering the iterates toward the
solution set S for (1.1), and under appropriate assumptions on the boundedness of
the multiplier estimates and the second-order condition, the algorithm will eventually
enter and remain inside the EQ phase, and will converge superlinearly to a KKT
point for (1.1). Note that we cannot be certain (without additional assumptions on
the problem) that the stationary limit point lies in S; the limit of {zk} may be different
from z∗. Hence, this result combines elements of both local and global convergence
analysis.

Theorem 5.4. Suppose that Assumption 1 holds for (1.1) at z∗, that all iterates
(zk, λk) generated by the outer strategy have ‖λk‖1 ≤ c for some c > 0, and that
the second-order condition (2.4) is satisfied for all λ∗ ∈ Sλ with ‖λ∗‖1 ≤ c. Suppose
too that the subsequence of iterates (zk, λk) generated by the outer strategy is either
finite or else satisfies dist ((zk, λk),S) → 0. Then Framework INEQ either terminates
finitely, with the final point zk satisfying (1.3) for some λ∗, or else it eventually enters
the EQ phase and remains there, and the sequence {zk} converges R-superlinearly to
a KKT point z̄ satisfying (1.3) with R-order 1 + σ.

Proof. It is not difficult to show that if Framework INEQ terminates finitely (in
either step 1 or step 4), it does so at a point zk that satisfies the KKT conditions
(1.3). (If the termination occurs in step 4, however, the final multiplier λk

A may
not be appropriate for (1.3) as some of its components may be negative. However,
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the kkt-test (5.2) ensures the existence of an appropriate multiplier vector.) For the
remainder of the proof, we assume that finite termination does not occur.

For the main part of the proof, we assume for contradiction that Framework INEQ
never stays permanently in the EQ phase.

We define the set Vλ in Theorem 3.2 as

Vλ = {λ∗ ∈ Sλ | ‖λ∗‖1 ≤ c + 1},

and V̂γ in Theorem 4.2, for the problem EQ(A∗), as

V̂γ = {λ∗
A∗ ∈ S̄γ | ‖λ∗

A∗‖1 ≤ c + 1}.(5.3)

Accordingly, we define V = {z∗}×Vλ and V̂ = {z∗}× V̂γ . Since dist ((zk, λk),S) → 0
on the outer iterations, and since ‖λk‖1 ≤ c, the projection of (zk, λk) onto S will
eventually lie in V, so by Theorem 3.2, there is β > 0 such that

η(zk, λk) ∈ [1/β, β]dist ((zk, λk),S)

for all outer strategy iterations k sufficiently large. (For simplicity, as in the proof of
Theorem 4.2, we drop the explicit dependence of constants such as β, β̄, δ̄1, δ5, etc.
on the sets Vλ, V̂γ , V̄γ , and the scalar ε.) It follows from Theorem 3.3 that step 1 sets
A(zk, λk) = A∗ at all outer iterations k sufficiently large. Since step 1 is executed
infinitely often, we can therefore assume, as we do in the remainder of the proof, that
A = A∗ for all k sufficiently large (both for outer-strategy iterations and iterations in
the EQ phase).

Consider now the EQ problem EQ(A∗). Because of Assumption 1, there is υ > 0
such that the second-order condition (2.9) is satisfied for problem EQ(A∗) for all
λ∗
A∗ ∈ V̂γ . By choosing ε in Theorem 4.2 sufficiently small, we have that (2.9) is in

fact satisfied for all λ∗
A∗ ∈ V̄γ , where V̄γ is defined in (4.6), possibly with a reduced

(but positive) value of υ. Defining V̄ = {z∗} × V̄γ as before, we have from ‖λk
A∗‖1 ≤

‖λk‖1 ≤ c that for all outer-strategy iterations k sufficiently large, the following
relations hold:

dist ((zk, λk
A∗), V̄)

≤ dist ((zk, λk
A∗), V̂) since V̂ ⊂ V̄

≤
[
dist ((zk, λk

A∗), V̂)2 + ‖λk
(A∗)c‖2

2

]1/2

≤ dist ((zk, λk),V) since λ∗ ∈ Vλ ⇒ λ∗
A∗ ∈ V̂γ

= dist ((zk, λk),S) → 0,(5.4)

where λk
(A∗)c is the vector whose components are λk

i , i /∈ A∗, and the last equality

follows from the fact that the projection (z∗, λk∗) of (zk, λk) onto the set S must
eventually have ‖λk∗‖1 ≤ c + 1, and must therefore also lie in the set V. Hence, the
assumptions of Theorem 3.4, Lemma 4.1, and Theorem 4.2 are satisfied by EQ(A∗)
for all outer-strategy iterations k sufficiently large. In particular, we have from The-
orem 3.4 that there is a constant β̄ > 0 such that

η̄(zk, λk
A∗) ∈ [1/β̄, β̄]dist ((zk, λk

A∗), S̄),

for all outer-strategy iterations k sufficiently large.
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Given that Framework INEQ never remains permanently in the EQ phase, we
claim now that it enters this phase infinitely often. Otherwise, after the final departure
from the EQ phase, τEQ will be at a fixed nonzero value for the remainder of the
iterations. However, in this case, some subsequent iteration k will have

η̄(zk, λk
A∗) ≤ β̄ dist ((zk, λk

A∗), S̄) ≤ β̄ dist ((zk, λk),S) → 0,

so that the threshold test in step 2 will be satisfied at some subsequent k, activating
the EQ phase once again.

Since the algorithm enters the EQ phase infinitely often, it eventually enters with

dist ((zk, λk
A∗), V̂) ≤ dist ((zk, λk

A∗), S̄) ≤ dist ((zk, λk),S) ≤ δ̂(5.5)

for any choice of small positive δ̂. We now derive conditions on δ̂ that ensure that
every EQ phase iteration j ≥ k survives the four tests in step 4, so that all subsequent
iterates remain in the EQ phase.

First, we ensure that the conditions of Theorems 3.4 and 4.2 are satisfied by
setting

δ̂ ≤ δ5.(5.6)

This condition ensures that the estimates (4.4) and (4.5) hold at all subsequent it-
erations of the EQ phase—and indeed that (4.9) are satisfied as well. In particular,
we have from (4.9b), the definition of δ3 in Lemma 4.1, and Theorem 3.4 that the
estimate (3.4) holds for all iterations j ≥ k in the EQ phase. Note too from (4.9a)
that η̄(zj , λj

A∗) decreases monotonically at all subsequent iterations j ≥ k in the EQ
phase.

To handle the first test in step 4, we require that

χ1β̄
1−σ δ̂1−σ ≤ 1.(5.7)

Then for all iterates j ≥ k in the EQ phase, we have from (3.4) and (4.9a) that

‖(∆zj ,∆λj
A∗)‖1

≤ χ1η̄(z
j , λj

A∗) from (4.4) in Lemma 4.1

=
[
χ1η̄(z

j , λj
A∗)

1−σ
]
η̄(zj , λj

A∗)
σ

≤
[
χ1η̄(z

k, λk
A∗)1−σ

]
η̄(zj , λj

A∗)
σ by (4.9a)

≤
[
χ1β̄

1−σdist ((zk, λk
A∗), S̄)1−σ

]
η̄(zj , λj

A∗)
σ by Theorem 3.4

≤
[
χ1β̄

1−σ δ̂1−σ
]
η̄(zj , λj

A∗)
σ by (5.5)

≤ η̄(zj , λj
A∗)

σ by (5.7).

Hence, all iterates j ≥ k in the EQ phase survive the first test in step 4 when (5.7)
holds.

To handle the second conditional statement in step 4, we require that

δ̂ ≤ χ
−1/(1−σ)
2 /β̄.(5.8)

We then have from Theorem 3.4 and (5.5) that

η̄(zk, λk
A∗) ≤ β̄ dist ((zk, λk

A∗), S̄) ≤ β̄δ̂ ≤ χ
−1/(1−σ)
2 .
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Hence, at all iterates j ≥ k in the EQ phase, we have from the bound above together
with Lemma 4.1 and (4.9a) that

η̄(zj+1, λj+1
A∗ ) ≤ χ2η̄(z

j , λj
A∗)

2

=
[
χ2η̄(z

j , λj
A∗)

1−σ
]
η̄(zj , λj

A∗)
1+σ

≤
[
χ2η̄(z

k, λk
A∗)1−σ

]
η̄(zj , λj

A∗)
1+σ

≤ η̄(zj , λj
A∗)

1+σ,

ensuring that all iterates j ≥ k in the EQ phase survive the second test.
For the third condition in step 4, we first define δ6 > 0 small enough that gi(z) < 0

for all i /∈ A∗ and all z with ‖z − z∗‖ ≤ δ6. By requiring

δ̂ ≤ δ6/β̄
2,(5.9)

we have from Theorem 3.4 and (4.9a) that for all iterations j ≥ k in the EQ phase,

‖zj − z∗‖ ≤ dist ((zj , λj
A∗), S̄)

≤ β̄η̄(zj , λj
A∗) ≤ β̄η̄(zk, λk

A∗) ≤ β̄2dist ((zk, λk
A∗), S̄) ≤ β̄2δ̂ ≤ δ6,

ensuring that each subsequent iteration in the EQ phase also survives the third test
in step 4.

We turn now to the fourth test in step 4. We claim that the condition in this test
will hold if δ̂ satisfies

n1/2β̄3−σ δ̂1−σ < 1.(5.10)

As a preliminary, we show that there exists a vector λ∗
A∗ ∈ V̂γ with eTλ∗

A∗ ≤ ‖λj
A∗‖1+

2, for all j ≥ k in the EQ phase, and which therefore satisfies the first two conditions
in (5.2) for B = ‖λj

A∗‖1 + 2, as defined in step 4. Defining λ∗ by projecting (zk, λk)
onto S, we have

‖λ∗
A∗‖1 ≤ ‖λk

A∗‖1 + n1/2‖λk
A∗ − λ∗

A∗‖2

≤ ‖λk
A∗‖1 + n1/2dist ((zk, λk),S)

≤ c + n1/2δ̂ ≤ c + 1,

where the final inequality follows from (5.10), since n1/2δ̂ ≤ (n1/2δ̂)(β̄3−σ δ̂−σ) =

n1/2β̄3−σ δ̂1−σ < 1. Hence, λ∗
A∗ ∈ V̂γ ⊂ V̄γ , where V̂γ is defined in (5.3) and V̄γ is

defined in (4.6). We have from (4.9b) and the definition of δ3 in Lemma 4.1 that

‖zj − z∗‖ ≤ dist ((zj , λ∗
A∗), V̄) = ‖zj − z∗‖ ≤ δ3 ≤ δ̄1,(5.11)

so the estimate (3.4) holds for (zj , λ∗
A∗) for all iterations j ≥ k in the EQ phase.

By applying (4.9c), (5.10), and the fact that δ3 ≤ 1 (see Lemma 4.1), we have
that

‖λ∗
A∗‖1 ≤ ‖λj

A∗‖1 + ‖λk
A∗ − λ∗

A∗‖1 +

j−1∑
i=k

‖∆λi
A∗‖1

≤ ‖λj
A∗‖1 + n1/2δ̂ + min(δ3, ε)

≤ ‖λj
A∗‖1 + 1 + 1,
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showing that the inequality ‖λ∗
A∗‖1 ≤ B = ‖λj

A∗‖1 + 2 is satisfied for all iterations
j ≥ k in the EQ phase.

Turning now to kkt-test(zj + ∆zj , λj
A∗ + ∆λj

A∗ ,A, B) with B = ‖λj
A∗‖1 + 2, we

have for all iterates j ≥ k in the EQ phase that

min
λA∗≥0, ‖λA∗‖1≤B

∥∥∥∥∥∇φ(zj) +
∑
i∈A∗

λi∇gi(z
j)

∥∥∥∥∥
1

≤ min
λA∗≥0, ‖λA∗‖1≤B

n1/2

∥∥∥∥∥∇φ(zj) +
∑
i∈A∗

λi∇gi(z
j)

∥∥∥∥∥
2

≤ min
λA∗≥0, ‖λA∗‖1≤B

n1/2η̄(zj , λA∗)

≤ n1/2η̄(zj , λ∗
A∗) for λ∗

A∗ defined above

≤ n1/2β̄dist ((zj , λ∗
A∗), S̄) by (5.11) and Theorem 3.4

≤ n1/2β̄‖zj − z∗‖ since λ∗
A∗ ∈ S̄

≤ n1/2β̄dist ((zj , λj
A∗), S̄),

≤ n1/2β̄2η̄(zj , λj
A∗) by Theorem 3.4

≤
[
n1/2β̄2η̄(zj , λj

A∗)
1−σ

]
η̄(zj , λj

A∗)
σ

≤
[
n1/2β̄2η̄(zk, λk

A∗)1−σ
]
η̄(zj , λj

A∗)
σ by (4.9a)

≤
[
n1/2β̄3−σdist ((zk, λk

A∗), S̄)1−σ
]
η̄(zj , λj

A∗)
σ by Theorem 3.4

≤
[
n1/2β̄3−σ δ̂1−σ

]
η̄(zj , λj

A∗)
σ by (5.5)

< η̄(zj , λj
A∗)

σ by (5.10).

Therefore, we have that

min
λA∗≥0, ‖λA∗‖1≤B

∥∥∥∥∥∇φ(zj) +
∑
i∈A∗

λi∇gi(z
j)

∥∥∥∥∥
1

≤ η̄(zj , λj
A∗)

σ

for all j ≥ k in the EQ phase, so iterate j survives the fourth test in step 4.
We conclude that when the EQ phase is entered at some iteration k such that

A(zk, λk) = A∗ and (5.5) holds, where δ̂ satisfies the conditions (5.6), (5.7), (5.8),
(5.9), (5.10), that all subsequent iterates remain in the EQ phase, contradicting our
assertion that the iterates never eventually remain inside the EQ phase.

Therefore, unless Framework INEQ terminates finitely, the iterates eventually
enter and remain permanently in the EQ phase for some fixed set A. The final claims
of the proof are an immediate consequence of Theorem 5.3.

Our final result is a more typical local result that assumes a starting point (z0, λ0)
close to a solution (z∗, λ∗) ∈ S at which (2.4) is satisfied.

Theorem 5.5. Suppose that Assumption 1 holds for (1.1) at some λ∗ ∈ Sλ and
that the second-order condition (2.4) holds at λ∗. Then if the starting point (z0, λ0)
is sufficiently close to (z∗, λ∗), Framework INEQ will enter the EQ phase on the first
iteration with A = A∗, and subsequently dist ((zk, λk

A∗), S̄) converges Q-quadratically
to zero and {zk} converges R-quadratically to z∗.

Proof. We start by setting Vλ = {λ∗} and V̂γ = {λ∗
A∗} for purposes of applying

the results of sections 3 and 4. By choosing (z0, λ0) sufficiently close to (z∗, λ∗), we
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can ensure both that the active set A∗ is identified correctly in step 1 and that the
EQ phase is entered in step 2.

It remains to show that all subsequent iterates remain in the EQ phase, that is,
that all iterations pass the tests in step 4. The logic here is essentially identical to the
proof of Theorem 5.4, so we do not repeat it here. However, by forcing (z0, λ0) to be
sufficiently close to (z∗, λ∗) we can prove a stronger result concerning the limit and the
rate of convergence. We have from Theorem 3.4 that dist ((zk, λk

A∗), S̄) ≤ β̄η̄(zk, λk
A∗)

for all k, so that in fact dist ((zk, λk
A∗), S̄) → 0. Hence, we can apply Lemma 4.1 to

obtain quadratic convergence of η̄(zk, λk
A∗) to zero, and by applying Theorem 3.4

again we have that dist ((zk, λk
A∗), S̄) also converges Q-quadratically to zero. The

R-quadratic convergence claim follows from ‖zk − z∗‖ ≤ dist ((zk, λk
A∗), S̄).

In this result, the second-order condition and boundedness of the multiplier esti-
mates for the original problem (1.1) are needed only to ensure that the identification
of the active constraint set A∗ in step 1 is immediately correct. For fast convergence
of the EQ phase, we need only the (weaker) second-order condition for the problem
EQ(A∗).

Theorem 5.5 is similar to the local convergence results in Hager [8], Fischer [6,
Theorem 8], and Wright [17, Theorem 7] the main difference being that the second-
order condition assumed here is less restrictive. It uses similar assumptions to the
result in Izmailov and Solodov [11], which dealt with a different algorithm.

6. Discussion. Several interesting types of nonlinear optimization problems sat-
isfy conditions such as those listed above. A simple case is the one in which the equality
constrained problem

min
z

φ(z) subject to h(z) = 0(6.1)

is reformulated by splitting the equality into two inequalities as follows:

min
z

φ(z) subject to h(z) ≥ 0, h(z) ≤ 0.(6.2)

Even when z∗ is a solution of the original problem at which ∇h(z∗) has full rank
(yielding a unique multiplier γ∗), the reformulation (6.2) satisfies no constraint qual-
ifications. The KKT conditions for (6.2) are that there exist γ∗

+ and γ∗
− such that

h(z∗) = 0, ∇φ(z∗) −∇h(z∗)γ∗
+ + ∇h(z∗)γ∗

−, γ∗
+ ≥ 0, γ∗

− ≥ 0.

Clearly, the multipliers for this formulation are neither unique nor bounded; any
vectors γ∗

+, γ∗
− such that

γ∗ = γ∗
− − γ∗

+, γ∗
+ ≥ 0, γ∗

− ≥ 0,(6.3)

will suffice. The second-order sufficient condition (2.9) for (6.1) is that

wT
(
∇2φ(z∗) +

∑m
i=1 γ

∗
i ∇2hi(z

∗)
)
w ≥ υ‖w‖2

for all w such that ∇hi(z
∗)Tw = 0, i = 1, 2, . . . , p.

(6.4)

Since A∗
0 = ∅, we have following (2.4) that the second-order condition for (6.2) is that

wT
(
∇2φ(z∗) −

∑m
i=1(γ

∗
+)i∇2hi(z

∗) +
∑m

i=1(γ
∗
−)i∇2hi(z

∗)
)
w ≥ υ‖w‖2

for all w such that ∇hi(z
∗)Tw = 0, i = 1, 2, . . . , p.

(6.5)
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Obviously, the set of directions in (6.5) is identical to the set in (6.4). It is easy to see
that the relation (6.4) holds for all γ∗

+, γ∗
− satisfying (6.3). Hence, the second-order

assumption in Theorem 5.4 holds for any choice of the multiplier bound c. Therefore,
for any “reasonable” outer strategy which ensures boundedness of the multipliers and
convergence of (zk, γk

+, γ
k
−) to the solution set for (6.2), Framework INEQ will converge

superlinearly. The stabilization term in the step calculation (4.1), (4.2) overcomes the
potentially woeful consequences of the inferior formulation (6.2).

More general examples of a similar type, in which some of the inequality con-
straints in (1.1) are fixed linear combinations of others, can also be constructed.

Another class of interest is mathematical programs with equilibrium constraints
(MPECs) which, when formulated as nonlinear programs in the usual ways, fail to
satisfy constraint qualifications at any feasible point. The second-order condition (2.4)
corresponds in this case to the second-order condition for the relaxed nonlinear pro-
gramming formulation (Fletcher et al. [7, eq. (3.2)]). (These are slightly more restric-
tive than the second-order condition for the MPEC itself.) Izmailov and Solodov [11,
section 4] give examples in which these conditions are satisfied locally for some mul-
tipliers and show convergence of their algorithm in these cases. Theorem 5.5 implies
that Framework INEQ has similar rapid local convergence properties in these cases.

We illustrate the performance of the constraint identification and convergence
properties of our approach using the following MPEC in two variables:

min z2 subject to z1 ≥ 0, z2 ≥ 0, z1z2 ≤ 0, z2
2 ≥ 1,(6.6)

whose solution is z∗ = (0, 1) with optimal objective 1 and active set A∗ = {1, 3, 4}
(where we assume that the constraints are ordered as written). The matrix of active
constraint gradients is obviously rank deficient and the optimal multiplier set for this
problem is

Sλ = {(α, 0, α, 0.5) |α ≥ 0},

so that A∗
+ = {1, 3, 4} and A∗

0 = ∅. The second-order conditions for this problem are
satisfied vacuously, since the direction set in (2.4) is simply the zero vector.

This problem has the property that standard SQP may fail to produce a valid
step for some z arbitrarily close to z∗, since the linearized constraints are inconsistent
at z = (ε, 1 − ε) for all small positive ε [7, section 2.2]. We consider the performance
of one step of Framework INEQ from such a point, along with a Lagrange multiplier
estimate that is a similar distance from Sλ. We set

z0 = (ε, 1 − ε), λ0 = (1, 0, 1, .5) + εv,(6.7)

where v ∈ R
4 is a vector whose elements are drawn from a uniform distribution over

[−1, 1]. Obviously, we have that dist ((z0, λ0),S) = O(ε) and it is easy to show that
η(z0, λ0) = O(ε) as well (in accordance with Theorem 3.2). For all ε sufficiently small,
we have that A(z0, λ0) = {1, 3, 4} = A∗ and also that η̄(z0, λ0

A∗) = O(ε). Hence, the
test in step 2 of Framework INEQ is satisfied, and the method enters the EQ phase.

Table 6.1 shows the effect of the first step taken in the EQ phase for various
values of ε. (The results were obtained from a Matlab implementation.) The second
column shows that the estimate of A is precise for all values tried (though it is usually
inaccurate for ε ≥ 1/4). The third and fourth columns show the values of η̄(zk, λk

A∗)
for k = 0 and k = 1. (We use the notation 3.9(−1) to denote 3.9 × 10−1, and so on.)
The final column gives an estimate of the Q-order of convergence of η̄ to 0 over this
step. The Q-quadratic convergence of Theorem 5.5 is apparent.
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Table 6.1

One step of framework INEQ from starting point (6.7).

ε A η̄0 η̄1 log η̄1/ log η̄0

2−3 {1, 3, 4} 3.9(−1) 3.9(−2) 3.5

2−5 {1, 3, 4} 1.1(−1) 1.2(−3) 3.0

2−10 {1, 3, 4} 3.0(−3) 2.1(−6) 2.2

2−15 {1, 3, 4} 1.0(−4) 1.4(−9) 2.2

2−20 {1, 3, 4} 3.1(−6) 1.4(−12) 2.1

2−30 {1, 3, 4} 2.7(−9) 7.1(−19) 2.1

2−40 {1, 3, 4} 2.5(−12) 4.2(−25) 2.1

The linear system (4.1), (4.2) that is solved to obtain the step tabulated in Ta-
ble 6.1 is evidently ill conditioned for small ε. (We see this by noting that ∇h(z) ∈
R

2×3 has column rank 2, while the 3 × 3 diagonal block below it has µ = O(ε) and
hence is approaching zero.) It is interesting to ask, therefore, if the computed ver-
sion of the step (∆z,∆γ) will differ from the exact version so markedly as to destroy
the rapid convergence properties of the algorithm. This issue has essentially been
analyzed in [15]. The analysis takes into account both the errors in evaluating the
matrix and right-hand side of (4.2) and the roundoff errors that occur in factorizing
and solving this system using a numerically stable scheme. The evaluation errors may
be particularly significant in the right-hand side of (4.2), since while all components
of this vector are theoretically of size O(η̄), they are generally computed by manip-
ulating intermediate quantities of size O(1), so may contain errors of absolute size
similar to u, where u is unit roundoff.

The analysis in [15], translated appropriately into the current setting, is based on
a singular value decomposition of ∇h(z∗), namely,

∇h(z∗) =
[
Û V̂

] [
S 0

0 0

][
UT

V T

]
,(6.8)

where S is positive diagonal, and Û , V̂ , U , and V are orthonormal matrices. While
the exact step (∆z,∆γ) is of size O(η̄) (Lemma 4.1), it is shown in [15] that the step

(∆̂z, ∆̂γ) computed under the assumptions above satisfies

(∆̂z − ∆z, UT (∆̂γ − ∆γ)) = O(η̄2) + δu,

where δu represents a vector whose entries are bounded by a modest multiple of
u. The errors introduced into these components are as modest as we could expect,
given that the right-hand side contains absolute errors similar to u. In the remaining
component of the step, however, the error is more severe; we have

V T (∆̂γ − ∆γ) = O(η̄ + η̄−1δu).

In this subspace, the ill conditioning of the matrix combines with the evaluation and
roundoff errors to produce large differences between true and computed steps. How-
ever, as noted in [15], the large error in this space has little effect on the convergence
behavior of the algorithm. Roughly speaking, we have

η̄(z + ∆̂z, γ + ∆̂γ) = O(η̄(z, γ)2 + δu),
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Table 6.2

One step of framework INEQ from starting point (6.7), with simulated roundoff errors.

ε η̄0 η̄1 log η̄1/ log η̄0 (∆̂λ1, ∆̂λ3)

2−5 9.4(−2) 2.9(−3) 2.5 10−2(.53, .57)

2−10 2.8(−3) 3.3(−6) 2.1 10−3(.12, .23)

2−15 9.9(−5) 1.5(−9) 2.2 10−4(−.006, .1)

2−20 3.0(−6) 2.1(−12) 2.1 10−6(.06, .84)

2−30 2.7(−9) 2.1(−12) 1.4 10−4(−.48,−.48)

2−40 2.7(−12) 1.0(−12) 1.0 (−.33,−.33)

so that we can expect to see finite-precision arithmetic interfering with the quadratic
convergence of η̄ only when η̄ drops below

√
u.

Our example (6.6) is too small and simple to exhibit the errors discussed in the
previous paragraph, but we can simulate the effects of such errors by introducing
arbitrary perturbations into (4.2) and tracking the effects of these perturbations on
the computed step. For this “simulated roundoff” experiment, we set u = 10−12 and
add perturbations of size u(‖A‖2/2)ρ (where A is the coefficient matrix in (4.2) and
ρ is a scalar drawn from the uniform distribution on [−1, 1]) to all components of the
matrix and right-hand side in (4.2). For our example, we have

∇h(z∗) =

[
−1 1 0

0 0 −2

]
, V =

⎡⎢⎣ 1/
√

2

1/
√

2

0

⎤⎥⎦ ,

so we expect to see errors in the computed values of the Lagrange multiplier step of
the following form: ⎡⎢⎣ ∆λ1 − ∆̂λ1

∆λ3 − ∆̂λ3

∆λ4 − ∆̂λ4

⎤⎥⎦ ≈ β

⎡⎢⎣ 1

1

0

⎤⎥⎦ ≈ −

⎡⎢⎣ ∆̂λ1

∆̂λ3

∆̂λ4

⎤⎥⎦ ,(6.9)

where |β| = O(η̄ + η̄−1u).
Table 6.2 shows the behavior of the first step of Framework INEQ, computed as in

Table 6.1 but with the introduction of simulated roundoff errors as described above.
Interference of these errors with the theoretical convergence behavior is evident only
in the last two lines of the table, when η̄0 drops below about 10−6. The final column
verifies that, as predicted in (6.9), the size of the computed multipliers essentially
tracks ε for ε ≥

√
u, but grows in the range space of V like η̄−1u for smaller values

of η̄.
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