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a b s t r a c t

We address the inherent robustness properties of nonlinear systems controlled by suboptimal model
predictive control (MPC), i.e., when a suboptimal solution of the (generally nonconvex) optimization
problem, rather than an element of the optimal solution set, is used for the control. The suboptimal control
law is then a set-valued map, and consequently, the closed-loop system is described by a difference
inclusion. Under mild assumptions on the system and cost functions, we establish nominal exponential
stability of the equilibrium, and with a continuity assumption on the feasible input set, we prove robust
exponential stability with respect to small, but otherwise arbitrary, additive process disturbances and
statemeasurement/estimation errors. These results are obtained by showing that the suboptimal cost is a
continuous exponential Lyapunov function for an appropriately augmented closed-loop system, written as
a difference inclusion, and that recursive feasibility is implied by such (nominal) exponential cost decay.
These novel robustness properties for suboptimal MPC are inherited also by optimal nonlinear MPC. We
conclude the paper by showing that, in the absence of state constraints, we can replace the terminal
constraint with an appropriate terminal cost, and the robustness properties are established on a set that
approaches the nominal feasibility set for small disturbances. The somewhat surprising and satisfying
conclusion of this study is that suboptimal MPC has the same inherent robustness properties as optimal MPC.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The stability properties of model predictive control (MPC)
have been investigated extensively during the past two decades,
and it is generally known that the equilibria of constrained
nonlinear systems in a closed loop with suitably designed MPC
are asymptotically stable [1]. The usual path to prove asymptotic
stability of an equilibriumpoint requires that the optimalMPC cost
function is a Lyapunov function for the closed-loop system, and
this usually implies the use of an appropriate terminal cost (with
or without an associated terminal constraint). Different flavors can
be considered along these lines, and the interested readermay find
them in [2, Ch. 2] and references therein.

In order to guarantee asymptotic stability, most MPC formula-
tions assume that the optimal control problem is solved exactly.
While this assumption may be acceptable for linear systems with
linear or quadratic cost functions (hence the associated optimal
control problem is an LP or a QP, respectively), for nonlinear sys-
tems, there is usually no guarantee that the global optimum can be
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achieved, unless the resulting optimization problem is convex [3].
If, on the other hand, a suboptimal solution of the control problem is
used in the closed loop, stability may not hold. Even if it does hold,
it may be difficult to establish because the associated control law
is no longer a function of solely the current state, and hence the
cost function is not a Lyapunov function for the closed-loop sys-
tem. However, as established by [4], if the optimization provides
a feasible, suboptimal solution that only improves the cost from a
well-chosen warm start (and some other more technical assump-
tions are satisfied), asymptotic stability of the equilibrium can be
established. (See also [2, Sections 2.8 and 6.1.2] for further details
on stability under suboptimal MPC.)

When considering systems perturbed by additive process
disturbances and/or state measurement (or estimation) errors, in
most of the literature, the perturbations have been directly taken
into account in the controller formulation leading to the so-called
robust MPC formulations (see e.g. [5–8], [2, Ch. 3] and references
therein). Even for linear systems, robust MPC formulations are
often more demanding from a computational point of view, and,
more importantly, they tend to be conservative in order to preserve
recursive feasibility in worst-case scenarios. A major challenge in
robust MPC design is handling hard state constraints. For example,
to maintain feasibility of state constraints under disturbances, [9]
propose modifying the nominal MPC problem by altering the state
constraints so that they become progressively tighter with time.
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On the other hand, inherent robustness properties, i.e., the
stability properties of a perturbed system in a closed loop with a
nominal MPC design ignoring disturbances, which includes most
industrialMPC applications, have receivedmuch less attention [10,
11], as pointed out by Teel and coworkers [12]. In particular, [12]
presented examples of nonlinear systems controlled by MPC in
which the asymptotic stability of the equilibrium is destroyed by
arbitrarily small perturbations. They prove that the existence of a
continuous Lyapunov function for the closed-loop system implies
robustness to sufficiently small perturbations, provided that the
optimization problem remains feasible at all times. In a subsequent
paper [13], they presented sufficient conditions for robust stability
ofMPCusing the time-varying tightening of the state constraints to
maintain feasibility. Further results on robustness of discontinuous
discrete-time systems and Lyapunov functions were discussed
in [14]. In [12], the authors also show that for linear systems with
a quadratic cost, the optimal MPC cost function is a continuous
Lyapunov function for the closed-loop system, because the optimal
state-feedback law is continuous, hence achieving inherent robust
stability of the equilibrium. This result is extended to the entire
domain of the value function in [2, Proposition 7.13]. On the
other hand, a suboptimal MPC law is not necessarily continuous,
even for linear systems, and hence inherent robustness cannot be
established even in such a simple case. In a significant paper, Lazar
and Heemels were the first to address explicitly the robustness
of suboptimal MPC [15]. Their robustness results apply to a
class of suboptimal MPC algorithms, which satisfy a specified
degree of suboptimality. They also employed the time-varying
state constraint tightening approach of [9,13] to achieve recursive
feasibility under disturbances. A detailed comparison between the
results and approach considered here and that of [15] is given in
the conclusions.

With these observations in mind, the objective of this paper
is to present novel results on inherent robust stability of a class
of nonlinear systems controlled by a general and implementable
suboptimalMPC. To do so, we treat the suboptimal control law as a
set-valuedmap and consequentlyweuse difference inclusions [16]
to describe the closed-loop system. Furthermore, we show that
such robustness is achieved with respect to sufficiently small
but arbitrary perturbations, without requiring a priori recursive
feasibility. Our nominal MPC controller design does not employ
any constraint tightening procedure to ensure feasibility. We
instead resolve infeasibilities, if they occur, online. It should
also be mentioned that, in application, all state constraint-based
controllers, even the robust designs, must include a provision
for resolving infeasibilities online simply because the encountered
disturbances can never be guaranteed to lie within the designed
disturbance sets.

As a corollary to these results, we note that optimal MPC is
a special case of suboptimal MPC, and thus the inherent robust
stability properties are consequently established for the nominal,
optimal controller. This represents itself a novel contribution of
this paper. Most of these results can be tailored to the case in
which the controlled system is linear, and the specialization to
partial enumeration MPC [17] will be the subject of a separate
publication [18].

Notation. The symbols I≥0 and R≥0 denote the sets of nonnegative
integers and reals, respectively. The symbol I0:N−1 denotes the set
{0, 1, . . . ,N − 1}. The symbol | · | denotes the Euclidean norm
and B denotes the closed ball of radius 1 centered around the
origin. If X and Y are two subsets of the same space, we define
Z = X ⊕Y := {z = x+y | x ∈ X, y ∈ Y }. We denote the interior of
a set X as int(X). Given a nonnegative function V : X → R≥0 and
a positive scalar α, we define levαV := {x ∈ X | V (x) ≤ α}.

2. Basic definitions and assumptions

2.1. MPC problem and optimal solution

In this paper, we consider discrete-time systems in the form:

x+
= f (x, u) (1)

in which x ∈ Rn and u ∈ Rm are the state and the input at a given
time, while x+

∈ Rn is the successor state. Both state and input are
subject to constraints:

x(k) ∈ X, u(k) ∈ U for all k ∈ I≥0.

Given an integer N (referred to as the finite horizon), and an in-
put sequence u of length N , u = {u(0), u(1), . . . , u(N − 1)}, let
φ(k; x,u) denote the solution of (1) at time k for a given initial state
x(0) = x. Then we define the set of feasible initial states and asso-
ciated control sequences:

ZN := {(x,u) | u(k) ∈ U, φ(k; x,u) ∈ X
for all k ∈ I0:N−1, and φ(N; x,u) ∈ Xf }

in which Xf ⊆ X is the set of feasible states at the end of the fi-
nite horizon. Consequently, we can define the set of feasible initial
states as:

XN := {x ∈ Rn
| ∃u ∈ UN such that (x,u) ∈ ZN} (2)

and for each x ∈ XN , the corresponding set of feasible input se-
quences is defined as:

UN(x) := {u | (x,u) ∈ ZN}.

For any state x ∈ Rn and input sequence u ∈ UN , we define1:

VN(x,u) :=

N−1−
k=0

ℓ(φ(k; x,u), u(k))+ Vf (φ(N; x,u))

and we consider the finite horizon optimal control problem:

PN(x) : min
u

VN(x,u) s.t. u ∈ UN(x).

Wemake the following basic assumptions.

Assumption 1. The functions f : Rn
× Rm

→ Rn, ℓ : Rn
× Rm

→

R≥0 and Vf : Rn
→ R≥0 are continuous, f (0, 0) = 0, ℓ(0, 0) = 0

and Vf (0) = 0.

Assumption 2. (a) The set U is compact and contains the origin.
The sets X and Xf are closed and contain the origin in their
interiors, Xf ⊆ X.

(b) The set U is compact and contains the origin. The sets X = Rn

and Xf = levαVf = {x ∈ Rn
| Vf (x) ≤ α}, with α > 0.

Assumption 3. For any x ∈ Xf , there exists u ∈ U such that
f (x, u) ∈ Xf and Vf (f (x, u))+ ℓ(x, u) ≤ Vf (x).

Assumption 4. There exist positive constants a, a′

1, a
′

2, af and r̄ ,
such that the cost function satisfies the inequalities

ℓ(x, u) ≥ a′

1|(x, u)|
a for all (x, u) ∈ X × U

VN(x,u) ≤ a′

2|(x,u)|
a for all (x,u) ∈ r̄B

Vf (x) ≤ af |x|a for all x ∈ X.

Remark 5. In Assumption 2, we allow the origin to be on the
boundary of the (deviation) input space U. This case often arises
in industrial applications where an upper (typically economic)
optimization layer pushes the desired steady-state operating point
to the boundary of the (absolute) input space.

1 Notice that we define VN (·) even for pairs (x,u) ∉ ZN . This extension is
necessary for robust stability analysis of the perturbed case.
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Remark 6. Assumption 2(b) (withAssumption 1) implies Assump-
tion 2(a); we use Assumption 2(b) to treat the case without state
constraints in Section 5.

Remark 7. Assumption 3 implies that Xf is control invariant and
Xf ⊆ XN . We can define a terminal control law (set-valued map)
κf (·) on Xf so that u ∈ κf (x) satisfies Assumption 3.

Let u0(x) be the optimal solution of PN(x) and let κN(·) := u0

(0; ·) denote its first component, written as an implicit function2 of
x. The closed-loop evolution of nominal system (1) under optimal
MPC can be written as

x+
= f (x, κN(x)). (3)

2.2. Suboptimal MPC

Rather then solving PN(x) exactly, we consider using any (un-
specified) suboptimal algorithm having the following properties.
Let u ∈ UN(x) denote the (suboptimal) control sequence for the
initial state x, and let ũ denote awarm start for the successor initial
state x+

= f (x, u(0; x)), obtained from (x,u) by

ũ := {u(1; x), u(2; x), . . . , u(N − 1; x), u+} (4)

in which u+ ∈ U is any input that satisfies the invariance condi-
tions of Assumption 3 for x = φ(N; x,u) ∈ Xf , i.e., u+ ∈ κf (φ(N;

x,u)). We observe that the warm start satisfies ũ ∈ UN(x+). Then,
the suboptimal input sequence for any given x+

∈ XN is defined
as any u+

∈ UN that satisfies:

u+
∈ UN(x+) (5a)

VN(x+,u+) ≤ VN(x+, ũ) (5b)

VN(x+,u+) ≤ Vf (x+) when x+
∈ rB (5c)

in which r is a positive scalar sufficiently small that rB ⊆ Xf .
Notice that constraint (5c) is required to hold only if x+

∈ rB, and,
as proved in Lemma 16, it implies that |u+

| → 0 as |x+
| → 0.

Remark 8. Condition (5b) ensures that the computed suboptimal
cost is no larger than that of the warm start.

Proposition 9. Any u0(x+), optimal solution to PN(x+), satisfies
conditions (5a) and (5b) for all x+

∈ XN . Moreover, the inequality
in condition (5c) is satisfied by u0(x+) for all x+

∈ Xf .

Proof. Satisfaction of (5a) and (5b) by u0(x+) is implied by the op-
timality of u0(x+). For the final claim, consider any x+

∈ Xf , define
x(0) := x+ and choose any u(0) ∈ κf (x(0)) satisfying Assump-
tion 3.We thus obtainVf (x(1))+ℓ(x(0), u(0)) ≤ Vf (x(0)). Because
x(1) ∈ Xf , we can choose u(1) ∈ κf (x(1)) satisfying Assumption 3
to obtain Vf (x(2)) + ℓ(x(1), u(1)) + ℓ(x(0), u(0)) ≤ Vf (x(1)) +

ℓ(x(0), u(0)) ≤ Vf (x(0)). Continuing in this fashion for k = 2,
3, . . . ,N − 1, and defining uf = (u(0), u(1), . . . , u(N − 1)), we
obtain VN(x+,uf ) ≤ Vf (x+). Finally, optimality of u0(x+) implies
that (5c) holds for u0(x+). �

Corollary 10. For any x+
∈ XN , there exists a u+

∈ UN(x+)
satisfying all conditions (5) for all ũ ∈ UN(x+).

Wenowobserve that u+ is a set-valuedmap of the state x+, and
so is the associated first component u(0; x+). If we, again, denote
the latter map as κN(·), we can write the evolution of the closed-
loop system as the following difference inclusion:

x+
∈ F(x) := {f (x, u) | u ∈ κN(x)}. (6)

2 Existence of the optimal solution can be established [2, Prop. 2.4]. Uniqueness
is not guaranteed in general, however, and κN (·) may be a set-valued map. This
possibility is discussed in detail in the suboptimal MPC case covered next.

Proposition 11. We have that κN(0) = {0} and F(0) = {0}.

Proof. From ℓ(x, u) ≥ a′

1|(x, u)|
a and from Vf (x) ≥ 0, we have

VN(x,u) ≥ a′

1

N−1−
k=0

|(φ(k; x,u), u(k))|a

≥ a′

1


|(x, u(0))|a +

N−1−
k=1

|u(k)|a


≥ a′

1N
−a

|(x,u)|a,

where the last inequality is from Lemma 43. Thus, choosing a1 to
satisfy 0 < a1 ≤ N−aa′

1, we have that VN(x,u) ≥ a1|(x,u)|a for
all (x,u) ∈ X × UN . From (5c), Assumptions 1 and 4, we have that
a1|(0,u)|a ≤ VN(0,u) ≤ Vf (0) = 0. Thus, it follows that u = 0
and hence κN(0) = u(0; 0) = {0}. The second result then follows
from Assumption 1. �

2.3. Exponential stability for difference inclusions

Motivated by the description as difference inclusion of the
closed-loop system evolution under suboptimal MPC, we consider
the following definitions. Given a difference inclusion3 z+

∈ H(z),
H(0) = {0}, we denote byψ(k; z) := z(k) a solution at time k ∈ I≥0
starting from the initial state z(0) = z.

Definition 12 (Exponential Stability). The origin of the difference
inclusion z+

∈ H(z) is exponentially stable (ES) on Z, 0 ∈ Z, if
there exist scalars b > 0 and 0 < λ < 1, such that for any z ∈ Z,
all solutions ψ(k; z) satisfy:

ψ(k; z) ∈ Z, |ψ(k; z)| ≤ bλk|z| for all k ∈ I≥0.

Definition 13 (Exponential Lyapunov Function). V is an exponential
Lyapunov function on the set Z for the difference inclusion z+

∈

H(z) if there exist positive scalars a, a1, a2 and a3 such that the
following holds for all z ∈ Z

a1|z|a ≤ V (z) ≤ a2|z|a, max
z+∈H(z)

V (z+) ≤ V (z)− a3|z|a.

We have the following results.

Proposition 14. If V is an exponential Lyapunov function on the set
Z for the difference inclusion z+

∈ H(z), there exists 0 < γ < 1 such
that:

max
z+∈H(z)

V (z+) ≤ γ V (z).

Proof. From the definition of V , z ∈ Z implies that

max
z+∈H(z)

V (z+) ≤ V (z)− a3|z|a ≤ V (z)−
a3
a2

V (z) ≤ γ V (z)

for γ > 1 − a3/a2. Since a2 ≥ a3 > 0, we have 0 < γ < 1. �

Lemma 15. If the set Z, 0 ∈ Z, is positively invariant for the diff-
erence inclusion z+

∈ H(z), H(0) = {0}, and there exists an exponen-
tial Lyapunov function V on Z, the origin is ES on Z.

Proof. Sinceψ(k; z) ∈ Z for all k ∈ I≥0, and using Proposition 14,
we write: |ψ(k; z)|a ≤

V (ψ(k;z))
a1

≤
γ kV (z)

a1
≤

γ ka2|z|a

a1
. Thus, we

obtain: |ψ(k; z)| ≤ bλk|z| in which λ = γ 1/a and b =


a2
a1

1/a
,

and we note that 0 < λ < 1. �

3 For reasons that will be clear later on, here we use z to denote the state.
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3. Nominal exponential stability of suboptimal MPC

We now present the first set of novel results for discrete-time
systems in closed loop with suboptimal MPC.

3.1. Extended state and supporting results

We consider an extended state z = (x,u), and we observe that
it evolves according to the following difference inclusion:

z+
∈ H(z) := {(x+,u+) | x+

= f (x, u(0; x)),u+
∈ G(z)} (7)

in which (notice that both x+ and ũ depend on z):

G(z) := {u+
| u+

∈ UN(x+), VN(x+,u+) ≤ VN(x+, ũ),
and VN(x+,u+) ≤ Vf (x+) if x+

∈ rB}.

We also define the following set (notice that rB ⊆ Xf ):

Zr := {(x,u) ∈ ZN | VN(x,u) ≤ Vf (x) if x ∈ rB}.

Lemma 16. There exists a positive constant c such that |u| ≤ c|x|
for any (x,u) ∈ Zr .

Proof. We first show that |u| ≤ c̄|x| holds, for some c̄ , if x ∈

rB ⊆ Xf . Recall from the proof of Proposition 11 that there is
a1 > 0 such that a1|(x,u)|a ≤ VN(x,u) for all (x,u) ∈ X × UN .
For x ∈ rB ⊆ Xf ⊆ X, we can therefore write:

a1|u|
a
≤ a1|(x,u)|a ≤ VN(x,u) ≤ Vf (x) ≤ af |x|a.

Thus, given any c̄ ≥ (af /a1)(1/a), we obtain |u| ≤ c̄|x| for any
x ∈ rB. Defineµ = maxu∈UN |u|, and note thatµ < ∞ because UN

is compact. Choosing c ≥ max{µr , c̄}, we observe that |u| ≤ c|x|
for all (x,u) ∈ Zr . In fact, if x ∈ rB, we have that |u| ≤ c̄|x| ≤ c|x|;
while if x ∉ rB, we have that |u| ≤ µ ≤

µ|x|
r ≤ c|x|. �

Lemma 17. VN(·) is an exponential Lyapunov function for extended
closed-loop system (7) in any compact subset of Zr .

Proof. As established in the proof of Proposition 11, we have that
a1|z|a ≤ VN(z) for some a1 > 0 and all z ∈ Zr . Consider any com-
pact set C ⊆ Zr and define: µ := maxz∈C VN(z). Note that from
Assumption 1, it follows that VN(·) is continuous; thus, µ is well
defined. From Assumption 4, if we choose a2 ≥ max{µ/r̄a, a′

2}, we
have that:

VN(z) ≤ a2|z|a for all z ∈ C.

We verify this fact by noting that if z ∈ r̄B ∩ Zr , we have from
Assumption 4 that VN(z) ≤ a′

2|z|
a
≤ a2|z|a; if instead z ∈ Zr \ r̄B,

we have that VN(z) ≤ µ ≤ µ|z|a/r̄a ≤ a2|z|a. We now prove that
VN(z+) ≤ VN(z) − a3|z|a for all z+

∈ H(z) and z ∈ Zr . In fact, for
all z+

∈ H(z), we have from Assumption 4 that

VN(z+) ≤ VN(z)− ℓ(x, u(0)) ≤ VN(z)− a′

1|(x, u(0))|
a.

From Lemma 16 we can write:

|z| ≤ (|x| + |u|) ≤ (1 + c)|x| ≤ (1 + c)|(x, u(0))|.

Thus, if we define a positive constant a3 ≤
a′1

(1+c)a , we can write:

VN(z+) ≤ VN(z)− a′

1|(x, u(0))|
a
≤ VN(z)−

a′

1

(1 + c)a
|z|a

≤ VN(z)− a3|z|a

for all z+
∈ H(z) and z ∈ Zr . �

3.2. Main results

We now state the first main result of this paper about nominal
stability of the origin under suboptimal MPC.

Theorem 18 (ES). Under Assumptions 1, 2(a), 3 and 4, the origin of
the closed-loop system (6) is ES on (arbitrarily large) compact subsets
of XN .

Proof. From Lemma 17, we have that VN(·) is an exponential
Lyapunov function for (7) in any given compact subset of Zr . Let
V̄ be an arbitrary positive scalar, and consider the set

S = {(x,u) ∈ Zr | VN(x,u) ≤ V̄ }.

We observe that S ⊆ Zr is compact and is invariant for (7). By
Lemma 15, these facts prove that the origin of the extended system
(7) is ES on S, i.e., there exist scalars b′ > 0 and 0 < λ < 1, such
that for any z ∈ S we can write:

ψ(k; z) ∈ S and |ψ(k; z)| ≤ b′λk|z| for all k ∈ I≥0

in which ψ(k; z) = z(k) is a solution of (7) at time k for a given
initial extended state z(0) = z. We define C := {x ∈ XN | ∃u ∈

UN(x)such that (x,u) ∈ S} and we note that C ⊆ XN and that C
is compact because it is the projection onto Rn of the compact set
S. Thus for any x ∈ C and its associated suboptimal input sequence
u such that z = (x,u) ∈ S, we denote with φ(k; x) the state
component of ψ(k; z), i.e., a solution of nonextended system (6),
and for all k ∈ I≥0 we can write:

φ(k; x) ∈ C and |φ(k; x)| ≤ |ψ(k; z)| ≤ b′λk|z| ≤ bλk|x|

in which b = b′(1 + c), because from Lemma 16 it follows that
|z| ≤ |x| + |u| ≤ (1 + c)|x|. This concludes the proof because it
states that the origin of the closed-loop system (6) is ES on C, and
V̄ can be chosen large enough for C to contain any given compact
subset of XN . �

Corollary 19. Under Assumptions 1, 2(a), 3 and 4, if XN is compact,
the origin of the closed-loop system (6) is ES on XN .

4. Robust exponential stability of suboptimal MPC

4.1. Disturbances and robust stability definitions

For robustness analysis, we consider the closed-loop evolution
of the perturbed system

x+
∈ Fed(x) = {f (x, u)+ d | u ∈ κN(x + e)} (8)

in which d ∈ Rn is an unknown process disturbance and e ∈ Rn

represents an unknown state measurement/estimate error. (We
have used the definition of κN(·) from Section 2.2, so that κN(x+e)
is the first component of a suboptimal solution of PN(x + e).)

Remark 20. In the perturbed case, the control sequence u is
computed as a suboptimal solution of PN(xm), with xm = x+ e, i.e.,
it is based on the evolution of nominal system (1), for the initial
measured state.

Wedenotewithφed(k; x) = x(k) a solution to the perturbed closed-
loop system (8) for the initial state x(0) = x and given disturbance
and measurement error sequences {d(k)}, {e(k)}. We now present
the definition of robust exponential stability (RES), similar to that of
robust asymptotic stability (RAS) given in [12].

Definition 21 (RES). The origin of the closed-loop system (8) is
robustly exponentially stable (RES) on int(XN) if there exist scalars
b > 0 and 0 < λ < 1 such that for all compact sets C ⊂ XN ,
with 0 ∈ int(C), the following property holds: Given any ϵ > 0,
there exists δ > 0 such that for all sequences {d(k)} and {e(k)}with
x(0) = x ∈ C satisfying:

max
k≥0

|d(k)| ≤ δ, max
k≥0

|e(k)| ≤ δ

xm(k) = x(k)+ e(k) ∈ XN , x(k) ∈ XN , for all k ∈ I≥0,
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it follows that

|φed(k; x)| ≤ bλk|x| + ϵ, for all k ∈ I≥0. (9)

Remark 22. In RES (or RAS) the robust stability condition (9)
is presented for those (if any) initial states, disturbance and
measurement error sequences that a priori ensure feasibility of the
perturbed closed-loop trajectories.

The next definition instead requires that feasibility is satisfied at
all times for all sufficiently small disturbance and measurement
error sequences and all initial states in a given compact subset of
int(XN).

Definition 23 (SRES). The origin of the closed-loop system (8) is
strongly robustly exponentially stable (SRES) on a compact set C ⊂

XN , 0 ∈ int(C), if there exist scalars b > 0 and 0 < λ < 1 such
that the following property holds: Given any ϵ > 0, there exists
δ > 0 such that for all sequences {d(k)} and {e(k)} satisfying

|d(k)| ≤ δ and |e(k)| ≤ δ for all k ∈ I≥0,

and all x ∈ C, we have that

xm(k) = x(k)+ e(k) ∈ XN , x(k) ∈ XN ,

for all k ∈ I≥0, (10a)

|φed(k; x)| ≤ bλk|x| + ϵ, for all k ∈ I≥0. (10b)

Remark 24. The main import of the SRES definition is that the
closed-loop system is input-to-state stable (ISS) [19] considering
the disturbances (d, e) as the input. For this reason, some
researchers substitute the statement ‘‘the system is ISS in C’’ for
what we here defined as SRES on C. Since we require an additional
restriction on the measurement xm(k), which is not part of the
standard ISS definition, we prefer to use a separate SRES definition
in this paper.

4.2. Feasibility issues

Before presenting the robust stability results, we observe that
although the warm start ũ is feasible for the predicted successor
state x̃+

= f (xm, u(0; xm)), i.e., (x̃+, ũ) ∈ ZN , it may not be feasible
for themeasured successor state, i.e., x+

m = f (x, u(0; xm))+ d+ e+.
(The true successor state, which is unknown in general, is x+

=

f (x, u(0; xm))+ d.) If (x+
m, ũ) ∉ ZN , the right-hand side of the cost

inequality (5b) is not meaningful. In such cases, we need to modify
the warm start with a term p such that (x+

m, ũ + p) ∈ ZN , and to
this aim we consider the following additional assumption.

Assumption 25. For any x, x′
∈ XN and u ∈ UN(x), there exists

u′
∈ UN(x′) such that |u − u′

| ≤ σ(|x − x′
|) for some K-function

σ(·).

Remark 26. Assumption 25 has been shown to hold, e.g., for linear
systems s.t. polytopic constraints on (x,u), and for nonlinear
systems without state (or mixed) and terminal constraints.

Remark 27. Assumption 25 also implies that V 0
N(·) is continuous

by applying Theorem C.28 in [2].

Among various options for finding p, we consider the following
feasibility problem (notice that x̃+ is known):

Find p s.t. ũ + p ∈ UN(x+

m) and |p| ≤ σ(|x+

m − x̃+
|). (11)

Remark 28. If ũ ∈ UN(x+
m), it immediately follows that p = 0

satisfies the feasibility problem (11), and hence Assumption 25
is unnecessary. Furthermore, we do not require Assumption 25
when treating the case without state and terminal constraints in
Section 5.

Proposition 29. Under Assumption 25, for any (x̃+, ũ) ∈ ZN and
x+
m ∈ XN , the set of solutions to (11) is nonempty.

Proof. The result follows directly from Assumption 25 by noticing
that ũ ∈ UN(x̃+) and ũ + p ∈ UN(x+

m). �

Given any p satisfying (11), and for any given x+
m ∈ XN , we

replace conditions (5) with the following:

u+
∈ UN(x+

m) (12a)

VN(x+

m,u
+) ≤ VN(x+

m, ũ + p) (12b)

VN(x+

m,u
+) ≤ Vf (x+

m) when x+

m ∈ rB. (12c)

In the perturbed case, the extended state is z = (x,u), where
u is a suboptimal solution to PN(xm) where xm := x + e is the
measured state. The extended system evolves as follows:

z+
∈ Hed(z) := {(x+,u+) | x+

= f (x, u(0; xm))+ d,u+
∈ Ged(z)}

(13)

in which (notice that both x+
m := x+

+ e+ and ũ + p depend on z):

Ged(z) := {u+
| u+

∈ UN(x+

m), VN(x+

m,u
+)

≤ VN(x+

m, ũ + p), VN(x+

m,u
+) ≤ Vf (x+

m) if x
+

m ∈ rB}.

4.3. Main results

We denote by zm := (xm,u) = (x + e,u) = z + (e, 0), we
observe that zm ∈ Zr , and present the following supporting result.

Lemma 30. For every µ > 0, there exists a δ > 0 such that, for all
(zm, e, d, e+) ∈ Zr × δB × δB × δB, z = zm − (e, 0), such that
x+
m ∈ XN , and some γ , 0 < γ < 1, we have:

max
z+∈Hed(z)

VN(z+) ≤ max{γ VN(z), µ}.

Proof. Let µ > 0 be given. The value VN(x̃+, ũ) is the cost along
the nominal trajectory (no disturbance). Therefore since VN(·)
is an exponential Lyapunov function for the nominal system
(Lemma 17), Proposition 14 gives that

VN(x̃+, ũ) ≤ VN(zm)− ℓ(xm, u(0; xm)) ≤ γ̄ VN(zm)

for some 0 < γ̄ < 1. Consider a γ such that γ̄ < γ < 1, and define
ρ := µ(γ − γ̄ ) > 0. Recall that: x̃+

− x+
m = f (xm, u(0; xm)) −

f (x, u(0; xm)) − d − e+. Due to continuity of VN(·) and f (·), and
because of |p| ≤ σ(|x̃+

− x+
m|), we can choose δ1 > 0 such that the

following condition holds for all (zm, e, d, e+) ∈ Zr × δ1B × δ1B ×

δ1B, z = zm − (e, 0):

VN(x+

m, ũ + p) ≤ VN(x̃+, ũ)+
ρ

3
. (14)

By continuity of VN(·), choose δ2 > 0 such that the condition:

VN(x̃+, ũ) ≤ γ̄ VN(xm,u) ≤ γ̄ VN(x,u)+
ρ

3
(15)

holds for all (zm, e) ∈ Zr × δ2B, z = zm − (e, 0). From continuity
of VN(·) and f (·) and from (12b), choose δ3 > 0 such that

VN(x+,u+) ≤ VN(x+

m,u
+)+

ρ

3
≤ VN(x+

m, ũ + p)+
ρ

3
(16)

for all z+
:= (x+,u+) ∈ Hed(z) and all (zm, e, d, e+) ∈ Zr × δ3B ×

δ3B × δ3B, z = zm − (e, 0). Defining δ := min{δ1, δ1, δ3}, and
summing up (the most external sides of) (14)–(16), we obtain:

max
z+∈Hed(z)

VN(z+) ≤ γ̄ VN(z)+ ρ
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Fig. 1. Sketch of the main sets involved in SRES.

for all (zm, e, d, e+) ∈ Zr × δB × δB × δB, z = zm − (e, 0).
Define Z1 := {z = zm − (e, 0) | zm ∈ Zr , e ∈ δB, VN(z) ≤ µ}

and Z2 := {z = zm − (e, 0) | zm ∈ Zr , e ∈ δB, VN(z) > µ},
and assume that µ is not so large that Z2 is empty (otherwise the
proof is simpler). If z ∈ Z1 we can write: maxz+∈Hed(z) VN(z+) ≤

γ̄ VN(z)+ρ ≤ γ̄ µ+µ(γ − γ̄ ) ≤ µ. If instead z ∈ Z2 we canwrite:
maxz+∈Hed(z) VN(z+) ≤ γ̄ VN(z)+ µ(γ − γ̄ ) ≤ γ VN(z). Therefore,
we have established that the condition:

max
z+∈Hed(z)

VN(z+) ≤ max{γ VN(z), µ}

holds for all (zm, e, d, e+) ∈ Zr × δB × δB × δB, z = zm − (e, 0),
such that x+

m ∈ XN . �

We now characterize the compact sets over which SRES is
guaranteed to hold. Consider a scalar V̄ > 0 such that the set:

S := {z ∈ Rn
× UN

| VN(z) ≤ V̄ }

satisfies S ⊆ ZN , i.e., S is a sublevel set of Rn
× UN fully contained

in ZN . Thus, by definition, for any z := (x,u) ∈ S, it follows that
x ∈ XN . Next, given a scalar ρ > 0 and any zm ∈ Zr , we define the
following measure and associated set:

V ρN (zm) := max
e∈ρB

VN(z) s.t. z = zm − (e, 0) (17)

Sρ := {zm ∈ Zr | V ρN (zm) ≤ V̄ } (18)

in which we assume that ρ is small enough that Sρ is nonempty.
Finally, we define the following compact set:

Cρ := {x ∈ Rn
| x = xm − e, e ∈ ρB, ∃u s.t. (xm,u) ∈ Sρ} (19)

and we observe that 0 ∈ int(Cρ) ⊂ XN for ρ sufficiently small.
These sets are depicted in Fig. 1. The main SRES result of this paper
is as follows.

Theorem 31 (SRES of Suboptimal MPC). Under Assumptions 1, 2(a),
3, 4 and 25, the origin of the perturbed closed-loop system (8) is SRES
on Cρ .

Proof (Robust Feasibility). Suppose that x ∈ Cρ and let z := (x,u)
be the corresponding augmented state where u is a suboptimal
sequence computed for themeasured state xm := x+e, e ∈ ρB.We
recall that VN(z) ≤ V̄ , i.e., z ∈ S and that zm ∈ Sρ ⊆ Zr . Moreover,
we define z̃+

:= (x̃+, ũ). Since VN(·) is an exponential Lyapunov
function for the nominal system and zm ∈ Zr , Proposition 14
gives that VN(z̃+) ≤ γ̄ VN(zm) for some 0 < γ̄ < 1. Because
zm ∈ Sρ it follows that VN(x̃+, ũ) ≤ γ̄ V̄ < V̄ . Recalling that:

x̃+
−x+

m = f (xm, u(0; xm))− f (x, u(0; xm))−d−e+, it follows from
continuity of f (·) that there exists a δ̄1 > 0 such that VN(x+

m, ũ) <
V̄ and thus x+

m ∈ XN for all (zm, e, d, e+) ∈ Sρ × δ̄1 × δ̄1 × δ̄1.
Hence, the initialization step (11) is well defined. Define any 0 <
µ < (1 − γ̄ )V̄ . From continuity of VN(·) and f (·), and because
|p| ≤ σ(|x̃+

− x+
m|), we can choose δ̄2 > 0 such that the following

condition holds: VN(x+
m, ũ + p) ≤ VN(x̃+, ũ) + µ < VN(x̃+, ũ) +

(1 − γ̄ )V̄ ≤ V̄ . This proves that VN(z+
m ) ≤ VN(x+

m, ũ + p) < V̄ .
From continuity of VN(·), it also follows that we can choose ρ > 0
sufficiently small that V ρN (z

+
m ) ≤ V̄ . Taking δ = min{ρ, δ̄1, δ̄2} we

have proved that z+
m ∈ Sρ for all (zm, e, d, e+) ∈ Sρ×δB×δB×δB.

This implies:

x(k) ∈ Cρ ⊆ XN for all k ∈ I≥0

and also that xm(k) ∈ XN for all k ∈ I≥0. Hence, (10a) holds.
(Robust Stability).We denote byψed(k; z) a solution of perturbed

difference inclusion (13) at time k ∈ I≥0 starting from the ini-
tial state z(0) = z and given disturbance and measurement er-
ror sequences {d(k)}, {e(k)}. As established in the proof of Propo-
sition 11, we have that there exists a scalar a1 > 0 such that
a1|z|a ≤ VN(z) for any z ∈ Cρ × UN

⊆ X × UN . Moreover, by
Lemma 17, there exists a scalar a2 > 0 such that VN(z) ≤ a2|z|a
for any z ∈ Cρ ×UN . From Lemma 30, by induction, we nowwrite:

a1|ψed(k; z)|a ≤ VN(ψed(k; z))
≤ max{γ kVN(z), µ} ≤ max{γ ka2|z|a, µ}

which implies

|ψed(k; z)| ≤ max{b̄λk|z|, (µ/a1)1/a} ≤ max{b̄λk|z|, ϵ̄}

inwhichλ = γ 1/a, b̄ = (a2/a1)1/a and ϵ̄ = (µ/a1)1/a. Finally, from
Lemma 16 recalling that |u| ≤ c|xm| ≤ c|x| + cδ and that φed(k; x)
represents the state component of ψed(k; z), for all x ∈ Cρ , we
write:

|φed(k; x)| ≤ |ψed(k; z)| ≤ max{b̄λk|z|, ϵ̄} ≤ b̄λk|z| + ϵ̄

≤ bλk|x| + ϵ

with b = b̄(1 + c) and ϵ = ϵ̄ + b̄cδ, completing the proof because
0 < λ < 1. �

Corollary 32 (RES of SuboptimalMPC). Under Assumptions1,2(a),3,
4 and 25, the origin of perturbed closed-loop system (8) is RES on
int(XN).

Proof. This result follows immediately because robust feasibility is
assumed in RES. Thus, for any compact set C ⊂ intXN , the second
part (Robust stability) of the proof of Theorem 31 can be readily
applied to obtain for all x ∈ C:

|φed(k; x)| ≤ bλk|x| + ϵ for all k ∈ I≥0. �

Remark 33. While RES holds in int(XN), SRES is guaranteed to
hold in a compact subset Cρ ⊂ int(XN), 0 ∈ int(Cρ). However,
SRES may hold even in larger subsets of int(XN).

4.4. Further comments on robust stability under optimal MPC

We briefly observe that given the result of Proposition 9, all
robust stability results that we proved for suboptimal MPC, readily
apply to optimalMPC even for cases inwhich there existmore than
one optimal solution point, i.e., when the optimal control u0(·) is a
set-valued map.

Moreover, for optimal MPC, definition (17) of V ρN (and hence of
Sρ) can be modified as follows:

V ρN (xm,u
0(xm)) = max

e∈ρB
VN(xm − e,u0(xm)). (20)
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5. Robust stability in absence of state constraints

One of the goals in replacing state constraints x(k) ∈ X with
penalties, and allowing small state constraint violations (soft
state constraints), is to enlarge the region of attraction of the
origin under process and measurement disturbances. Another
benefit is to streamline the required robustness analysis. We will
also replace the terminal constraint, x(N) ∈ Xf , with a suitably
adjusted terminal penalty βVf (x(N)). But, unlike the softened
state constraints, the terminal constraint must be satisfied or one
cannot invoke the local control Lyapunov function in the terminal
region to ensure stability. So we can regard the choice of terminal
penalty weight β not as a method of approximately satisfying the
terminal constraint, but as a method of enforcing it exactly for
some well-defined set of initial states. We next characterize the
region of attraction and provide a streamlined robustness analysis
for the case excluding state constraints, X = Rn, but including the
terminal constraint, either explicitly or by using a terminal penalty
factor β .

5.1. Revised assumptions and nominal stability results

We now specialize the results on inherent robustness for the
case in which there are no state constraints. To this aim, we
replace Assumption 2(a) with (b). Moreover, as discussed later on,
Assumption 25 will not be necessary, whereas Assumptions 1, 3
and 4 (with VN(·) replaced by V βN (·) later defined) are required.We
modify the cost function as follows:

V βN (x,u) =

N−1−
k=0

ℓ(φ(k; x,u), u(k))+ βVf (φ(N; x,u))

in which β ≥ 1 is a parameter that will be chosen in way that
the terminal constraint, φ(N; x,u) ∈ Xf , is unnecessary as it will
be satisfied inherently for any suboptimal input sequence with ap-
propriately bounded cost. Given the warm start ũ for the successor
state x+

= f (x, u(0; x)), defined as in (4), we modify the require-
ments to the suboptimal MPC algorithm as follows:

u+
∈ UN (21a)

V βN (x
+,u+) ≤ V βN (x

+, ũ) (21b)

V βN (x
+,u+) ≤ βVf (x+) when x+

∈ rB. (21c)

Remark 34. Themain difference between the above requirements
and those in (5) is that in (21a), we allow any input u+

∈ UN ,
whereas in (5), the terminal constraint, φ(N; x,u) ∈ Xf , is explic-
itly enforced by (5a). Condition (21c) is also slightly different and
follows from the modification of the terminal penalty.

To avoid unnecessary repetition, we again use (6) (or (7) when
referring to the extended state) to describe the evolution of the
nominal closed-loop system under suboptimal MPCwithmodified
terminal penalty. We choose scalar (maximal cost) V̄ > 0 and
define the following compact sets:

Z̄r := {(x,u) ∈ Rn
× UN

| V βN (x,u) ≤ V̄ ,
and V βN (x,u) ≤ βVf (x) if x ∈ rB}

X0 := {x ∈ Rn
|∃u ∈ UN such that (x,u) ∈ Z̄r}. (22)

Remark 35. For the remainder of the paper, we choose:

V̄ ≥ α β = β̄ := V̄/α

in which V̄ is the maximal cost in the previous set definitions
and α > 0 is the terminal region sublevel set parameter of

Assumption 2(b). From the choice of V̄ , we also have that β ≥ 1, so
thatwe have allowed only an increase in the terminal penalty. Note
that all the results to follow also hold if we choose any β satisfying
β ≥ β̄ .

Remark 36. The choice β ≥ β̄ also implies that Z̄r does not con-
tain any trajectories terminating on the boundary of Xf . For such
trajectories, Vf (x(N)) = α, and thus

∑N−1
i=0 ℓ(x(i), u(i)) ≤ 0, which

is satisfied only by (x(i), u(i)) = (0, 0) for i ∈ I0:N−1, which implies
that x(N) = 0,which is a contradiction. Therefore,X0 contains only
states that can be steered to int(Xf ).

We have the following nominal stability results.

Lemma 37. V βN (·) is an exponential Lyapunov function for extended
closed-loop system (7) in any compact subset of Z̄r .

Proof. Following the proof of Lemma 16, we have again that there
exists a constant c such that for any (x,u) ∈ Z̄r , the condition |u| ≤

c|x| holds. Now consider the difference inclusion z+
∈ H(z), where

H(·) is defined in (7) with G(·) appropriatelymodified according to
(21). Following the proof of Lemma 17, it follows again that for any
z = (x,u) ∈ Z̄r the conditions:

a1|z|a ≤ V βN (z) ≤ a2|z|a, max
z+∈H(z)

V βN (z
+) ≤ V βN (z)− a3|z|a

hold for some positive scalars a1, a2, a3. Hence, V
β

N (·) is an expo-
nential Lyapunov function on the set Z̄r for (7). �

Theorem 38 (ES Without State Constraints). Under Assumptions 1,
2(b), 3 and 4, the origin of closed-loop system (6) is ES on X0.

Proof. We first show that Z̄r is positively invariant for z+
∈ H(z).

To this aim, assume that z ∈ Z̄r and consider any z+
∈ H(z). From

(21b), it follows that:

V βN (z
+) :=

N−1−
k=0

ℓ(φ(k; x+,u+))+ βVf (φ(N; x+,u+))

≤ V βN (x
+, ũ) ≤ V βN (z) ≤ V̄ .

Since β := max{1, V̄/α} and by nonnegativeness of ℓ(·), it follows
that Vf (φ(N; x+,u+)) ≤ α, i.e., φ(N; x+,u+) ∈ Xf . Combining
this, (21a) and (21c), it follows that z+

∈ Z̄r . Thus, fromLemmas 37
and 15, the origin of extended closed-loop system (7) is ES on Z̄r ,
i.e., all solutions ψ(k; z) satisfy (for some b′ > 0 and 0 < λ < 1)
the conditions: ψ(k; z) ∈ Z̄r and |ψ(k; z)| ≤ b′λk|z| at all times
k ≥ I≥0. Finally, for any x ∈ X0 and any input sequence u such
that (x,u) ∈ Z̄r , let φ(k; x) denote the state component ofψ(k; z).
It follows that, at all times k ∈ I≥0, the conditions, φ(k; x) ∈ X0
and |φ(k; x)| ≤ |ψ(k; z)| ≤ b′λk|z| ≤ bλk|x|, hold with b =

b′(1 + c). �

Next we would like to characterize the newly introduced
admissible set X0 and its limit for large V̄ . To this end, we define
a (slightly) restricted feasible set of initial states that can be taken
by an admissible input sequence to the interior of Xf , rather than
all of Xf (note that the interior of Xf is not empty because α > 0):

X̄N := {x ∈ Rn
| ∃u ∈ UN such that φ(N; x,u) ∈ int(Xf )}. (23)

We have the following result.

Proposition 39 (Admissible Set X0 and Feasible Set X̄N ). The
admissible set X0 and restricted feasible set X̄N satisfy the following:

X0(V̄ ) ⊆ X̄N for all V̄ ≥ 0, and X̄N ⊆


V̄≥0

X0(V̄ ). (24)
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Proof. The fact that X0(V̄ ) ⊆ X̄N for all V̄ ≥ 0 follows directly
from definitions (23) and Remark 36: X̄N is the set of states that
can be brought to the interior of Xf with feasible inputs, and X0(V̄ )
is the set that can be brought to the interior of Xf with feasible
inputs and cost not exceeding V̄ .

We next establish the second inclusion. First, we show that the
sets X0(V̄ ) are nested: V̄2 ≥ V̄1 implies X0(V̄2) ⊇ X0(V̄1). Assume
an arbitrary x ∈ X0(V̄1), and corresponding (x,u) ∈ Z̄r(V̄1).
We show that x ∈ X0(V̄2). Let β1 := V̄1/α, β2 := V̄2/α and
x(N) := φ(N; x,u). We have that:

V β2N (x,u) = V β1N (x,u)+ (β2 − β1)Vf (x(N)).

First, notice that if x ∈ rB, V β1N (x,u) ≤ β1Vf (x), and this implies
that V β2N (x,u) ≤ β2Vf (x), so the required inequality is established
in rB. Then notice that Vf (x(N)) = α′ < α, which gives

V β2N (x,u) ≤ V̄1 + (V̄2 − V̄1)(α
′/α) = V̄1(1 − α′/α)+ V̄2(α

′/α)

≤ V̄2(1 − α′/α)+ V̄2(α
′/α) = V̄2

and we conclude x ∈ X0(V̄2). Next, we establish that for every
point x0 ∈ X̄N , there exists a V̄0 > 0 such that x0 ∈ X0(V̄ )
for all V̄ satisfying V̄ ≥ V̄0. Take an arbitrary x0 ∈ X̄N and a
corresponding u0 ∈ UN that satisfies φ(N; x0,u0) ∈ int(Xf ). If
x0 ∈ rB, add the restriction to u0 that VN(x0,u0) ≤ Vf (x0), where
VN(·) continues to denote the original cost function, i.e., with non-
inflated terminal cost. Such a u0 exists because of Proposition 9,
which establishes that the optimal input sequence, for example,
has this property. And since β ≥ 1, it follows that V βN (x0,u0) ≤

βVN(x0,u0) ≤ βVf (x0), if x0 ∈ rB. Then denote by α′ the terminal
cost α′

:= Vf (φ(N; x0,u0)), and we have that α′ < α. Then define
V̄0 :=

 1
1−α′/α

 ∑N−1
i=0 ℓ(φ(i; x0,u0), u0(i)). A direct computation

gives V βN (x0,u0) = V̄0, and, if x0 ∈ rB, V βN (x0,u0) ≤ βVf (x0).
Therefore x0 ∈ X0(V̄0), and by the nesting property, x0 ∈ X0(V̄ )
for all V̄ satisfying V̄ ≥ V̄0, and the limit is established. �

Remark 40. Another characterization of the same result is that
the limit of X0(V̄ ) as V̄ → ∞ contains all feasible sets correspond-
ing to (arbitrarily small) tightening of the terminal set, Xf (α

′) :=

levα′Vf using α′ < α.

5.2. Robust stability results

For robustness analysis, we again consider that the closed-loop
system evolves according to (8). We observe that having removed
the terminal constraint has the immediate consequence that the
warm start ũ is ‘‘feasible’’ for the measured successor state x+

m :=

x+
+ e+, because ũ ∈ UN . Hence, there is no need to solve

feasibility problem (11). This is the main motivation for removing
the terminal constraint and inflating the terminal cost. Therefore,
we can write the evolution of the extended closed-loop system
as z+

∈ Hed(z) in which Hed(·) is still defined in (13) with Ged(·)
modified as follows:

Ged(z) := {u+
| u+

∈ UN , V βN (x
+

m,u
+) ≤ V βN (x

+

m, ũ),

V βN (x
+

m,u
+) ≤ βVf (x+

m) if x
+

m ∈ rB}.

We also observe that the fundamental result of Lemma 30 still
holds for the modified cost V βN (·), with Zr replaced by Z̄r .

We now present a set over which we prove SRES. To this aim,
given a scalar ρ > 0 and any zm ∈ Z̄r , we define:

V̄ ρN (zm) := max
e∈ρB

V βN (z) s.t. z = zm − (e, 0) (25a)

S̄ρ := {zm ∈ Z̄r | V̄ ρN (zm) ≤ V̄ } (25b)

in which we assume that ρ is small enough that S̄ρ is nonempty.
Finally, the candidate set for SRES is defined as:

C̄ρ := {x ∈ Rn
| x = xm − e, e ∈ ρB, ∃u s.t. (xm,u) ∈ S̄ρ}. (26)

Theorem 41 (SRES Without State Constraints). Under Assump-
tions 1, 2(b), 3 and 4, the origin of closed-loop system (8) is SRES
on C̄ρ .

Proof (Robust Feasibility). Suppose that x ∈ C̄ρ and let z := (x,u)
be the corresponding augmented state where u is a suboptimal se-
quence computed for the measured state xm := x + e, e ∈ ρB. We
recall that from (25), it follows that V βN (z) ≤ V̄ and that zm ∈ S̄ρ ⊆

Z̄r . Moreover, we define z̃+
:= (x̃+, ũ) where we recall that x̃+

=

f (xm, u(0; xm)) is the successor state for the nominal system (no
disturbance). The quantity V βN (z̃

+) is the cost along the nominal
evolution from zm (no disturbance). Since V βN (·) is an exponential
Lyapunov function for the nominal system on set Z̄r (Lemma 37),
we have from Proposition 14 that V βN (z̃

+) ≤ γ̄ V βN (zm) for some
0 < γ̄ < 1. Thus, it follows that V βN (x̃

+, ũ) ≤ γ̄ V̄ < V̄ . Recall-
ing that: x̃+

− x+
m = f (xm, u(0; xm)) − f (x, u(0; xm)) − d − e+,

it follows from continuity of V βN (·) that there exists a δ̃1 > 0 such
that: V βN (x

+
m, ũ) < V̄ holds (strictly) for all (zm, e, d, e+) ∈ S̄ρ ×

δ̃1B×δ̃1B×δ̃1B. Sinceβ = max{1, V̄/α}, from (21b) and given that
V βN (x

+
m,u

+) :=
∑N−1

k=0 ℓ(φ(k; x
+
m,u

+))+ βVf (φ(N; x+
m,u

+)), it fol-
lows that Vf (φ(N; x+

m,u
+)) < α, which proves that φ(N; x+

m,u
+)

∈ int(Xf ). From continuity of V βN (·), it also follows that we can
choose ρ > 0 sufficiently small that V̄ ρN (z

+
m ) ≤ V̄ . Taking δ =

min{ρ, δ̃1}, we have proved that z+
m ∈ S̄ρ for all (zm, e, d, e+) ∈

S̄ρ × δB × δB × δB. This implies:

x(k) ∈ C̄ρ ⊆ X0 for all k ∈ I≥0

and also that xm(k) ∈ X0 for all k ∈ I≥0. Hence, (10a) holds (with
XN replaced by X0).

(Robust Stability). This part follows exactly the corresponding
part in the proof of Theorem 31 and is omitted. (Note that
feasibility recovery step (11) is not mentioned in the robust
stability part of the proof of Theorem 31.) �

Finally, we would like to characterize the robust region of
attraction C̄ρ . The ideal, but unachievable, result would be that
the robust region of attraction under nonzero disturbances is the
entire nominal feasible set, XN . We see next, however, that this
ideal result is approached reasonably closely when excluding state
constraints.

Remark 42. When |d|, |e| → 0, it follows directly from (25) and
(26) that C̄ρ → X0 and SRES holds over a set approaching the
admissible set of initial conditions.

This observation, coupled with (24), gives the desired result:
in the limit of small disturbances and large parameter V̄ , the
robust region of attraction for the case without state constraints
converges to (the closure of) the restricted feasible set.

6. Conclusions

Solving MPC problems for nonlinear systems globally is not
practical in most cases, and when a suboptimal solution is
implemented in closed loop, many stability questions arise. The
paper [4] proved nominal asymptotic stability of the origin of the
closed-loop system in a neighborhood of the origin. In this paper,
under similar assumptions, wewent several steps further. First, we
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establishednominal exponential stability of the origin of the closed-
loop system in arbitrarily large compact subsets of the feasible set,
i.e., the set of initial states for which a feasible solution exists (if
this set is itself compact, then exponential stability is established
on the entire set). Second, and more importantly, we established
inherent exponential robust stability of the origin of the closed-
loop system, under general and implementable suboptimal MPC,
with respect to additive process disturbances and measurement
errors, in the spirit of the ideas developed by Teel and coworkers
[12,13]. In this paper, we proved robust recursive feasibility in an
appropriate compact subset of the nominal region of attraction for
all, sufficiently small, but arbitrary, disturbances. All the results
that we established here for suboptimal MPC apply also to optimal
MPC, and the optimal MPC results also represent improvements in
stability analysis of nonlinear MPC systems.

In the absence of state constraints, a variant of the controller
is proposed, in which the terminal constraint is replaced by an
inflated terminal cost that ensures satisfaction of the terminal
constraint. Thus, we proved that nominal exponential stability
of the origin under suboptimal MPC holds over a well-defined
set of initial conditions. Moreover, we established strong robust
exponential stability over a set that approaches the nominal
feasibility set when the disturbances go to zero. These general
results can be specialized further to suboptimal MPC of linear
systems, and this specialization is discussed in a separate
publication [18].

Given the discussion in the paper, we can now more fully
describe the difference between this approach and that of [15].
First, as stated in the introduction, in [15], the user specifies
a degree of suboptimality, δ > 0, and the suboptimal MPC cost
must satisfy VN(x,u) ≤ V 0

N(x)+ δ. The problems considered here
are nonconvex, so we cannot enforce this kind of constraint; we
instead compute for each encountered measurement (state) a
feasible warm start, and define the suboptimal MPC cost to be no
worse than the cost of the warm start. For the case without state
constraints, the feasible warm start is available from the last MPC
execution, and does not have to be computed. Second, as stated in
Remark 5, we allow the input constraints to be active at the origin,
which is a common situation in industrial applications. Including
this possibility makes the results more relevant to applications,
but also increases significantly the complexity of the analysis
required to establish robust stability. Paper [15] assumes that
no constraints are active in a sufficiently small neighborhood
of the origin. Third, we consider both process disturbances
and measurement disturbances, and [15] does not consider
measurement disturbances. On the other hand, interestingly, [15]
treats discontinuous (switching) model dynamics, and we assume
f (·) continuous in this paper.

Finally, turning to the last statement of the abstract, the best
that currently can be established about the inherent robustness
of optimal MPC is Theorem 31. By establishing the same result for
suboptimal MPC, we conclude that there is no qualitative change
in robustness when shifting from optimal MPC to suboptimal
MPC for the class of models considered here. Certainly, we expect
the size of the disturbances for which SRES holds to shrink, but
the qualitative behavior does not change. This conclusion gives
theoretical support to practitioners considering implementing

suboptimal MPC with nonlinear plant models and nonconvex MPC
optimization problems.
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Appendix. Technical lemma

Lemma 43. Given vectors yi ∈ Rni , i = 1, 2, . . . ,N, we have for any
a > 0 that |(y1, y2, . . . , yN)|a ≤ Na ∑N

i=1 |yi|a.

Proof. |(y1, y2, . . . , yN)|a ≤

∑N
i=1 |yi|

a
≤


N maxi=1,...,N |yi|

a
≤ Na maxi=1,2,...,N |yi|a ≤ Na ∑N

i=1 |yi|a. �
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