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a b s t r a c t

In this paper we propose a cooperative distributed linear model predictive control strategy applicable
to any finite number of subsystems satisfying a stabilizability condition. The control strategy has the
following features: hard input constraints are satisfied; terminating the iteration of the distributed
controllers prior to convergence retains closed-loop stability; in the limit of iterating to convergence,
the control feedback is plantwide Pareto optimal and equivalent to the centralized control solution; no
coordination layer is employed.We provide guidance in how to partition the subsystemswithin the plant.
We first establish exponential stability of suboptimal model predictive control and show that the

proposed cooperative control strategy is in this class. We also establish that under perturbation from a
stable state estimator, the origin remains exponentially stable. For plants with sparsely coupled input
constraints, we provide an extension in which the decision variable space of each suboptimization is
augmented to achieve Pareto optimality. We conclude with a simple example showing the performance
advantage of cooperative control compared to noncooperative and decentralized control strategies.

Published by Elsevier B.V.

1. Introduction

Model predictive control (MPC) has been widely adopted in the
petrochemical industry for controlling large, multi-variable pro-
cesses. MPC solves an online optimization to determine inputs,
taking into account the current conditions of the plant, any distur-
bances affecting operation, and imposed safety and physical con-
straints. Over the last several decades,MPC technology has reached
amature stage. Closed-loop properties arewell understood [1], and
nominal stability has beendemonstrated formany industrial appli-
cations [2].
Chemical plants usually consist of linked unit operations and

can be subdivided into a number of subsystems. These subsys-
tems are connected through a network of material, energy, and
information streams. Because plants often take advantage of the
economic savings available in material recycle and energy inte-
gration, the plantwide interactions of the network are difficult to
elucidate. Plantwide control has traditionally been implemented
in a decentralized fashion, in which each subsystem is controlled
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independently and network interactions are treated as local sub-
system disturbances [3,4]. It is well known, however, that when
the inter-subsystem interactions are strong, decentralized control
is unreliable [5].
Centralized control, in which all subsystems are controlled via

a single agent, can account for the plantwide interactions. Indeed,
increased computational power, faster optimization software, and
algorithms designed specifically for large-scale plantwide control
have made centralized control more practical [6,7]. Objections to
centralized control are often not computational, however, but or-
ganizational. All subsystems rely upon the central agent, making
plantwide control difficult to coordinate and maintain. These ob-
stacles deter implementation of centralized control for large-scale
plants.
As a middle ground between the decentralized and centralized

strategies, distributed control preserves the topology and flexibil-
ity of decentralized control yet offers a nominal closed-loop sta-
bility guarantee. Stability is achieved by two features: the network
interactions between subsystems are explicitlymodeled and open-
loop information, usually input trajectories, is exchanged between
subsystem controllers. Distributed control strategies differ in the
utilization of the open-loop information. In noncooperative dis-
tributed control, each subsystem controller anticipates the effect
of network interactions only locally [8,9]. These strategies are de-
scribed as noncooperative dynamic games [10], and the plantwide
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performance converges to the Nash equilibrium. If network inter-
actions are strong, however, noncooperative control can destabi-
lize the plant and performance may be, in these cases, poorer than
decentralized control [11]. A more extensive and detailed compar-
ison of cooperative and noncooperative approaches is provided in
[12, pp.424–438].
Alternatively, cooperative distributed control improves perfor-

mance by requiring each subsystem to consider the effect of lo-
cal control actions on all subsystems in the network [13]. Each
controller optimizes a plantwide objective function, e.g., the cen-
tralized controller objective. Distributed optimization algorithms
are used to ensure a decrease in the plantwide objective at each
intermediate iterate. Under cooperative control, plantwide perfor-
mance converges to the Pareto optimum, providing centralized-
like performance. Because the optimization may be terminated
before convergence, however, cooperative control is a form of sub-
optimal control for the plantwide control problem. Hence, stability
is deduced from suboptimal control theory [14].
Other recent work in large-scale control has focused on coordi-

nating an underlying MPC structure. Aske et al. [15] develop a co-
ordinating MPC that controls the plant variables with the greatest
impact on plant performance, then allow the other decentralized
controllers to react to the coordinatorMPC. In a series of papers, Liu
et al. [16] present a controller for networked, nonlinear subsystems
[17,16]. A stabilizing decentralized control architecture and a con-
trol Lyapunov function are assumed to exist. The performance is
improved via a coordinating controller that perturbs the network
controller, taking into account the closed-loop response of the net-
work. Cheng et al. [18] propose a distributed MPC that relies on a
centralized dual optimization. This coordinator has the advantage
that it can optimally handle coupling dynamics and constraints; it
mustwait for convergence of the plantwide problem, however, be-
fore it can provide an implementable input trajectory. Cooperative
distributed MPC differs from these methods in that a coordinator
is not necessary and suboptimal input trajectories may be used to
stabilize the plant (see [19]).
In this paper, we state and prove the stability properties for

cooperative distributed control under state and output feedback.
In Section 2, we provide relevant theory for suboptimal control.
Section 3 provides stability theory for cooperative control under
state feedback. For ease of exposition, we introduce the theorems
for the case of two controllers only. Section 4 extends these
results to the output feedback case. The results are modified to
handle coupled input constraints in Section 5. We then show
how the theory extends to cover any finite number of controllers.
We conclude with an example comparing the performance of
cooperative control with other plantwide control strategies.
Notation. Given a vector x ∈ Rn the symbol |x| denotes the Eu-
clidean 2-norm; given a positive scalar r the symbol Br denotes
a closed ball of radius r centered at the origin, i.e. Br = {x ∈
Rn, |x| ≤ r}. Given two integers, l ≤ m, we define the set Il:m =
{l, l+1, . . . ,m−1,m}. The set of positive reals is denotedR+. The
symbol ′ indicates the matrix transpose.

2. Suboptimal model predictive control

Requiring distributed MPC strategies to converge is equiv-
alent to implementing centralized MPC with the optimization
distributed over many processors. Alternatively, we allow the sub-
systems to inject suboptimal inputs. This property increases the
flexibility of distributed MPC, and the plantwide control strategy
can be treated as a suboptimal MPC. In this section, we provide the
definitions and theory of suboptimal MPC and draw upon these re-
sults in the sequel to establish stability of cooperative MPC.
We define the current state of the system as x ∈ Rn, the

trajectory of inputs u = {u(0), u(1), . . . , u(N − 1)} ∈ RNm, and

the state and input at time k as (x(k), u(k)). For the latter, we often
abbreviate the notation as (x, u). Denote the input constraints
as u ∈ UN in which U is compact, convex, and contains the
origin in its interior. Denote XN as the set of all x for which there
exists a feasible u. Initialized with a feasible input trajectory ũ,
the controller performs p iterations of a feasible path algorithm
and computes u such that some performance metric is improved.
At each sample time, the first input in the (suboptimal) trajectory
is applied, u = u(0). The state is updated by the state evolution
equation x+ = f (x, u), in which x+ is the state at the next iterate.
For any initial state x(0), we initialize the suboptimal MPC with

a feasible input sequence ũ(0) = h(x(0)) with h(·) continuous.
For subsequent decision times, we denote ũ+ as the warm start,
a feasible input sequence for x+ used to initialize the suboptimal
MPC algorithm. Here, we set ũ+ = {u(1), . . . , u(N − 1), 0}. This
sequence is obtained by discarding the first input, shifting the rest
of the sequence forward one step and setting the last input to zero.
We observe that the input sequence at termination u+ is a

function of the state initial condition x+ and of the warm start ũ+.
Noting that x+ and ũ+ are both functions of x and u, the input
sequence u+ can be expressed as a function of only (x,u) by u+ =
g(x,u). We refer to the function g as the iterate update.
Given a system x+ = f (x), with equilibrium point at the origin

0 = f (0), denote φ(k, x(0)) as the solution x(k) given the initial
state x(0). We consider the following definition.

Definition 1 (Exponential Stability on a Set X). The origin is ex-
ponentially stable on the set X if for all x(0) ∈ X, the solution
φ(k, x(0)) ∈ X and there exists α > 0 and 0 < γ < 1 such that

|φ(k, x(0))| ≤ α |x(0)| γ k

for all k ≥ 0.

The following lemma is an extension of [14, Theorem 1] for
exponential stability.

Lemma 2 (Exponential Stability of Suboptimal MPC). Consider a
system(
x+

u+
)
=

(
F(x,u)
g(x,u)

)
=

(
f (x, u)
g(x,u)

)
(x(0),u(0)) given (2.1)

with a steady-state solution (0, 0) = (f (0, 0), g(0, 0)). Assume that
the function V (·) : Rn × RNm → R+ and input trajectory u satisfy

a |(x,u)|2 ≤ V (x,u) ≤ b |(x,u)|2 (2.2a)

V (x+,u+)− V (x,u) ≤ −c |(x, u(0))|2 (2.2b)
|u| ≤ d |x| x ∈ Br (2.2c)

in which a, b, c, d, r > 0. If XN is forward invariant for the system
x+ = f (x, u), the origin is exponentially stable for all x(0) ∈ XN .

Notice in the second inequality (2.2b), only the first input ap-
pears in the norm |(x, u(0))|2. Note also that the last inequality ap-
plies only for x in a ball of radius r , whichmay be chosen arbitrarily
small.

Proof of Lemma 2. First we establish that the origin of the ex-
tended system (2.1) is exponentially stable for all (x(0),u(0)) ∈
XN×UN . For x ∈ Br , we have |u| ≤ d |x|. Consider the optimization

s = max
u∈UN
|u| .

The solution exists by theWeierstrass theorem sinceUN is compact
and by definition we have that s > 0. Then we have |u| ≤ (s/r) |x|
for x 6∈ Br . Therefore, for all x ∈ XN , we have |u| ≤ d̄ |x| in which
d̄ = max(d, s/r), and

|(x,u)| ≤ |x| + |u| ≤ (1+ d̄) |x| ≤ (1+ d̄) |(x, u(0))|
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which gives |(x, u(0))| ≥ c̄ |(x,u)|with c̄ = 1/(1+ d̄) > 0. There-
fore the extended state (x,u) satisfies

V (x+,u+)− V (x,u) ≤ −c̃ |(x,u)|2 (x,u) ∈ XN × UN (2.3)

in which c̃ = c(c̄)2. Together with (2.2), (2.3) establishes that V (·)
is a Lyapunov function of the extended state (x,u) for all x ∈ XN
and u ∈ UN . Hence for all (x(0),u(0)) ∈ XN × UN and k ≥ 0, we
have

|(x(k),u(k))| ≤ α |(x(0),u(0))| γ k

in which α > 0 and 0 < γ < 1. Notice that XN × UN is forward
invariant for the extended system (2.1).
Finally, we remove the input sequence and establish that the

origin is exponentially stable for the closed-loop system. We have
for all x(0) ∈ XN and k ≥ 0

|φ(k, x(0))| = |x(k)| ≤ |(x(k),u(k))| ≤ α |(x(0),u(0))| γ k

≤ α(|x(0)| + |u(0)|)γ k ≤ α(1+ d̄) |x(0)| γ k

≤ ᾱ |x(0)| γ k

in which ᾱ = α(1+ d̄) > 0, and we have established exponential
stability of the origin by observing thatXN is forward invariant for
the closed-loop system φ(k, x(0)). �

Remark 1. For Lemma 2, we use the fact that U is compact. For
unbounded U exponential stability may instead be established by
compactness ofXN .

3. Cooperative model predictive control

We now show that cooperative MPC is a form of suboptimal
MPC and establish stability. To simplify the exposition and proofs,
in Sections 3–5 we assume that the plant consists of only two
subsystems. We then establish in Section 6 that the results extend
to any finite number of subsystems.

3.1. Definitions

3.1.1. Models
We assume for each subsystem i that there exist a collection of

linear models denoting the effects of inputs of subsystem j on the
states of subsystem i for all (i, j) ∈ I1:2 × I1:2
x+ij = Aijxij + Bijuj

in which xij ∈ Rnij , uj ∈ Rmj , Aij ∈ R(nij×nij), and Bij ∈ R(nij×mj).
For a discussion of identification of this model choice, see [20]. The
Appendix shows how these subsystem models are related to the
centralized model. Considering subsystem 1, we collect the states
to form[
x11
x12

]+
=

[
A11

A12

] [
x11
x12

]
+

[
B11
0

]
u1 +

[
0
B12

]
u2

which denotes themodel for subsystem1. To simplify the notation,
we define the equivalent model

x+1 = A1x1 + B̄11u1 + B̄12u2
for which

x1 =
[
x11
x12

]
A1 =

[
A11

A12

]
B̄11 =

[
B11
0

]
B̄12 =

[
0
B12

]
in which x1 ∈ Rn1 , A1 ∈ R(n1×n1), and B̄1j ∈ R(n1×mj) with
n1 = n11 + n12. Forming a similar model for subsystem 2, the
plantwide model is[
x1
x2

]+
=

[
A1

A2

] [
x1
x2

]
+

[
B̄11
B̄21

]
u1 +

[
B̄12
B̄22

]
u2.

We further simplify the plantwide model notation to

x+ = Ax+ B1u1 + B2u2
for which

x =
[
x1
x2

]
A =

[
A1

A2

]
B1 =

[
B̄11
B̄21

]
B2 =

[
B̄12
B̄22

]
.

3.1.2. Objective functions
Consider subsystem 1, for which we define the quadratic stage

cost and terminal penalty, respectively

`1(x1, u1) =
1
2
(x′1Q1x1 + u

′

1R1u1) (3.1a)

V1f (x1) =
1
2
x′1P1f x1 (3.1b)

in which Q1 ∈ R(n1×n1), R1 ∈ R(m1×m1), and P1f ∈ R(n1×n1). We
define the objective function for subsystem 1

V1
(
x1(0),u1,u2

)
=

N−1∑
k=0

`1
(
x1(k), u1(k)

)
+ V1f

(
x1(N)

)
.

Notice V1 is implicitly a function of both u1 and u2 because x1 is a
function of both u1 and u2. For subsystem 2, we similarly define an
objective function V2. We define the plantwide objective function
V
(
x1(0), x2(0),u1,u2

)
= ρ1V1

(
x1(0),u1,u2

)
+ ρ2V2

(
x2(0),u1,u2

)
in which ρ1, ρ2 > 0 are relative weights. For notational simplicity,
we write V (x,u) for the plant objective.

3.1.3. Constraints
We require that the inputs satisfy

u1(k) ∈ U1 u2(k) ∈ U2 k ∈ I0:N−1
in which U1 and U2 are compact and convex such that 0 is in the
interior of Ui∀i ∈ I1:2.

Remark 2. The constraints are termed uncoupled because the fea-
sible region of u1 is not affected by u2, and vice versa.

3.1.4. Assumptions
For every i ∈ I1:2, let Ai = diag(A1i, A2i) and Bi =

[ B1i
B2i

]
. The

following assumptions are used to establish stability.

Assumption 3. For all i ∈ I1:2
(a) The systems (Ai, Bi) are stabilizable.
(b) The input penalties Ri > 0.
(c) The state penalties Qi ≥ 0.
(d) The systems (Ai,Qi) are detectable.
(e) N ≥ maxi∈I1:2(n

u
i ), inwhichn

u
i is thenumber of unstablemodes

of Ai, i.e., the number of λ ∈ eig(Ai) such that |λ| ≥ 1.

The Assumption 3(e) is required so that the horizon N is
sufficiently large to zero the unstable modes.

3.1.5. Unstable modes
For an unstable plant, we constrain the unstable modes to be

zero at the end of the horizon to maintain closed-loop stability. To
construct this constraint, consider the real Schur decomposition of
Aij for each (i, j) ∈ I1:2 × I1:2

Aij =
[
Ssij Suij

] [Asij −
Auij

] [
Ssij
′

Suij
′

]
(3.2)

in which Asij is stable and A
u
ij has all unstable eigenvalues.

3.1.6. Terminal penalty
Given the definition of the Schur decomposition (3.2), we define

the matrices
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Ssi = diag(S
s
i1, S

s
i2) Asi = diag(A

s
i1, A

s
i2) ∀i ∈ I1:2 (3.3a)

Sui = diag(S
u
i1, S

u
i2) Aui = diag(A

u
i1, A

u
i2) ∀i ∈ I1:2. (3.3b)

Lemma 4. The matrices (3.3) satisfy the Schur decompositions

Ai =
[
Ssi Sui

] [Asi −
Aui

] [
Ssi
′

Sui
′

]
∀i ∈ I1:2.

LetΣ1 andΣ2 denote the solution of the Lyapunov equations

As1
′
Σ1As1 −Σ1 = −S

s
1
′Q1Ss1 As2

′
Σ2As2 −Σ2 = −S

s
2
′Q2Ss2. (3.4)

We then choose the terminal penalty for each subsystem to be the
cost to go under zero control, such that

P1f = Ss1Σ1S
s
1
′ P2f = Ss2Σ2S

s
2
′
. (3.5)

3.1.7. Cooperative model predictive control algorithm
Letυ0 be the initial condition for the cooperativeMPC algorithm

(see Section 3.2 for the discussion of initialization). At each iterate
p ≥ 0, the following optimization problem is solved for subsystem
i, i ∈ I1:2
min

υi
V (x1(0), x2(0),υ1,υ2) (3.6a)

subject to[
x1
x2

]+
=

[
A1

A2

] [
x1
x2

]
+

[
B̄11
B̄21

]
υ1 +

[
B̄12
B̄22

]
υ2 (3.6b)

υi ∈ UNi (3.6c)

Suji
′xji(N) = 0 j ∈ I1:2 (3.6d)

|υi| ≤ di
∑
j∈I1:2

∣∣xji(0)∣∣ if xji(0) ∈ Br ∀j ∈ I1:2 (3.6e)

υj = υ
p
j j ∈ I1:2 \ i (3.6f)

inwhichwe include the hard input constraints, the stabilizing con-
straint on the unstable modes, and the Lyapunov stability con-
straint. We denote the solutions to these problems as

υ∗1(x1(0), x2(0),υ
p
2), υ∗2(x1(0), x2(0),υ

p
1).

Given the prior, feasible iterate (υp1,υ
p
2), the next iterate is defined

to be

(υ
p+1
1 ,υ

p+1
2 ) = w1

(
υ∗1(υ

p
2),υ

p
2

)
+ w2

(
υ
p
1,υ
∗

2(υ
p
1)

)
(3.7)

w1 + w2 = 1, w1, w2 > 0

for which we omit the state dependence of υ∗1 and υ∗2 to reduce
notation. This distributed optimization is of the Gauss–Jacobi type
(see [21], pp. 219–223). At the last iterate p̄, we set u ← (υ

p̄
1,υ

p̄
2)

and inject u(0) into the plant.
The following properties follow immediately.

Lemma 5 (Feasibility). Given a feasible initial guess, the iterates
satisfy

(υ
p
1,υ

p
2) ∈ UN1 × UN2

for all p ≥ 1.

Lemma 6 (Convergence). The cost V (x(0),υp) is nonincreasing for
each iterate p and converges as p→∞.

Lemma 7 (Optimality). As p → ∞ the cost V (x(0),υp) converges
to the optimal value V 0(x(0)), and the iterates (υp1,υ

p
2) converge to

(u01,u
0
2) in which u0 = (u01,u

0
2) is the Pareto (centralized) optimal

solution.

The proofs are in the Appendix.

Remark 3. This paper presents the distributed optimization algo-
rithm with subproblem (3.6) and iterate update (3.7) so that the
Lemmas 5–7 are satisfied. This choice is nonunique and other op-
timization methods may exist satisfying these properties.

3.2. Stability of cooperative model predictive control

We define the steerable setXN as the set of all x such that there
exists a u ∈ UN satisfying (3.6d).

Assumption 8. Given r > 0, for all i ∈ I1:2, di is chosen large
enough such that there exists a ui ∈ UN satisfying |ui| ≤
di
∑
j∈I1:2

∣∣xij∣∣ and (3.6d) for all xij ∈ Br∀j ∈ I1:2.

Remark 4. Given Assumption 8,XN is forward invariant.

Wenowestablish stability of the closed-loop systemby treating
cooperativeMPC as a formof suboptimalMPC.Wedefine thewarm
start for each subsystem as

ũ+1 = {u1(1), u1(2), . . . , u1(N − 1), 0}
ũ+2 = {u2(1), u2(2), . . . , u2(N − 1), 0}.

The warm start ũ+i is used as the initial condition for the coopera-
tive MPC problem in each subsystem i. We define the functions gp1
and gp2 as the outcome of applying the cooperative control iteration
(3.7) p times

u+1 = g
p
1 (x1, x2,u1,u2) u+2 = g

p
2 (x1, x2,u1,u2).

The system evolution is then given byx
+

1
x+2
u+1
u+2

 =

A1x1 + B̄11u1 + B̄12u2
A2x2 + B̄21u1 + B̄22u2
gp1 (x1, x2,u1,u2)
gp2 (x1, x2,u1,u2)


which we simplify to(
x+

u+
)
=

(
Ax+ B1u1 + B2u2

gp(x,u)

)
.

Theorem 9 (Exponential Stability). Given Assumptions 3 and 8, the
origin (x = 0) of the closed-loop system x+ = Ax + B1u1 + B2u2 is
exponentially stable on the set XN .

Proof. By eliminating the states in `i(·), we can write V in the
form V (x,u) = (1/2)x′Qx + (1/2)u′Ru + x′Su. Defining
H = [

Q S

S ′ R
] > 0, V (·) satisfies (2.2a) by choosing a =

(1/2)mini(λi(H )) and b = (1/2)maxi(λi(H )). Next we show
that V (·) satisfies (2.2b). Using the warm start at the next sample
time, we have the following cost

V (x+, ũ+) = V (x,u)−
1
2
ρ1`1(x1, u1)−

1
2
ρ2`2(x2, u2)

+
1
2
ρ1x1(N)′

(
A′1P1f A1 − P1f + Q1

)
x1(N)

+
1
2
ρ2x2(N)′

(
A′2P2f A2 − P2f + Q2

)
x2(N). (3.8)

Using the Schur decomposition defined in Lemma 4, and the con-
straints (3.6d) and (3.5), the last two terms of (3.8) can be written
as
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1
2
ρ1x1(N)′Ss1

(
As1
′
Σ1As1 −Σ1 + S

s
1
′Q1Ss1

)
Ss1
′x1(N)

+
1
2
ρ2x2(N)′Ss2

(
As2
′
Σ2As2 −Σ2 + S

s
2
′Q2Ss2

)
Ss2
′x2(N) = 0.

These terms are zero because of (3.4). Using this result and apply-
ing the iteration of the controllers gives

V (x+,u+) ≤ V (x,u)−
1
2
ρ1`1(x1, u1)−

1
2
ρ2`2(x2, u2).

Because `i is quadratic in both arguments, there exists a c > 0 such
that

V (x+,u+)− V (x,u) ≤ −c |(x, u)|2 .

The Lyapunov stability constraint (3.6e) for x11, x12, x21, x22 ∈ Br
implies for (x1, x2) ∈ Br that |(u1,u2)| ≤ 2d̂ |(x1, x2)| in which
d̂ = max(d1, d2), satisfying (2.2c). Therefore the closed-loop sys-
tem satisfies Lemma 2. Hence the closed-loop system is exponen-
tially stable. �

4. Output feedback

We now consider the stability of the closed-loop system with
estimator error.

4.1. Models

For all (i, j) ∈ I1:2 × I1:2

x+ij = Aijxij + Bijuj (4.1a)

yi =
∑
j∈I1:2

Cijxij (4.1b)

in which yi ∈ Rpi is the output of subsystem i and Cij ∈ R(pi×nij).
Consider subsystem 1. As above, we collect the states to form y1 =
[C11 C12]

[ x11
x12

]
and use the simplified notation y1 = C1x1 to form

the output model for subsystem 1.

Assumption 10. For all i ∈ I1:2, (Ai, Ci) is detectable.

4.2. Estimator

We construct a decentralized estimator. Consider subsystem 1,
for which the local measurement y1 and both inputs u1 and u2 are
available, but x1 must be estimated. The estimate satisfies

x̂+1 = A1x̂1 + B̄11u1 + B̄12u2 + L1(y1 − C1x̂1)

in which x̂1 is the estimate of x1 and L1 is the Kalman filter gain.
Defining the estimate error as e1 = x1 − x̂1 we have e+1 =
(A1−L1C1)e1. By Assumptions 3 and 10 there exists an L1 such that
(A1− L1C1) is stable and therefore the estimator for subsystem 1 is
stable. Defining e2 similarly, the estimate error for the plant evolves[
e1
e2

]+
=

[
AL1

AL2

] [
e1
e2

]
in which ALi = Ai − LiCi. We collect the estimate error of each
subsystem together and write e+ = ALe.

4.3. Reinitialization

We define the reinitialization step required to recover feasibil-
ity of the warm start for the perturbed state terminal constraint.
For each i ∈ I1:2, define

h+i (e) = argminui

{∣∣ui − ũ+i
∣∣2
Ri

∣∣∣∣Fji(ui − ũ+i ) = fjiej ∀j ∈ I1:2
ui ∈ UN

}

in which Ri = diag(Ri), Fji = Suji
′
Cji, fji = −Suji

′ANji Lji, and Cji =

[Bji AjiBji · · · AN−1ji Bji] for all i, j ∈ I1:2. We use h+i (e) as the initial
condition for the control optimization (3.6) for all i ∈ I1:2.

Proposition 11. The reinitialization h+(·) = (h+1 (·),h
+

2 (·)) is Lips-
chitz continuous on bounded sets.

Proof. The proof follows from Prop. 7.13 [12, p.499]. �

4.4. Stability with estimate error

We consider the stability properties of the extended closed-
loop system( x̂
u
e

)+
=

(F(x̂,u)+ Le
gp(x̂,u, e)
ALe

)
(4.2)

in which F(x̂,u) = Ax̂+B1u1+B2u2 and L = diag(L1C1, L2C2). The
function gp includes the reinitialization step. Because AL is stable
there exists a Lyapunov function J(·)with the following properties

ā |e|σ ≤ J(e) ≤ b̄ |e|σ

J(e+)− J(e) ≤ −c̄ |e|σ

in which σ > 0, ā, b̄ > 0, and the constant c̄ > 0 can be chosen
as large as desired by scaling J(·). For the remainder of this section,
we choose σ = 1 in order to match the Lipschitz continuity of
the plantwide objective functionV (·). From the nominal properties
of cooperative MPC, the origin of the nominal closed-loop system
x+ = Ax + B1u1 + B2u2 is exponentially stable on XN if the
suboptimal input trajectory u = (u1,u2) is computed using the
actual state x, and the cost function V (x,u) satisfies (2.2). We
require the following feasibility assumption.

Assumption 12. The set XN is compact, and there exist two sets
X̂N and E both containing the origin such that the following
conditions hold: (i) X̂N ⊕ E ⊆ XN , where ⊕ indicates the
Minkowski sum; (ii) for each x̂(0) ∈ X̂N and ê(0) ∈ E , the solution
of the extended closed-loop system (4.2) satisfies x̂(k) ∈ XN for all
k ≥ 0.

Consider the sum of the two Lyapunov functions

W (x̂,u, e) = V (x̂,u)+ J(e).

We next show thatW (·) is a Lyapunov function for the perturbed
system and establish exponential stability of the extended state
origin (x̂, e) = (0, 0). From the definition ofW (·)we have

a
∣∣(x̂,u)∣∣2 + ā |e| ≤ W (x̂,u, e) ≤ b ∣∣(x̂,u)∣∣2 + b̄ |e|
H⇒ ã

(∣∣(x̂,u)∣∣2 + |e|) ≤ W (x̂,u, e) ≤ b̃(∣∣(x̂,u)∣∣2 + |e|) (4.3)

in which ã = min(a, ā) > 0 and b̃ = max(b, b̄) > 0. Next we
compute the cost change

W (x̂+,u+, e+)−W (x̂,u, e)
= V (x̂+,u+)− V (x̂,u)+ J(e+)− J(e).

The Lyapunov function V is quadratic in (x̂,u) and, hence, Lipschitz
continuous on bounded sets. By Proposition 11∣∣V (F(x̂,u)+ Le,h+(e))− V (F(x̂,u)+ Le, ũ+)∣∣ ≤ LhLVu |e|∣∣V (F(x̂,u)+ Le, ũ+)− V (F(x̂,u), ũ+)∣∣ ≤ LVx |Le|
in which Lh, LVu , and LVx are Lipschitz constants for h+ and the
first and second arguments ofV , respectively. Combining the above
inequalities∣∣V (F(x̂,u)+ Le,h+(e))− V (F(x̂,u), ũ+)∣∣ ≤ L̄V |e|
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in which L̄V = LhLVu + LVx |L|. Using the system evolution we have

V (x̂+,h+(e)) ≤ V (F(x̂,u), ũ+)+ L̄V |e|

and by Lemma 6

V (x̂+,u+) ≤ V (F(x̂,u), ũ+)+ L̄V |e| .

Subtracting V (x̂,u) from both sides and noting that ũ+ is a stabi-
lizing input sequence for e = 0 gives

V (x̂+,u+)− V (x̂,u) ≤ −c
∣∣(x̂, u(0))∣∣2 + L̄V |e|

W (x̂+,u+, e+)−W (x̂,u, e) ≤ −c
∣∣(x̂, u(0))∣∣2 + L̄V |e| − c̄ |e|

≤ −c
∣∣(x̂, u(0))∣∣2 − (c̄ − L̄V ) |e|

W (x̂+,u+, e+)−W (x̂,u, e) ≤ −c̃(
∣∣(x̂, u(0))∣∣2 + |e|) (4.4)

in which we choose c̄ > L̄V and c̃ = min(c, c̄ − L̄V ) > 0. This
choice is possible because c̄ can be chosen arbitrarily large. Notice
this step is what motivated the choice of σ = 1. Lastly, we require
the constraint

|u| ≤ d
∣∣x̂∣∣ , x̂ ∈ Br . (4.5)

Theorem 13 (Exponential Stability of Perturbed System). Given
Assumptions 3, 10 and 12, for each x̂(0) ∈ X̂N and e(0) ∈ E , there
exist constants α > 0 and 0 < γ < 1, such that the solution of the
perturbed system (4.2) satisfies, for all k ≥ 0

|(x̂(k), e(k))| ≤ α|(x̂(0), e(0))|γ k. (4.6)

Proof. Using the same arguments as for Lemma 2, we write:

W (x̂+,u+, e+)−W (x̂,u, e) ≤ −ĉ(
∣∣(x̂,u)∣∣2 + |e|) (4.7)

in which ĉ ≥ c̃ > 0. Therefore W (·) is a Lyapunov function for
the extended state (x̂,u, e)withmixed normpowers. The standard
exponential stability argument can be extended for the mixed
norm power case to show that the origin of the extended closed-
loop system (4.2) is exponentially stable [12, p.420]. Hence, for all
k ≥ 0∣∣(x̂(k),u(k), e(k))∣∣ ≤ α̃ ∣∣(x̂(0),u(0), e(0))∣∣ γ k
in which α̃ > 0 and 0 < γ < 1. Notice that Assumption 12 implies
that u(k) exists for all k ≥ 0 because x̂(k) ∈ XN .
We have, using the same arguments used in Lemma 2∣∣(x̂(k), e(k))∣∣ ≤ ∣∣(x̂(k),u(k), e(k))∣∣ ≤ α̃ ∣∣(x̂(0),u(0), e(0))∣∣ γ k

≤ α
∣∣(x̂(0), e(0))∣∣ γ k

in which α = α̃(1+ d̄) > 0. �

Corollary 14. Under the assumptions of Theorem 13, for each x(0)
and x̂(0) such that e(0) = x(0) − x̂(0) ∈ E and x̂(0) ∈ X̂N , the
solution of the closed-loop state x(k) = x̂(k)+ e(k) satisfies:

|x(k)| ≤ ᾱ|x(0)|γ k (4.8)

for some ᾱ > 0 and 0 < γ < 1.

5. Coupled constraints

In Remark 2, we commented that the constraint assumptions
imply uncoupled constraints, because each input is constrained
by a separate feasible region so that the full feasible space is
defined (u1,u2) ∈ UN = UN1 × UN2 . This assumption, however,
is not always practical. Consider two subsystems sharing a scarce

resource for which we control the distribution. There then exists
an availability constraint spanning the subsystems. This constraint
is coupled because each local resource constraint depends upon the
amount requested by the other subsystem.

Remark 5. For plants with coupled constraints, implementing
MPC problem (3.6) gives exponentially stable, yet suboptimal,
feedback.

In this section, we relax the assumption so that (u1,u2) ∈ UN
for any U compact, convex and containing the origin in its interior.
Consider the decomposition of the inputs u = (uU1,uU2,uC ) such
that there exists a UU1,UU2, and UC for which

U = UU1 × UU2 × UC
and

uU1 ∈ UNU1, uU2 ∈ UNU2, uC ∈ UNC
for whichUU1,UU2, andUC are compact and convex.We denote uUi
the uncoupled inputs for subsystem i, i ∈ I1:2, and uC the coupled
inputs.

Remark 6. UU1,UU2, or UC may be empty, and therefore such a
decomposition always exists.

Wemodify the cooperativeMPC problem (3.6) for the above de-
composition. Define the augmented inputs (û1, û2)

û1 =
[
uU1
uC

]
û2 =

[
uU2
uC

]
.

The implemented inputs are

u1 = Ê1û1 u2 = Ê2û2, Ê1 =
[
I
I1

]
Ê2 =

[
I
I2

]
in which (I1, I2) are diagonal matrices with either 0 or 1 diagonal
entries and satisfy I1 + I2 = I . For simplicity, we summarize the
previous relations as u = Êû with Ê = diag(Ê1, Ê2). The objective
function is

V̂ (x1(0), x2(0), û1, û2) = V (x1(0), x2(0), Ê1û1, Ê2û2). (5.1)

We solve the augmented cooperative MPC problem for i ∈ I1:2

min
υ̂i
V̂ (x1(0), x2(0), υ̂1, υ̂2) (5.2a)

subject to[
x1
x2

]+
=

[
A1

A2

] [
x1
x2

]
+

[
B̄11
B̄21

]
Ê1υ̂1 +

[
B̄12
B̄22

]
Ê2υ̂2 (5.2b)

υ̂i ∈ UNUi × UNC (5.2c)

Suji
′xji(N) = 0 j ∈ I1:2 (5.2d)∣∣υ̂i∣∣ ≤ di |xi(0)| if xi(0) ∈ Br (5.2e)

υ̂j = υ̂
p
j j ∈ I1:2 \ i. (5.2f)

The update (3.7) is used to determine the next iterate.

Lemma 15. As p→∞ the cost V̂ (x(0), υ̂p) converges to the optimal
value V 0(x(0)), and the iterates (Ê1υ̂

p
1, Ê2υ̂

p
2) converge to the Pareto

optimal centralized solution u0 = (u01,u
0
2).

Therefore, problem (5.2) gives optimal feedback and may be
used for plants with coupled constraints.

6. M Subsystems

In this section, we show that the stability theory of cooperative
control extends to any finite number of subsystems. For M > 0
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subsystems, the plantwide variables are defined

x =


x1
x2
...
xM

 u =


u1
u2
...

uM

 Bi =


B̄1i
B̄2i
...

B̄Mi

 ∀i ∈ I1:M

V (x,u) =
∑
i∈I1:M

ρiVi(xi,ui) A = diag(A1, . . . , AM).

Each subsystem solves the optimization

min
υi
V (x(0),υ)

subject to

x+ = Ax+
∑
i∈I1:M

Biυi

υi ∈ UNi
Suji
′xji(N) = 0 j ∈ I1:M

|υi| ≤ di
∑
j∈I1:M

∣∣xji(0)∣∣ if xji(0) ∈ Br j ∈ I1:M

υj = υ
p
j j ∈ I1:M \ i.

The controller iteration is given by

υp+1 =
∑
i∈I1:M

wi(υ
p
1, . . . ,υ

∗

i , . . . ,υ
p
M)

in which υ∗i = υ∗i
(
x(0);υpj , j ∈ I1:M \ i

)
. After p̄ iterates, we set

u← υp̄ and inject u(0) into the plant.
The warm start is generated by purely local information

ũ+i = {ui(1), ui(2), . . . , ui(N − 1), 0} ∀i ∈ I1:M .

The plantwide cost function then satisfies for any p̄ ≥ 0

V (x+,u+) ≤ V (x,u)−
∑
i∈I1:M

ρi`i(xi, ui)

|u| ≤ d |x| x ∈ Br .

Generalizing Assumption 3 to all i ∈ I1:M , we find that Theorem 9
applies and cooperative MPC of M subsystems is exponentially
stable.
Moreover, expressing theM subsystem outputs as

yi =
∑
j∈I1:M

Cijxij i ∈ I1:M

and generalizing Assumption 10 for i ∈ I1:M , cooperative MPC
for M subsystems satisfies Theorem 13. Finally, for systems with
coupled constraints, we can decompose the feasible space such
that U = (

∏
i∈I1:M

UUi) × UC . Hence, the input augmentation
scheme of Section 5 is applicable to plants ofM subsystems. Notice
that, in general, this approach may lead to augmented inputs for
each subsystem that are larger than strictly necessary to achieve
optimal control. The most parsimonious augmentation scheme is
described elsewhere [22].

7. Example

Consider a plant consisting of two reactors and a separator. A
stream of pure reactant A is added to each reactor and converted
to the product B by a first-order reaction. The product is lost by a
parallel first-order reaction to side product C . The distillate of the
separator is split and partially redirected to the first reactor (see
Fig. 1).

Fig. 1. Two reactors in series with separator and recycle.

The model for the plant is

dH1
dt
=
1
ρA1

(Ff 1 + FR − F1)

dxA1
dt
=

1
ρA1H1

(Ff 1xA0 + FRxAR − F1xA1)− kA1xA1

dxB1
dt
=

1
ρA1H1

(FRxBR − F1xB1)+ kA1xA1 − kB1xB1

dT1
dt
=

1
ρA1H1

(Ff 1T0 + FRTR − F1T1)

−
1
Cp
(kA1xA1∆HA + kB1xB1∆HB)+

Q1
ρA1CpH1

dH2
dt
=
1
ρA2

(Ff 2 + F1 − F2)

dxA2
dt
=

1
ρA2H2

(Ff 2xA0 + F1xA1 − F2xA2)− kA2xA2

dxB2
dt
=

1
ρA2H2

(F1xB1 − F2xB2)+ kA2xA2 − kB2xB2

dT2
dt
=

1
ρA2H2

(Ff 2T0 + F1T1 − F2T2)

−
1
Cp
(kA2xA2∆HA + kB2xB2∆HB)+

Q2
ρA2CpH2

dH3
dt
=
1
ρA3

(F2 − FD − FR − F3)

dxA3
dt
=

1
ρA3H3

(F2xA2 − (FD + FR)xAR − F3xA3)

dxB3
dt
=

1
ρA3H3

(F2xB2 − (FD + FR)xBR − F3xB3)

dT3
dt
=

1
ρA3H3

(F2T2 − (FD + FR)TR − F3T3)+
Q3

ρA3CpH3

in which for all i ∈ I1:3

Fi = kviHi kAi = kA exp
(
−
EA
RTi

)
kBi = kB exp

(
−
EB
RTi

)
.

The recycle flow and weight percents satisfy

FD = 0.01FR xAR =
αAxA3
x̄3

xBR =
αBxB3
x̄3

x̄3 = αAxA3 + αBxB3 + αCxC3 xC3 = (1− xA3 − xB3).

The output and input are denoted, respectively

y =
[
H1 xA1 xB1 T1 H2 xA2 xB2 T2 H3 xA3 xB3 T3

]
u =

[
Ff 1 Q1 Ff 2 Q2 FR Q3

]
.

We linearize the plant model around the steady state defined by
Table 1 and derive the following linear discrete-time model with
sampling time∆ = 0.1 s

x+ = Ax+ Bu y = x.
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Fig. 2. Performance of reactor and separator example.

Table 1
Steady states and parameters.

Parameter Value Units Parameter Value Units

H1 29.8 m A1 3 m2

xA1 0.542 wt(%) A2 3 m2

xB1 0.393 wt(%) A3 1 m2

T1 315 K ρ 0.15 kg/m3
H2 30 m Cp 25 kJ/kg K
xA2 0.503 wt(%) kv1 2.5 kg/m s
xB2 0.421 wt(%) kv2 2.5 kg/m s
T2 315 K kv3 2.5 kg/m s
H3 3.27 m xA0 1 wt(%)
xA3 0.238 wt(%) T0 313 K
xB3 0.570 wt(%) kA 0.02 1/s
T3 315 K kB 0.018 1/s
Ff 1 8.33 kg/s EA/R −100 K
Q1 10 kJ/s EB/R −150 K
Ff 2 0.5 kg/s ∆HA −40 kJ/kg
Q2 10 kJ/s ∆HB −50 kJ/kg
FR 66.2 kg/s αA 3.5
Q3 10 kJ/s αB 1.1

αC 0.5

7.1. Distributed control

In order to control the separator and each reactor indepen-
dently, we partition the plant into 3 subsystems by defining

y1 =
[
H1 xA1 xB1 T1

]
u1 =

[
Ff 1 Q1

]

y2 =
[
H2 xA2 xB2 T2

]
u2 =

[
Ff 2 Q2

]
y3 =

[
H3 xA3 xB3 T3

]
u3 =

[
FR Q3

]
.

Following the distributed model derivation in the Appendix (see
Appendix B), we form the distributed model for the plant.

7.2. Simulation

Consider the performance of distributed control with the parti-
tioning defined above. The tuning parameters are
Qyi = diag(1, 0, 0, 0.1) ∀i = I1:2 Qy3 = diag(1, 0, 103, 0)
Qi = C ′iQyiCi + 0.001I Ri = 0.01I ∀i ∈ I1:3.
The input constraints are defined in Table 2.We simulate a setpoint
change in the output product weight percent xB3 at t = 0.5 s.
In Fig. 2, the performance of the distributed control strategies

are compared to the centralized control benchmark. For this exam-
ple, noncooperative control is an improvement over decentralized
control (see Table 3). Cooperative control with only a single itera-
tion is significantly better than noncooperative control, however,
and approaches centralized control as more iteration is allowed.

8. Conclusion

In this paper we present a novel cooperative distributed con-
troller in which the subsystem controllers optimize the same ob-
jective function in parallel without the use of a coordinator. The
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Table 2
Input constraints.

Parameter Lower bound Steady state Upper bound Units

Ff 1 0 8.33 10 kg/s
Q1 0 10 50 kJ/s
Ff 2 0 0.5 10 kg/s
Q2 0 10 50 kJ/s
FR 0 66.2 75 kg/s
Q3 0 10 50 kJ/s

Table 3
Performance comparison.

Cost Performance loss (%)

Centralized MPC 1.76 0
Cooperative MPC (10 iterates) 1.94 9.88
Cooperative MPC (1 iterate) 3.12 76.8
Noncooperative MPC 4.69 166
Decentralized MPC 185 1.04 e+ 04

control algorithm is equivalent to a suboptimal centralized con-
troller, allowing the distributed optimization to be terminated at
any iterate before convergence. At convergence, the feedback is
Pareto optimal. We establish exponential stability for the nomi-
nal case and for perturbation by a stable state estimator. For plants
with sparsely coupled constraints, the controller can be extended
by repartitioning the decision variables to maintain Pareto opti-
mality.
We make no restrictions on the strength of the dynamic cou-

pling in the network of subsystems, offering flexibility in plantwide
control design. Moreover, the cooperative controller can improve
performance of plants over traditional decentralized control and
noncooperative control, especially for plants with strong open-
loop interactions between subsystems. A simple example is given
showing this performance improvement.
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Appendix A. Further proofs

Proof of Lemma 5. By assumption, the initial guess is feasible.
Because U1 and U2 are convex, the convex combination (3.7) with
p = 0 implies (υ11,υ

1
2) is feasible. Feasibility for p > 1 follows by

induction. �

Proof of Lemma 6. For every p ≥ 0, the cost function satisfies the
following

V (x(0),υp+1) = V (x(0), w1(υ∗1,υ
p
2)+ w2(υ

p
1,υ
∗

2))

≤ w1V (x(0), (υ∗1,υ
p
2))+ w2V (x(0), (υ

p
1,υ
∗

2)) (A.1a)

≤ w1V (x(0), (υ
p
1,υ

p
2))+ w2V (x(0), (υ

p
1,υ

p
2)) (A.1b)

≤ V (x(0),υp).

The first equality follows from (3.7). The inequality (A.1a) follows
from convexity of V (·). The next inequality (A.1b) follows from
the optimality of υ∗i ∀i ∈ I1:2, and the final line follows from
w1+w2 = 1. Because the cost is bounded below, it converges. �

Proof of Lemma 7. We give a proof that requires only closedness
(not compactness) of Ui, i ∈ I1:2. From Lemma 6, the cost

converges, say to V . Since V is quadratic and strongly convex, its
sublevel sets lev≤a(V ) are compact and bounded for all a. Hence,
all iterates belong to the compact set lev≤V (υ0)(V ) ∩ U, so there is
at least one accumulation point. Let ῡ be any such accumulation
point, and choose a subsequence P ⊂ {1, 2, 3, . . .} such that
{υp}p∈P converges to ῡ. We obviously have that V (x(0), ῡ) = V ,
and moreover that

lim
p∈P,p→∞

V (x(0),υp) = lim
p∈P,p→∞

V (x(0),υp+1) = V . (A.2)

By strict convexity of V and compactness of Ui, i ∈ I1:2, the
minimizer of V (x(0), ·) is attained at a unique point u0 = (u01,u

0
2).

By taking limits in (A.1) as p → ∞ for p ∈ P , and using w1 > 0,
w2 > 0, we deduce directly that

lim
p∈P,p→∞

V (x(0), (υ∗1(υ
p
2),υ

p
2)) = V (A.3a)

lim
p∈P,p→∞

V (x(0), (υp1,υ
∗

2(υ
p
1))) = V . (A.3b)

We suppose for contradiction that V 6= V (x(0),u0) and thus
ῡ 6= u0. Because V (x(0), ·) is convex, we have

∇V (x(0), ῡ)′(u0 − ῡ) ≤ ∆V := V (x(0),u0)− V (x(0), ῡ) < 0

where ∇V (x(0), ·) denotes the gradient of V (x(0), ·). It follows
immediately that either

∇V (x(0), ῡ)′
[
u01 − ῡ1
0

]
≤ (1/2)∆V or (A.4a)

∇V (x(0), ῡ)′
[

0
u02 − ῡ2

]
≤ (1/2)∆V . (A.4b)

Suppose first that (A.4a) holds. Applying Taylor’s theorem to V

V (x(0), (υp1 + ε(u
0
1 − υ

p
1),υ

p
2))

= V (x(0),υp)+ ε∇V (x(0),υp)′
[
u01 − υ

p
1

0

]
+
1
2
ε2
[
u01 − υ

p
1

0

]′
∇
2V (x(0),υp1

+ γ ε(u01 − υ
p
1),υ

p
2)

[
u01 − υ

p
1

0

]
≤ V + (1/4)ε∆V + βε2 (A.5)

in which γ ∈ (0, ε). (A.5) applies for all p ∈ P sufficiently large,
for some β independent of ε and p. By fixing ε to a suitably small
value (certainly less than 1), we have both that the right-hand side
of (A.5) is strictly less than V and that υp1 + ε(u

0
1 − υ

p
1) ∈ U1. By

taking limits in (A.5) and using (A.3) and the fact that υ∗1(υ
p
2) is

optimal for V (x(0), (·,υp2)) in U1, we have

V = lim
p∈P,p→∞

V (x(0), (υ∗1(υ
p
2),υ

p
2))

≤ lim
p∈P,p→∞

V (x(0), (υp1 + ε(u
0
1 − υ

p
1),υ

p
2))

< V

giving a contradiction. By identical logic, we obtain the same
contradiction from (A.4b). We conclude that V = V (x(0),u0) and
thus ῡ = u0. Since ῡ was an arbitrary accumulation point of the
sequence {υp}, and since this sequence is confined to a compact
set, we conclude that the whole sequence converges to u0. �

Proof of Corollary 14. We first note that: |x(k)| ≤ |x̂(k)| + |e(k)|
≤
√
2|(x̂(k), e(k))|. From Theorem 13 we can write:

|x(k)| ≤
√
2α
∣∣(x̂(0), e(0))∣∣ γ k ≤ ᾱ ∣∣x̂(0)+ e(0)∣∣ γ k
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with ᾱ =
√
2α, which concludes the proof by noticing that x(0) =

x̂(0)+ e(0). �

Proof of Lemma 15. Because V̂ (·) is convex and bounded below,
the proof follows from Lemma 7 and from noticing that the point
u0 = (Ê1û01, Ê2û

0
2), with û0i = limp→∞ υ̂i, i ∈ I1:2, is Pareto

optimal. �

Appendix B. Deriving the distributed model

Consider the possibly nonminimal centralized model

x+ = Ax+
∑
j∈I1:M

Bjuj (B.1)

yi = Cix ∀i ∈ I1:M .

For each input/output pair (uj, yi)we transform the triple (A, Bj, Ci)
into its Kalman canonical form [23, p.270]
zocij
z ōcij
zoc̄ij
z ōc̄ij


+

=


Aocij 0 Aocc̄ij 0

Aōocij Aōcij Aōcoc̄ij Aōcc̄ij
0 0 Aoc̄ij 0

0 0 Aōc̄oij Aōc̄ij



zocij
z ōcij
zoc̄ij
z ōc̄ij

+

Bocij
Bōcij
0
0

 uj

yij =
[
Cocij 0 Coc̄ij 0

]
zocij
z ōcij
zoc̄ij
z ōc̄ij

 yi =
∑
j∈I1:M

yij.

The vector zocij captures the modes of A that are both observable by
yi and controllable by uj. The distributed model is then

Aij ← Aocij Bij ← Bocij Cij ← Cocij xij ← zocij .
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