Optimization Algorithms for Compressed Sensing

Stephen Wright

University of Wisconsin-Madison

SIAM Gator Student Conference, Gainesville, March 2009

Compressed Sensing Fundamentals

- Suppose we're told there is a real vector $x = (x_1, x_2, \ldots, x_n) \in \mathbb{R}^n$ (where n is large) that contains a single nonzero element. This "spike" can take on any real value, positive or negative.
- We're allowed to "query" or "sense" x by making m observations that are linear functions of its components. Observation i has the form

$$
y_i = \sum_{j=1}^n A_{ij} x_j.
$$

 \bullet Our goal is to identify the location and value of the "spike" in x.

Questions:

- How many observations do we need?
- How should we choose the sampling vectors $A_i = (A_{i1}, A_{i2}, \ldots, A_{in})$?
- Given the observations y_i , how do we go about reconstructing the signal x , that is, locating the nonzero element and finding its value?

A Simple Idea

Examine every element of x, that is, choose

$$
A_1 = (1, 0, 0, \ldots, 0, 0),
$$

\n
$$
A_2 = (0, 1, 0, \ldots, 0, 0),
$$

\n
$$
\vdots
$$

\n
$$
A_n = (0, 0, 0, \ldots, 0, 1).
$$

In other words, $m = n$ and $y_i = x_i$, $i = 1, 2, \ldots, n$.

- Need *n* observations in general.
- This approach will work for *any x*, not just an x with a single nonzero. It's very general, but it doesn't exploit our prior knowledge about x.
- We can obviously design a sensing method that uses fewer observations (smaller m).

Is $m = 1$ Possible?

Can we design a scheme that will find the nonzero element using just one observation? That is, choose $A_1 = (A_{11}, A_{12}, \ldots, A_{1n})$ so that by observing the value of $y_1 = \sum_{j=1}^n A_{1j} x_j$, we can identify the true $x?$

For this scheme to work, every possible x with a single nonzero must yield a unique "signature" v_1 .

But this is not possible for $m=1$, regardless of how we choose A_1 .

- If one of the sensing elements A_{1j} is zero, then any signal $\mathrm{\mathsf{x}}$ that has its nonzero in location j will leave the signature $y_1 = 0$. We have no way of telling the value of $x_i!$
- If all the sensing elements $A_{1j},\,j=1,2,\ldots,n$ are nonzero, the signature y_i is ambiguous. For instance, these two vectors x will both produce the same signature $v_1 = 1$:

$$
x=(\frac{1}{A_{11}},0,0,\ldots,0),\qquad x=(0,\frac{1}{A_{12}},0,0,\ldots,0).
$$

- What if we knew the value of the nonzero element (1, say) but not its location? Could we then design a scheme with $m = 1$ observations?
- Yes! For the sensing vector $A_1 = (1, 2, 3, \ldots, n)$, the nonzero in location j would return a signature $y_1 = i$.

Let's return to the case where we don't know the location or the value.

Can we design a scheme that needs just two observations?

Yes! We just have to ensure that the $2 \times n$ sensing matrix is such that no column is a multiple of any other column, that is, any submatrix of two columns has full rank.

With such a matrix, an x with its nonzero x_j in location j will leave a unique signature

$$
\begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = \begin{bmatrix} A_{1j} \\ A_{2j} \end{bmatrix} x_j.
$$

We can reconstruct the signal in $O(n)$ operations by:

- Finding the (unique) column of A that is a multiple of y ;
- Finding the value x_i by a simple division.

Our prior knowledge about $x -$ the fact that it has a single nonzero $$ allows us to identify x it using only two pieces of information!

Suppose now that x has two spikes of unknown value in unknown location. How big does m need to be, how do we design A , and how do we recover the spikes?

 $m = 3$ is not enough! Any four columns of the sensing matrix A would be linearly dependent. For example, taking the first four columns, there is a vector (z_1, z_2, z_3, z_4) such that

$$
A_{.1}z_1 + A_{.2}z_2 + A_{.3}z_3 + A_{.4}z_4 = 0
$$

The following signals with have the same signature (y_1, y_2, y_3) :

$$
x = (-z1, -z2, 0, 0, 0, ..., 0),
$$

$$
x = (0, 0, z3, z4, 0, ..., 0),
$$

as they differ by the null vector $(z_1, z_2, z_3, z_4, 0, 0, \ldots, 0)$.

Is $m = 4$ enough?

I don't know. But we can observe that:

- A needs to be such that any four of its columns are linearly independent.
- May be hard to "design" this property, but it's clear enough that it we choose the elements of A randomly then it will have this property with high probability.
- To reconstruct the signal (i.e. identify both spikes) we may have to inspect all $\begin{pmatrix} n \\ 2 \end{pmatrix}$ 2 $\Big) \approx \frac{1}{2}$ $\frac{1}{2}n^2$ possible pairs of columns.
- \bullet As we increase the number of spikes, the number of observations m must grow too (how quickly?). The complexity of "exhaustive" reconstruction methods grows rapidly.

The simple cases of 1 or 2 spikes captures some of the essence of compressed sensing.

- \bullet There's the potential to use prior knowledge of sparsity of x to identify x using very few observations (much less than n).
- Design of the sensing matrix is important randomness plays a role.
- Naive reconstruction algorithms are complicated and slow. Order of $\left(n \right)$ s operations.

These observations remain relevant as we move to the general case, but one important ingredient is added: The possibility of formulations and algorithms that reconstruct the signal much more efficiently than the "exponential complexity" of the obvious algorithms suggests.

In realistic applications:

- \bullet We may know that x is sparse, but don't know the sparsity (number of nonzeros) precisely in advance.
- \bullet x may be *nearly* sparse, rather than precisely sparse. We'd like to identify the biggest spikes (i.e. the most significant components of the signal).
- The sparsity may be large (hundreds or thousands?) though still much less than *n*.
- The observations y may contain noise, that is $y = Ax + e$, where e contains nonzeros.

Important Class of Applications: Signal Processing

- A matrix W whose columns are basis vectors in Fourier or wavelet space. W maps "coefficient space" to the "physical space" in which the observable signal lives.
- \bullet The vector x encodes the signal in "coefficient space" and is known to be sparse in this space, i.e. the signal includes only a small number of basis vectors.
- \bullet Sample the signal in physical space via an observation matrix S, producing an observation vector y , which may contain noise.

Compressed sensing: Find a sparse x such that $y \approx SWx$. (Note that $A = SW.$

A is usually much too large and dense to store explicitly, but we can form matrix-vector products with A and $A^{\mathcal{T}}$ efficiently using FFTs, inverse FFTs, discrete wavelet transforms, etc.

- \bullet If we make random choices of A, what distributions should we draw from?
- \bullet How many observations m are needed (in relation to signal length n and sparsity s) to recover the signal, to high probability?
- How can we formulate the problems mathematically? Preferably to allow for efficient solution.
- What algorithms can we use to solve these formulations?

Major advances have been made on all these fronts since 2004.

Properties of A

A critical property of A is restricted isometry [Cand`es, Tao], [Donoho].

Given sparsity level $S \le m$, A satisfies the restricted isometry property with isometry constant δ _S < 1 if for any column submatrix A_{τ} of A with at most S columns, we have

$$
(1-\delta_{\mathcal{S}})\|c\|_2^2 \leq \|A_{\cdot}r c\|_2^2 \leq (1+\delta_{\mathcal{S}})\|c\|_2^2, \qquad \text{for all } c \in \mathbb{R}^{\mathcal{S}}.
$$

That is, A_{τ} has close-to-orthonormal columns.

Note that $\delta_S < 1$ implies that the columns of A_{τ} are linearly independent. Better conditioning (that is, δ_S closer to zero) makes the recovered signal less sensitive to noise e in the observations.

Some types of random matrices with good RIP include:

- elements of A drawn i.i.d from $N(0, 1)$;
- **• row submatrix of discrete cosine transform.**

"Obvious" formulation is to explicitly restrict the sparsity of x :

$$
\min_{x} \frac{1}{2} \|Ax - y\|_2^2 \text{ subject to } \|x\|_0 \leq c,
$$

where $||x||_0$ counts the number of nonzeros in x and c is prescribed. However, this is NP-hard, not practical to solve, unless c is very small.

A Key Observation: If A has nice properties, $||x||_1$ can serve as a surrogate for $||x||_0$! [Candès, Romberg, Tao, Donoho].

- $||x||_1$ is convex and can lead to smooth convex formulations;
- $||x||_1$ often give the same (sparse) solutions as $||x||_0!$

A regularization term $\|x\|_2^2$ (Tikhonov regularization) does not have the latter property.

Three Formulations Using $||x||_1$

LASSO with parameter $\beta > 0$:

$$
\min \frac{1}{2} \|Ax - y\|_2^2 \quad \text{subject to } \|x\|_1 \leq \beta.
$$

Reconstruction with noise bound ϵ

$$
\text{min } \|x\|_1 \qquad \text{subject to } \|Ax - y\|_2 \le \epsilon.
$$

Unconstrained nonsmooth formulation with regularization $\tau > 0$.

$$
\min \frac{1}{2} \|Ax - y\|_2^2 + \tau \|x\|_1.
$$

- By varying their parameters, all three formulations generally lead to the same path of solutions.
- The "correct" choice of parameter usually is not known a priori; need to solve for a selection or range of values and choose it in some "outer loop."

Many algorithms and heuristics have been proposed for all three of the $\ell_2 - \ell_1$ formulations of compressed sensing.

Besides having a solution x that's known to be sparse, the problem has several properties that drive algorithmic choices:

- \bullet n very large, possibly also m.
- A often dense, can't store substantial submatrices explicitly (but a small column submatrix may be OK). This rules out standard LP and QP software, except for small cases.
- \bullet Efficient matrix-vector multiplies involving A are available. (It's often a product of a representation matrix and an observation matrix.)
- Often want to solve for a selection of regularization parameter values.

 ℓ_1 -magic: Log-barrier approach for the second-order cone program formulation: min $||x||_1$ s.t. $||Ax - y||_2 \leq \epsilon$ [Candès, Romberg]:

- Newton method used for inner iteration.
- CG used for inner-inner iteration.

l1 ls: Apply a log-barrier method to a reformulation of the unconstrained problem:

$$
\min \frac{1}{2} \|Ax - y\|_2^2 + \tau \mathbf{1}^T u \text{ subject to } -u \le x \le u.
$$

Preconditioned CG used for the inner loop. [Kim et al, 2007]

SparseLab/PDCO: Primal-dual formulation, with linear equations solved iteratively with LSQR for large A. [Saunders, 2002]

- **•** Generally few outer iterations, but expensive.
- Linear systems at innermost level become increasingly ill conditioned.
	- Requires many more CG / LSQR iterations.
	- Clever preconditioning can help.
- Difficult to warm-start.
	- No big savings from using the solution for one value of τ to warm-start for the next value in the sequence.
- Fairly robust: Performance is roughly the same regardless of regularization parameter value.

MP, OMP heuristics build up x one component at a time, greedily.

- Given current x^k with nonzero components from index set $A_k \subset \{1, 2, \ldots, n\}$, evaluate gradient of the least-squares function: $g^k := A^T(Ax^k - y);$
- Choose *i* to maximize $|g_i^k|$ over all $i \notin A_k$.
- Set $\mathcal{A}_{k+1} \leftarrow \mathcal{A}_k \cup \{i\}$ and choose x^{k+1} to minimize $\|Ax y\|_2^2$ subject to $x_i = 0$ for $i \notin A_{k+1}$.
- $k \leftarrow k + 1$ and repeat.

CoSaMP [Needell, Tropp, 2008] extends this idea, adding ideas from other approaches, and includes a convergence theory.

Trace the solution path for a range of values of the regularization parameter.

For the formulation

$$
\min \frac{1}{2} \|Ax - y\|_2^2 + \tau \|x\|_1
$$

the solution is $x=0$ for $\tau\geq \|A^{\mathcal T} y\|_{\infty}.$ Can decrease τ progressively from this value, seeking *breakpoints* at which another component of x moves away from zero.

Between breakpoints, the solution x depends linearly on τ .

The approach can be implemented carefully in a way that requires only matrix-vector multiplications with A and A^T , and storage of the "active" columns of A. Suitable for very sparse signals.

SolveLasso function in the SparseLab toolbox.

QP Formulation and Gradient Projection: GPSR

Can formulate as bound-constrained least squares by splitting x :

$$
x=u-v, (u,v)\geq 0,
$$

and writing

$$
\min_{u \geq 0, v \geq 0} \phi(u, v) := \frac{1}{2} ||A(u - v) - y||_2^2 + \tau \mathbf{1}^\top u + \tau \mathbf{1}^\top v.
$$

Gradient of objective is

$$
\begin{bmatrix} \nabla_u \phi(u, v) \\ \nabla_v \phi(u, v) \end{bmatrix} = \begin{bmatrix} A^T A(u - v) - A^T y + \tau \mathbf{1} \\ -A^T A(u - v) + A^T y + \tau \mathbf{1} \end{bmatrix}.
$$

Set

$$
(\bar{u}^{k+1}, \bar{v}^{k+1}) = [(u^k, v^k) - \alpha (\nabla_u \phi^k, \nabla_v \phi^k)]_+
$$

for $\alpha > 0$. Then possibly do a second "internal" line search, choosing $\gamma \in [0, 1]$ to reduce ϕ , and setting

$$
(u^{k+1},v^{k+1}) = \left[(u^k,v^k) + \gamma \left\{ (\bar{u}^{k+1},\bar{v}^{k+1}) - (u^k,v^k) \right\} \right]_+.
$$

$$
\min \frac{1}{2} \|Ax - y\|_2^2 + \tau \|x\|_1.
$$

Define $q(x) := (1/2) ||Ax - y||_2^2$. From iterate x^k , get step d by solving

$$
\min_{d} \nabla q(x^k)^\mathsf{T} d + \frac{1}{2} \alpha_k d^\mathsf{T} d + \tau \|x^k + d\|_1.
$$

Can view the α_k term as an approximation to the Hessian: $\alpha_k I \approx \nabla^2 q = A^T A$.

Subproblem is trivial to solve in $O(n)$ operations, since it is separable in the components of d . Equivalent to

$$
\min_{z} \frac{1}{2} \|z - u^k\|_2^2 + \frac{\tau}{\alpha_k} \|z\|_1,
$$

with

$$
u^k := x^k - \frac{1}{\alpha_k} \nabla q(x^k).
$$

• Can use a Barzilai-Borwein (BB) strategy: Choose it so that $\alpha_k I$ mimics the true Hessian $A^\mathcal{T} A$ over the step just taken. e.g. do a least squares fit to:

$$
[x^k - x^{k-1}] \approx \alpha_k^{-1} [\nabla q(x^k) - \nabla q(x^{k-1})].
$$

Generally non-monotone; objective does not necessarily decrease on every iteration. Can still get convergence by insisting on decrease over every span of 5 iterations, say.

- Cyclic BB variants: e.g. update α_k only every 3rd iteration.
- **•** Get monotone variants by **backtracking**: set $\alpha_k \leftarrow 2\alpha_k$ repeatedly until a decrease in objective is obtained.

SpaRSA approach is related to GPSR and also to

- iterative shrinking-thresholding,
- proximal forward-backward splitting [Combettes, Wajs, 2005],
- **•** fixed-point continuation [Hale, Yin, Zhang, 2007],

which generally use constant or large values of α_k .

Main difference is adaptive choice of α_k in SpaRSA (and GPSR).

SpaRSA Properties

- Can make large changes to the active manifold on a single step (like interior-point, unlike pivoting).
- Each iteration is cheap: one multiplication each with A or $A^{\mathcal{T}}.$
- Would reduce to steepest descent if there were no nonsmooth term.
- For very sparse problems (large τ) can sometimes identify the correct active set in few iterations.
- Benefits from warm starting.
- \bullet Once the correct nonzero components of x are identified, the approach reduces to steepest descent on subspace of nonzero components.
	- This quadratic has Hessian $\bar{A}^T \bar{A}$, where \bar{A} is the column submatrix of A corresponding to the optimal support of x .
	- When the restricted isometry property holds, we have $\bar{A}^T \bar{A} \approx I$, so steepest descent is not too slow.

When the support is not so sparse, SpaRSA (and other first-order methods) is much slower to both identify the correct support for x and to converge in its final stages.

Can alleviate with a continuation strategy: Solve for a decreasing sequence of τ values:

 $\tau_1 > \tau_2 > \cdots > \tau_m$

using the solution for τ_i to warm-start for τ_{i+1} .

- Typically faster than solving for τ_m alone from a cold start.
- Related to the LARS/LASSO pivoting approach, which also works with decreasing τ values.

[Nesterov, 2007]

- Solves subproblems of same type as SpaRSA.
- For a technique like SpaRSA that directly manipulates α_k , proves convergence of the objective function to its optimal value at rate $\mathit{k}^{-1}.$
- Proposes a more complex "accelerated" scheme in which each iterate z^k is a linear combination of two vectors:
	- An vector x^k obtained from the SpaRSA subproblem
	- An vector v^k obtained from a subproblem with a modified linear term (a weighted average of gradients $A^{\mathcal{T}}(A\mathsf{x} - \mathsf{y})$ encountered at earlier iterations.
- Similar methods known to engineers as two-step and heavy-ball methods.
- Proves convergence of objective value at rate $k^{-2}.$

A small explicit problem with an easy signal (not very sparse).

- A is 1024×4096 , elements from $N(0, 1)$.
- True signal x has 204 nonzeros with positive and negative values with size $[10^{-4}, 1]$.
- Observations y include noise of variance $\sigma^2=10^{-6}.$
- Choose $\tau=0.0005\|A^{\mathcal T} {\mathrm y}\|_\infty$ sufficient to recover the signal accurately (after debiasing).

Compare several methods all of which require only matrix-vector multiplications (not direct access to submatrices of A).

Codes

- FPC: fixed-point continuation [Hale, Yin, Zhang, 2007].
- 11_1s: interior-point QP [Kim et al, 2007]
- OMP: GreedLab routine greed_omp_qr: matching pursuit.
- SpaRSA: BB selection of initial α_k , with continuation. [Wright, Nowak, Figueiredo, 2008]
	- **•** monotone
	- nonmonotone
- GPSR: gradient projection on QP formulation, BB selection of initial α_k , with continuation, monotone formulation. [Figueiredo, Nowak, Wright, 2007]
- Nesterov's accelerated scheme (with continuation) [Nesterov, 2007].
- TwIST: constant α_k . [Figueiredo, 2007]

Table: Results for Variable Spikes test problem (times in secs on a MacBook)

- Tested a similar example for different values of τ with continuation turned on/off.
- Plot total runtime against $\beta = \| A^T y \|_\infty / \tau$.
- \bullet Benchmarked against 11_{-1s}, whose runtimes are less sensitive to this value.
- Showed large advantage for continuation over a one-off approach, for GPSR codes. (SpaRSA results are similar.)

Compressed sensing is a fascinating challenge for computational math and optimization.

- A great application!
- Formally simple and "clean" enough that a wide range of optimization techniques can be tried.
- But large size and data-intensive nature makes it hard.
- Essential to exploit application properties, e.g. restricted isometry, need to solve for a range of regularization parameters.
- Throws up other interesting issues, e.g. stopping criteria.

Can extend to TV-regularized image processing. (Another talk...)