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Compressed Sensing Fundamentals

Suppose we’re told there is a real vector x = (x1, x2, . . . , xn) ∈ Rn

(where n is large) that contains a single nonzero element. This
“spike” can take on any real value, positive or negative.

We’re allowed to “query” or “sense” x by making m observations that
are linear functions of its components. Observation i has the form

yi =
n∑

j=1

Aijxj .

Our goal is to identify the location and value of the “spike” in x .

Questions:

How many observations do we need?

How should we choose the sampling vectors Ai · = (Ai1,Ai2, . . . ,Ain)?

Given the observations yi , how do we go about reconstructing the
signal x , that is, locating the nonzero element and finding its value?
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A Simple Idea

Examine every element of x, that is, choose

A1· = (1, 0, 0, . . . , 0, 0),

A2· = (0, 1, 0, . . . , 0, 0),

...

An· = (0, 0, 0, . . . , 0, 1).

In other words, m = n and yi = xi , i = 1, 2, . . . , n.

Need n observations in general.

This approach will work for any x , not just an x with a single nonzero.
It’s very general, but it doesn’t exploit our prior knowledge about x .

We can obviously design a sensing method that uses fewer
observations (smaller m).
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Is m = 1 Possible?

Can we design a scheme that will find the nonzero element using just one
observation? That is, choose A1· = (A11,A12, . . . ,A1n) so that by
observing the value of y1 =

∑n
j=1 A1jxj , we can identify the true x?

For this scheme to work, every possible x with a single nonzero must yield
a unique “signature” y1.

But this is not possible for m = 1, regardless of how we choose A1·.

If one of the sensing elements A1j is zero, then any signal x that has
its nonzero in location j will leave the signature y1 = 0. We have no
way of telling the value of xj !

If all the sensing elements A1j , j = 1, 2, . . . , n are nonzero, the
signature yi is ambiguous. For instance, these two vectors x will both
produce the same signature y1 = 1:

x = (
1

A11
, 0, 0, . . . , 0), x = (0,

1

A12
, 0, 0, . . . , 0).
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An Aside

What if we knew the value of the nonzero element (1, say) but not its
location? Could we then design a scheme with m = 1 observations?

Yes! For the sensing vector A1· = (1, 2, 3, . . . , n), the nonzero in location j
would return a signature y1 = j .

Let’s return to the case where we don’t know the location or the value.
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Is m = 2 Possible?

Can we design a scheme that needs just two observations?

Yes! We just have to ensure that the 2× n sensing matrix is such that no
column is a multiple of any other column, that is, any submatrix of two
columns has full rank.

With such a matrix, an x with its nonzero xj in location j will leave a
unique signature [

y1

y2

]
=

[
A1j

A2j

]
xj .

We can reconstruct the signal in O(n) operations by:

Finding the (unique) column of A that is a multiple of y ;

Finding the value xj by a simple division.

Our prior knowledge about x — the fact that it has a single nonzero —
allows us to identify x it using only two pieces of information!
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What About Two Spikes?

Suppose now that x has two spikes of unknown value in unknown location.
How big does m need to be, how do we design A, and how do we recover
the spikes?

m = 3 is not enough! Any four columns of the sensing matrix A would be
linearly dependent. For example, taking the first four columns, there is a
vector (z1, z2, z3, z4) such that

A·1z1 + A·2z2 + A·3z3 + A·4z4 = 0

The following signals with have the same signature (y1, y2, y3):

x = (−z1,−z2, 0, 0, 0, . . . , 0),

x = (0, 0, z3, z4, 0, . . . , 0),

as they differ by the null vector (z1, z2, z3, z4, 0, 0, . . . , 0).
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Is m = 4 enough?

I don’t know. But we can observe that:

A needs to be such that any four of its columns are linearly
independent.

May be hard to “design” this property, but it’s clear enough that it
we choose the elements of A randomly then it will have this property
with high probability.

To reconstruct the signal (i.e. identify both spikes) we may have to

inspect all

(
n
2

)
≈ 1

2n2 possible pairs of columns.

As we increase the number of spikes, the number of observations m
must grow too (how quickly?). The complexity of “exhaustive”
reconstruction methods grows rapidly.
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Summarizing...

The simple cases of 1 or 2 spikes captures some of the essence of
compressed sensing.

There’s the potential to use prior knowledge of sparsity of x to
identify x using very few observations (much less than n).

Design of the sensing matrix is important - randomness plays a role.

Naive reconstruction algorithms are complicated and slow. Order of(
n
s

)
operations.

These observations remain relevant as we move to the general case, but
one important ingredient is added: The possibility of formulations and
algorithms that reconstruct the signal much more efficiently than the
“exponential complexity” of the obvious algorithms suggests.
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Complications

In realistic applications:

We may know that x is sparse, but don’t know the sparsity (number
of nonzeros) precisely in advance.

x may be nearly sparse, rather than precisely sparse. We’d like to
identify the biggest spikes (i.e. the most significant components of
the signal).

The sparsity may be large (hundreds or thousands?) though still
much less than n.

The observations y may contain noise, that is y = Ax + e, where e
contains nonzeros.
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A Test Problem
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Original (n = 4096, number of nonzeros = 204)
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Important Class of Applications: Signal Processing

A matrix W whose columns are basis vectors in Fourier or wavelet
space. W maps “coefficient space” to the “physical space” in which
the observable signal lives.

The vector x encodes the signal in “coefficient space” and is known
to be sparse in this space, i.e. the signal includes only a small number
of basis vectors.

Sample the signal in physical space via an observation matrix S ,
producing an observation vector y , which may contain noise.

Compressed sensing: Find a sparse x such that y ≈ SWx . (Note that
A = SW .)

A is usually much too large and dense to store explicitly, but we can form
matrix-vector products with A and AT efficiently using FFTs, inverse
FFTs, discrete wavelet transforms, etc.
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(Some of) the Big Issues

If we make random choices of A, what distributions should we draw
from?

How many observations m are needed (in relation to signal length n
and sparsity s) to recover the signal, to high probability?

How can we formulate the problems mathematically? Preferably to
allow for efficient solution.

What algorithms can we use to solve these formulations?

Major advances have been made on all these fronts since 2004.
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Properties of A

A critical property of A is restricted isometry [Candès, Tao], [Donoho].

Given sparsity level S ≤ m, A satisfies the restricted isometry property
with isometry constant δS < 1 if for any column submatrix A·T of A with
at most S columns, we have

(1− δS)‖c‖22 ≤ ‖A·T c‖22 ≤ (1 + δS)‖c‖22, for all c ∈ RS .

That is, A·T has close-to-orthonormal columns.

Note that δS < 1 implies that the columns of A·T are linearly independent.
Better conditioning (that is, δS closer to zero) makes the recovered signal
less sensitive to noise e in the observations.

Some types of random matrices with good RIP include:

elements of A drawn i.i.d from N(0, 1);

row submatrix of discrete cosine transform.
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Formulating the Reconstruction Problem

“Obvious” formulation is to explicitly restrict the sparsity of x :

min
x

1

2
‖Ax − y‖22 subejct to ‖x‖0 ≤ c ,

where ‖x‖0 counts the number of nonzeros in x and c is prescribed.
However, this is NP-hard, not practical to solve, unless c is very small.

A Key Observation: If A has nice properties, ‖x‖1 can serve as a surrogate
for ‖x‖0! [Candès, Romberg, Tao, Donoho].

‖x‖1 is convex and can lead to smooth convex formulations;

‖x‖1 often give the same (sparse) solutions as ‖x‖0!

A regularization term ‖x‖22 (Tikhonov regularization) does not have the
latter property.
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Three Formulations Using ‖x‖1
LASSO with parameter β > 0:

min
1

2
‖Ax − y‖22 subject to ‖x‖1 ≤ β.

Reconstruction with noise bound ε:

min ‖x‖1 subject to ‖Ax − y‖2 ≤ ε.

Unconstrained nonsmooth formulation with regularization τ > 0.

min
1

2
‖Ax − y‖22 + τ‖x‖1.

By varying their parameters, all three formulations generally lead to
the same path of solutions.

The “correct” choice of parameter usually is not known a priori; need
to solve for a selection or range of values and choose it in some
“outer loop.”
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Compressed Sensing Algorithms

Many algorithms and heuristics have been proposed for all three of the
`2 − `1 formulations of compressed sensing.

Besides having a solution x that’s known to be sparse, the problem has
several properties that drive algorithmic choices:

n very large, possibly also m.

A often dense, can’t store substantial submatrices explicitly (but a
small column submatrix may be OK). This rules out standard LP and
QP software, except for small cases.

Efficient matrix-vector multiplies involving A are available. (It’s often
a product of a representation matrix and an observation matrix.)

Often want to solve for a selection of regularization parameter values.
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Interior-Point Algorithms

`1-magic: Log-barrier approach for the second-order cone program
formulation: min ‖x‖1 s.t. ‖Ax − y‖2 ≤ ε [Candès, Romberg]:

Newton method used for inner iteration.

CG used for inner-inner iteration.

l1 ls: Apply a log-barrier method to a reformulation of the
unconstrained problem:

min
1

2
‖Ax − y‖22 + τ1Tu subject to − u ≤ x ≤ u.

Preconditioned CG used for the inner loop. [Kim et al, 2007]

SparseLab/PDCO: Primal-dual formulation, with linear equations solved
iteratively with LSQR for large A. [Saunders, 2002]
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Interior-Point Properties

Generally few outer iterations, but expensive.

Linear systems at innermost level become increasingly ill conditioned.

Requires many more CG / LSQR iterations.
Clever preconditioning can help.

Difficult to warm-start.

No big savings from using the solution for one value of τ to warm-start
for the next value in the sequence.

Fairly robust: Performance is roughly the same regardless of
regularization parameter value.
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Matching Pursuit and Descendants

MP, OMP heuristics build up x one component at a time, greedily.

Given current xk with nonzero components from index set
Ak ⊂ {1, 2, . . . , n}, evaluate gradient of the least-squares function:
gk := AT (Axk − y);

Choose i to maximize |gk
i | over all i /∈ Ak .

Set Ak+1 ← Ak ∪ {i} and choose xk+1 to minimize ‖Ax − y‖22
subject to xi = 0 for i /∈ Ak+1.

k ← k + 1 and repeat.

CoSaMP [Needell, Tropp, 2008] extends this idea, adding ideas from other
approaches, and includes a convergence theory.
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Active-Set / Pivoting Methods

Trace the solution path for a range of values of the regularization
parameter.

For the formulation

min
1

2
‖Ax − y‖22 + τ‖x‖1

the solution is x = 0 for τ ≥ ‖AT y‖∞. Can decrease τ progressively from
this value, seeking breakpoints at which another component of x moves
away from zero.

Between breakpoints, the solution x depends linearly on τ .

The approach can be implemented carefully in a way that requires only
matrix-vector multiplications with A and AT , and storage of the “active”
columns of A. Suitable for very sparse signals.

SolveLasso function in the SparseLab toolbox.
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QP Formulation and Gradient Projection: GPSR

Can formulate as bound-constrained least squares by splitting x :

x = u − v , (u, v) ≥ 0,

and writing

min
u≥0,v≥0

φ(u, v) :=
1

2
‖A(u − v)− y‖22 + τ1Tu + τ1T v .

Gradient of objective is[
∇uφ(u, v)
∇vφ(u, v)

]
=

[
ATA(u − v)− AT y + τ1
−ATA(u − v) + AT y + τ1

]
.

Set
(ūk+1, v̄k+1) =

[
(uk , vk)− α(∇uφ

k ,∇vφk)
]
+

for α > 0. Then possibly do a second “internal” line search, choosing
γ ∈ [0, 1] to reduce φ, and setting

(uk+1, vk+1) =
[
(uk , vk) + γ

{
(ūk+1, v̄k+1)− (uk , vk)

}]
+

.
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SpaRSA: Separable Approximation

min
1

2
‖Ax − y‖22 + τ‖x‖1.

Define q(x) := (1/2)‖Ax − y‖22. From iterate xk , get step d by solving

min
d
∇q(xk)Td +

1

2
αkdTd + τ‖xk + d‖1.

Can view the αk term as an approximation to the Hessian:
αk I ≈ ∇2q = ATA.

Subproblem is trivial to solve in O(n) operations, since it is separable in
the components of d . Equivalent to

min
z

1

2
‖z − uk‖22 +

τ

αk
‖z‖1,

with

uk := xk − 1

αk
∇q(xk).
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Choosing αk

Can use a Barzilai-Borwein (BB) strategy: Choose it so that αk I
mimics the true Hessian ATA over the step just taken. e.g. do a least
squares fit to:

[xk − xk−1] ≈ α−1
k [∇q(xk)−∇q(xk−1)].

Generally non-monotone; objective does not necessarily decrease on
every iteration. Can still get convergence by insisting on decrease over
every span of 5 iterations, say.

Cyclic BB variants: e.g. update αk only every 3rd iteration.

Get monotone variants by backtracking: set αk ← 2αk repeatedly
until a decrease in objective is obtained.
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SpaRSA approach is related to GPSR and also to

iterative shrinking-thresholding,

proximal forward-backward splitting [Combettes, Wajs, 2005],

fixed-point continuation [Hale, Yin, Zhang, 2007],

which generally use constant or large values of αk .

Main difference is adaptive choice of αk in SpaRSA (and GPSR).
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SpaRSA Properties

Can make large changes to the active manifold on a single step (like
interior-point, unlike pivoting).

Each iteration is cheap: one multiplication each with A or AT .

Would reduce to steepest descent if there were no nonsmooth term.

For very sparse problems (large τ) can sometimes identify the correct
active set in few iterations.

Benefits from warm starting.

Once the correct nonzero components of x are identified, the
approach reduces to steepest descent on subspace of nonzero
components.

This quadratic has Hessian ĀT Ā, where Ā is the column submatrix of
A corresponding to the optimal support of x .
When the restricted isometry property holds, we have ĀT Ā ≈ I , so
steepest descent is not too slow.
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Continuation Strategy

When the support is not so sparse, SpaRSA (and other first-order
methods) is much slower to both identify the correct support for x and to
converge in its final stages.

Can alleviate with a continuation strategy: Solve for a decreasing sequence
of τ values:

τ1 > τ2 > · · · > τm,

using the solution for τi to warm-start for τi+1.

Typically faster than solving for τm alone from a cold start.

Related to the LARS/LASSO pivoting approach, which also works
with decreasing τ values.
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Nesterov’s Primal-Dual Approach

[Nesterov, 2007]

Solves subproblems of same type as SpaRSA.

For a technique like SpaRSA that directly manipulates αk , proves
convergence of the objective function to its optimal value at rate k−1.

Proposes a more complex “accelerated” scheme in which each iterate
zk is a linear combination of two vectors:

An vector xk obtained from the SpaRSA subproblem
An vector vk obtained from a subproblem with a modified linear term
(a weighted average of gradients AT (Ax − y) encountered at earlier
iterations.

Similar methods known to engineers as two-step and heavy-ball
methods.

Proves convergence of objective value at rate k−2.
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Computational Results

A small explicit problem with an easy signal (not very sparse).

A is 1024× 4096, elements from N(0, 1).

True signal x has 204 nonzeros with positive and negative values with
size [10−4, 1].

Observations y include noise of variance σ2 = 10−6.

Choose τ = 0.0005‖AT y‖∞ — sufficient to recover the signal
accurately (after debiasing).

Compare several methods all of which require only matrix-vector
multiplications (not direct access to submatrices of A).
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Codes

FPC: fixed-point continuation [Hale, Yin, Zhang, 2007].

l1 ls: interior-point QP [Kim et al, 2007]

OMP: GreedLab routine greed omp qr: matching pursuit.

SpaRSA: BB selection of initial αk , with continuation. [Wright,
Nowak, Figueiredo, 2008]

monotone
nonmonotone

GPSR: gradient projection on QP formulation, BB selection of initial
αk , with continuation, monotone formulation. [Figueiredo, Nowak,
Wright, 2007]

Nesterov’s accelerated scheme (with continuation) [Nesterov, 2007].

TwIST: constant αk . [Figueiredo, 2007]
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iterations time MSE

OMP 204 4.94 1.2e-10
OMP 102 2.30 7.3e-7

l1 ls 16 46.8 8.1e-8

FPC 166 3.55 4.4e-8
IST 210 5.06 2.5e-8
GPSR (monotone) 1036 24.3 2.5e-8
SpaRSA (monotone) 78 1.95 2.5e-8
SpaRSA (nonmonotone) 78 1.75 2.5e-8
Nesterov-AC 234 27.9 2.4e-8

SpaRSA (monotone+debiasing) 2.30 2.6e-9

Table: Results for Variable Spikes test problem (times in secs on a MacBook)
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Effectiveness of Continuation

Tested a similar example for different values of τ with continuation
turned on/off.

Plot total runtime against β = ‖AT y‖∞/τ .

Benchmarked against l1 ls, whose runtimes are less sensitive to this
value.

Showed large advantage for continuation over a one-off approach, for
GPSR codes. (SpaRSA results are similar.)
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Final Comments

Compressed sensing is a fascinating challenge for computational math and
optimization.

A great application!

Formally simple and “clean” enough that a wide range of
optimization techniques can be tried.

But large size and data-intensive nature makes it hard.

Essential to exploit application properties, e.g. restricted isometry,
need to solve for a range of regularization parameters.

Throws up other interesting issues, e.g. stopping criteria.

Can extend to TV-regularized image processing. (Another talk...)

Stephen Wright (UW-Madison) Optimization and Compressed Sensing Gainesville, March 2009 37 / 37


	Compressed Sensing Fundamentals
	Compressed Sensing Formulations
	Compressed Sensing Algorithms
	Computational Results

