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Compressed Sensing Fundamentals

@ Suppose we're told there is a real vector x = (x1,x2,...,x,) € R”
(where n is large) that contains a single nonzero element. This
“spike” can take on any real value, positive or negative.

@ We're allowed to “query” or “sense” x by making m observations that
are linear functions of its components. Observation i has the form

n
yi= ) Ay
j=1

@ Our goal is to identify the location and value of the “spike” in x.

Questions:

@ How many observations do we need?

@ How should we choose the sampling vectors A;. = (A1, A2, ..., Ain)?

@ Given the observations y;, how do we go about reconstructing the
signal x, that is, locating the nonzero element and finding its value?
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A Simple Idea

Examine every element of x, that is, choose

Ay = (1,0,0,...,0,0),
Ay. = (0,1,0,...,0,0),

A,. = (0,0,0,...,0,1).

In other words, m=nand y;=x;, i =1,2,...,n.
@ Need n observations in general.
@ This approach will work for any x, not just an x with a single nonzero.
It's very general, but it doesn’t exploit our prior knowledge about x.
@ We can obviously design a sensing method that uses fewer
observations (smaller m).
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Is m = 1 Possible?

Can we design a scheme that will find the nonzero element using just one
observation? That is, choose A;. = (A11, A12,. .., A1n) so that by
observing the value of y; = 27:1 A1jx;, we can identify the true x7

For this scheme to work, every possible x with a single nonzero must yield
a unique ‘“signature” yi.

But this is not possible for m = 1, regardless of how we choose A;..

o If one of the sensing elements Ay; is zero, then any signal x that has
its nonzero in location j will leave the signature y; = 0. We have no
way of telling the value of x;!

o If all the sensing elements Ay, j = 1,2,..., n are nonzero, the

signature y; is ambiguous. For instance, these two vectors x will both
produce the same signature y; = 1:

x=(370.0,.,0, x=(0, 5
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What if we knew the value of the nonzero element (1, say) but not its
location? Could we then design a scheme with m = 1 observations?

Yes! For the sensing vector A;. = (1,2,3,...,n), the nonzero in location j
would return a signature y; = j.

Let's return to the case where we don't know the location or the value.
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Is m = 2 Possible?

Can we design a scheme that needs just two observations?

Yes! We just have to ensure that the 2 X n sensing matrix is such that no
column is a multiple of any other column, that is, any submatrix of two
columns has full rank.

With such a matrix, an x with its nonzero x; in location j will leave a

unique signature
yi Ayj
= X;.
b = (2]

We can reconstruct the signal in O(n) operations by:
e Finding the (unique) column of A that is a multiple of y;
e Finding the value x; by a simple division.

Our prior knowledge about x — the fact that it has a single nonzero —
allows us to identify x it using only two pieces of information!
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What About Two Spikes?

Suppose now that x has two spikes of unknown value in unknown location.
How big does m need to be, how do we design A, and how do we recover
the spikes?

m = 3 is not enough! Any four columns of the sensing matrix A would be
linearly dependent. For example, taking the first four columns, there is a
vector (z1, 22, z3, z4) such that

A1z1 + Aoz + Azzz + Agzy =0

The following signals with have the same signature (y1, y2, y3):

x=(-z,-2,0,0,0,...,0),
x = (0,0, z3, 24,0, ...,0),

as they differ by the null vector (z1, z2, z3, 24, 0,0, . .., 0).
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Is m = 4 enough?

| don’'t know. But we can observe that:

@ A needs to be such that any four of its columns are linearly
independent.

@ May be hard to “design” this property, but it's clear enough that it
we choose the elements of A randomly then it will have this property
with high probability.

@ To reconstruct the signal (i.e. identify both spikes) we may have to

: n . .
inspect all < 5 ) = %nQ possible pairs of columns.

@ As we increase the number of spikes, the number of observations m
must grow too (how quickly?). The complexity of “exhaustive’
reconstruction methods grows rapidly.
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Summarizing...

The simple cases of 1 or 2 spikes captures some of the essence of
compressed sensing.

@ There's the potential to use prior knowledge of sparsity of x to
identify x using very few observations (much less than n).
@ Design of the sensing matrix is important - randomness plays a role.

@ Naive reconstruction algorithms are complicated and slow. Order of

n .
< s ) operations.

These observations remain relevant as we move to the general case, but
one important ingredient is added: The possibility of formulations and
algorithms that reconstruct the signal much more efficiently than the
“exponential complexity” of the obvious algorithms suggests.
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Complications

In realistic applications:

@ We may know that x is sparse, but don't know the sparsity (number
of nonzeros) precisely in advance.

@ x may be nearly sparse, rather than precisely sparse. We'd like to
identify the biggest spikes (i.e. the most significant components of
the signal).

@ The sparsity may be large (hundreds or thousands?) though still
much less than n.

@ The observations y may contain noise, that is y = Ax + e, where e
contains nonzeros.
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A Test Problem

Original (n = 4096, number of nonzeros = 204)
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Important Class of Applications: Signal Processing

@ A matrix W whose columns are basis vectors in Fourier or wavelet
space. W maps “coefficient space” to the “physical space” in which
the observable signal lives.

@ The vector x encodes the signal in “coefficient space” and is known
to be sparse in this space, i.e. the signal includes only a small number
of basis vectors.

@ Sample the signal in physical space via an observation matrix S,
producing an observation vector y, which may contain noise.

Compressed sensing: Find a sparse x such that y ~ SWx. (Note that
A=SW.))

A is usually much too large and dense to store explicitly, but we can form
matrix-vector products with A and AT efficiently using FFTs, inverse
FFTs, discrete wavelet transforms, etc.

Stephen Wright (UW-Madison) Optimization and Compressed Sensing Gainesville, March 2009 13 / 37



(Some of) the Big Issues

@ If we make random choices of A, what distributions should we draw
from?

@ How many observations m are needed (in relation to signal length n
and sparsity s) to recover the signal, to high probability?

@ How can we formulate the problems mathematically? Preferably to
allow for efficient solution.

@ What algorithms can we use to solve these formulations?

Major advances have been made on all these fronts since 2004.
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Properties of A

A critical property of A is restricted isometry [Candes, Tao], [Donoho].

Given sparsity level S < m, A satisfies the restricted isometry property
with isometry constant ds < 1 if for any column submatrix A.7 of A with
at most S columns, we have

(1—0s)l[cl3 < ||ATcl3 < (1+ds)]lc|3, for all c € RS.

That is, A.7 has close-to-orthonormal columns.

Note that ds < 1 implies that the columns of A.7 are linearly independent.
Better conditioning (that is, ds closer to zero) makes the recovered signal
less sensitive to noise e in the observations.
Some types of random matrices with good RIP include:

@ elements of A drawn i.i.d from N(0, 1);

@ row submatrix of discrete cosine transform.
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Formulating the Reconstruction Problem

“Obvious” formulation is to explicitly restrict the sparsity of x:
.1 2 .
min §||Ax — y||5 subeject to ||x]jo < ¢,
X

where ||x]|o counts the number of nonzeros in x and c is prescribed.
However, this is NP-hard, not practical to solve, unless c¢ is very small.

A Key Observation: If A has nice properties, ||x||1 can serve as a surrogate
for ||x||o! [Candeés, Romberg, Tao, Donoho].

@ ||x||1 is convex and can lead to smooth convex formulations;

@ ||x||1 often give the same (sparse) solutions as ||x||o!

A regularization term ||x||3 (Tikhonov regularization) does not have the
latter property.
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Three Formulations Using ||x||;

LASSO with parameter 3 > 0:
min %HAX —yl3 subject to ||x]|1 < 5.
Reconstruction with noise bound e:
min x| subject to |[Ax —y|2 <e.

Unconstrained nonsmooth formulation with regularization 7 > 0.

1
min S[|Ax = y[I3 + 7lx]1.

@ By varying their parameters, all three formulations generally lead to
the same path of solutions.

@ The “correct” choice of parameter usually is not known a priori; need
to solve for a selection or range of values and choose it in some

“outer loop."
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Compressed Sensing Algorithms

Many algorithms and heuristics have been proposed for all three of the
Uy — ¢1 formulations of compressed sensing.

Besides having a solution x that’s known to be sparse, the problem has
several properties that drive algorithmic choices:
@ n very large, possibly also m.

@ A often dense, can't store substantial submatrices explicitly (but a
small column submatrix may be OK). This rules out standard LP and
QP software, except for small cases.

e Efficient matrix-vector multiplies involving A are available. (It's often
a product of a representation matrix and an observation matrix.)

@ Often want to solve for a selection of regularization parameter values.
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Interior-Point Algorithms

l1-magic: Log-barrier approach for the second-order cone program
formulation: min |x[|1 s.t. ||[Ax — y||2 < € [Candés, Romberg]:

@ Newton method used for inner iteration.

@ CG used for inner-inner iteration.

11 1s: Apply a log-barrier method to a reformulation of the
unconstrained problem:

1
min EHAX —y|3+717u subjectto —u < x < u.

Preconditioned CG used for the inner loop. [Kim et al, 2007]

SparseLab/PDCO: Primal-dual formulation, with linear equations solved
iteratively with LSQR for large A. [Saunders, 2002]
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Interior-Point Properties

Generally few outer iterations, but expensive.

Linear systems at innermost level become increasingly ill conditioned.

e Requires many more CG / LSQR iterations.
o Clever preconditioning can help.

Difficult to warm-start.

o No big savings from using the solution for one value of 7 to warm-start
for the next value in the sequence.

Fairly robust: Performance is roughly the same regardless of
regularization parameter value.
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Matching Pursuit and Descendants

MP, OMP heuristics build up x one component at a time, greedily.

e Given current x* with nonzero components from index set
Ar € {1,2,...,n}, evaluate gradient of the least-squares function:
gk = AT(AX* —y),

o Choose i to maximize |gX| over all i ¢ Ay.

o Set Axy1 < Ak U{i} and choose x**1 to minimize ||Ax — y/||3
subject to x; = 0 for i ¢ Ayy1.

@ k«— k—+1 and repeat.

CoSaMP [Needell, Tropp, 2008] extends this idea, adding ideas from other
approaches, and includes a convergence theory.
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Active-Set / Pivoting Methods

Trace the solution path for a range of values of the regularization
parameter.

For the formulation

1
min [ Ax = |3 + 7[[x]

the solution is x = 0 for 7 > ||ATy||o. Can decrease 7 progressively from
this value, seeking breakpoints at which another component of x moves
away from zero.

Between breakpoints, the solution x depends linearly on 7.

The approach can be implemented carefully in a way that requires only
matrix-vector multiplications with A and AT, and storage of the “active”
columns of A. Suitable for very sparse signals.

SolveLasso function in the SparseLab toolbox.
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QP Formulation and Gradient Projection: GPSR

Can formulate as bound-constrained least squares by splitting x:
x=u—v, (uv)>0,
and writing
uzr’aipzo o(u,v) = %HA(U —Vv)—yl3+r1Tu+71Tv,
Gradient of objective is
[Vmﬁ(u, v)] B [ ATA(u—v)— ATy +71 ]
Vep(u,v)| — |-ATA(u—v)+ ATy + 71"
Set
(G, vk tl) = [(uk’ vRY — (Vo Vv¢k)]+

for « > 0. Then possibly do a second “internal” line search, choosing
v € [0, 1] to reduce ¢, and setting

(ukHE, vkFTy = [(uk7 vk Jr,y{(akﬂ’ Rty (uk, Vk)}L'
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projected path
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SpaRSA: Separable Approximation

1
min [ Ax = |3 + 7l[x]x
Define q(x) := (1/2)||Ax — y||3. From iterate x*, get step d by solving
1
mdin Va(x*)Td + Eaded + 7||Ix* + d||;.

Can view the «y term as an approximation to the Hessian:

arl = V?q=ATA.

Subproblem is trivial to solve in O(n) operations, since it is separable in
the components of d. Equivalent to

. 1 k2 T
min 2z = o8-+ Lzl

with
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e Can use a Barzilai-Borwein (BB) strategy: Choose it so that a/
mimics the true Hessian AT A over the step just taken. e.g. do a least
squares fit to:

[k — k1] & 0 [Va(xk) — Va(x<)]

Generally non-monotone; objective does not necessarily decrease on
every iteration. Can still get convergence by insisting on decrease over
every span of 5 iterations, say.

@ Cyclic BB variants: e.g. update ay only every 3rd iteration.

@ Get monotone variants by backtracking: set ay « 2ay repeatedly
until a decrease in objective is obtained.
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SpaRSA approach is related to GPSR and also to
@ iterative shrinking-thresholding,
@ proximal forward-backward splitting [Combettes, Wajs, 2005],
o fixed-point continuation [Hale, Yin, Zhang, 2007],

which generally use constant or large values of «y.

Main difference is adaptive choice of ay in SpaRSA (and GPSR).
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SpaRSA Properties

e Can make large changes to the active manifold on a single step (like
interior-point, unlike pivoting).

o Each iteration is cheap: one multiplication each with A or AT.

Would reduce to steepest descent if there were no nonsmooth term.

@ For very sparse problems (large 7) can sometimes identify the correct
active set in few iterations.

o Benefits from warm starting.

@ Once the correct nonzero components of x are identified, the
approach reduces to steepest descent on subspace of nonzero
components.

o This quadratic has Hessian AT A, where A is the column submatrix of
A corresponding to the optimal support of x.

o When the restricted isometry property holds, we have ATA ~ I, so
steepest descent is not too slow.
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Continuation Strategy

When the support is not so sparse, SpaRSA (and other first-order

methods) is much slower to both identify the correct support for x and to
converge in its final stages.

Can alleviate with a continuation strategy: Solve for a decreasing sequence
of 7 values:

TL>Tp >+ >Tm,

using the solution for 7; to warm-start for 7j41.

o Typically faster than solving for 7, alone from a cold start.

o Related to the LARS/LASSO pivoting approach, which also works
with decreasing 7 values.

Stephen Wright (UW-Madison) Optimization and Compressed Sensing Gainesville, March 2009 29 /



Nesterov's Primal-Dual Approach

[Nesterov, 2007]
@ Solves subproblems of same type as SpaRSA.

@ For a technique like SpaRSA that directly manipulates ay, proves
convergence of the objective function to its optimal value at rate k1.

@ Proposes a more complex “accelerated” scheme in which each iterate
zK is a linear combination of two vectors:

e An vector x¥ obtained from the SpaRSA subproblem

o An vector vk obtained from a subproblem with a modified linear term
(a weighted average of gradients AT (Ax — y) encountered at earlier
iterations.

@ Similar methods known to engineers as two-step and heavy-ball
methods.

@ Proves convergence of objective value at rate k2.
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Computational Results

A small explicit problem with an easy signal (not very sparse).

e Ais 1024 x 4096, elements from N(0,1).

@ True signal x has 204 nonzeros with positive and negative values with
size [1074,1].

@ Observations y include noise of variance ¢? = 107°.

o Choose 7 = 0.0005||A"y||o, — sufficient to recover the signal
accurately (after debiasing).

Compare several methods all of which require only matrix-vector
multiplications (not direct access to submatrices of A).
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FPC: fixed-point continuation [Hale, Yin, Zhang, 2007].
11_1s: interior-point QP [Kim et al, 2007]
OMP: GreedLab routine greed_omp_qr: matching pursuit.

SpaRSA: BB selection of initial ay, with continuation. [Wright,
Nowak, Figueiredo, 2008]

@ monotone
@ nonmonotone

GPSR: gradient projection on QP formulation, BB selection of initial
a, with continuation, monotone formulation. [Figueiredo, Nowak,
Wright, 2007]

Nesterov's accelerated scheme (with continuation) [Nesterov, 2007].
TwlIST: constant ay. [Figueiredo, 2007]
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iterations time  MSE
OMP 204 494 1.2e10
OMP 102 230 7.3e-7
11.1s 16 46.8 8.1le-8
FPC 166 3.55 4.4e8
IST 210 5.06 2.5e-8
GPSR (monotone) 1036 243 2.5e-8
SpaRSA (monotone) 78 1.95 25e-8
SpaRSA (nonmonotone) 78 1.75  2.5e-8
Nesterov-AC 234 27.9 2.4e-8
SpaRSA (monotone+debiasing) 230 2.6e-9

Table: Results for Variable Spikes test problem (times in secs on a MacBook)
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Effectiveness of Continuation

@ Tested a similar example for different values of 7 with continuation
turned on/off.

o Plot total runtime against 3 = ||ATy||o0 /7.

@ Benchmarked against 11_1s, whose runtimes are less sensitive to this
value.

@ Showed large advantage for continuation over a one-off approach, for
GPSR codes. (SpaRSA results are similar.)
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Final Comments

Compressed sensing is a fascinating challenge for computational math and
optimization.

@ A great application!

@ Formally simple and “clean” enough that a wide range of
optimization techniques can be tried.
But large size and data-intensive nature makes it hard.

Essential to exploit application properties, e.g. restricted isometry,
need to solve for a range of regularization parameters.

@ Throws up other interesting issues, e.g. stopping criteria.

Can extend to TV-regularized image processing. (Another talk...)
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