First Order Logic With Fixed-points and Cyclic Proofs

Charlie Murphy

April 26, 2024

Overview

- First Order Logic with Fixed-Points
	- First Order Logic
	- Fixed-Points
	- First Order Logic with Fixed-Points
- Proof Systems
	- Inference Rules / Non-Cyclic Case
	- Cyclic Proof Systems
	- Property Directed Reachability as Cyclic Proof Search

First Order Logic

First Order Logic

- Allows one to unambiguously formalize statements:
	- Every person has a mother: $\forall p$ person $(p) \Rightarrow \exists m$ motherOf (m, p)
- The language of first-order formulas over signature Σ : $t ::= x | f(t_1, ..., t_{ar(f)})$ $\phi ::= X(t_1, ..., t_{ar(X)}) | p(t_1, ..., t_{ar(p)}) | \neg \phi | \phi_1 \vee \phi_2 | \forall x : s. \phi$
	- All other logical connectives are definable:
		- E.g., $\phi_1 \wedge \phi_2 \stackrel{\text{def}}{=} \neg(\neg \phi_1 \vee \neg \phi_2)$

First Order Theories (over signature Σ)

- A first order theory is a set of first-order formulas:
	- E.g., Peano Arithmetic, Linear Real/Rational Arithmetic, Linear Integer Arithmetic, Theory of Arrays, Theory of Algebraic Datatypes, etc.
- A first order theory structure $\mathcal{T} \stackrel{\text{def}}{=} \langle D, I \rangle$ consists of:
	- A universe of objects $D(D_s)$ is the universe of objects of sort S)
	- An interpretation function I for predicate and function symbols in Σ

First Order Satisfiability

Let $T \stackrel{\text{def}}{=} \langle D, I \rangle$ be a first order structure over signature Σ and M a model that maps variables to elements of universe D . $\forall x : S. \phi \rrbracket(M) \stackrel{\text{def}}{=} \bigvee \llbracket \phi \rrbracket(M[x \mapsto v$ $\llbracket x \rrbracket(M) \stackrel{\text{def}}{=} M(x)$ $\llbracket f(\overline{t}) \rrbracket(M) \stackrel{\text{def}}{=} I(f)(\llbracket \overline{t} \rrbracket(M))$ $[[X(\overline{t})](M) \stackrel{\text{def}}{=} M(X)([[\overline{t}](M))] \qquad [[p(\overline{t})](M) \stackrel{\text{def}}{=} I(p)([[\overline{t}](M))]$ $[\![\neg \phi]\!](M) \stackrel{\text{def}}{=} \neg [\![\phi]\!](M)$ $[\![\phi_1 \vee \phi_2]\!](M) \stackrel{\text{def}}{=} [\![\phi_1]\!](M) \vee [\![\phi_2]\!](M)$

 $v \in D_S$

First Order Satisfiability

Let $T \stackrel{\text{def}}{=} \langle D, I \rangle$ be a first order structure over signature Σ , M a model that maps variables to elements of universe D , and ϕ a first-order formula over signature Σ .

M satisfies ϕ ($M \models \phi$) if and only if $\llbracket \phi \rrbracket(M') = \text{true}$ for all extensions M' of M

 ϕ is valid (\models ϕ) if and only if $\phi \models \phi$

Fixed-points

Fixed-points

- For any sort S and function $f : S \rightarrow S$ a fixed-point of f is any point $x \in S$ such that $x = f(x)$. For example:
	- $f(x) = 2x$ has one fixed-point 0
	- $f(x) = x^3$ has three fixed-points -1, 0, and 1.
	- $f(x) = x$ has infinitely many fixed-points
	- $f(x) = x + 1$ has zero fixed-points

Occurrences of Fixed-points

- Program Semantics (e.g., while loops, recursive functions)
- Algebraic Data Types
- Induction and Co-Induction
- Abstract Interpretation
- Invariant Generation
- Model Checking

Greatest and Least Fixed-points

Let $\langle L, \leq \rangle$ be a complete lattice and $F : L \to L$ a monotonic function on L

 F has a greatest fixed-point x for all fixed-points y, x is larger than y (i.e., $y \le x$)

 F has a least fixed-point x

for all fixed-points y, x is less than y (i.e., $x \le y$)

Greatest and Least Fixed-points

Let $\langle L, \leq \rangle$ be a complete lattice and $F : L \to L$ a monotonic function on L

The greatest fixed-point of F is vx . $F(x) \stackrel{\text{def}}{=} F^{\tau}(T)$ (for some sufficiently large ordinal τ)

The greatest fixed-point of F is νx . $F(x) \stackrel{\text{def}}{=} F^{\tau}(\bot)$ (for some sufficiently large ordinal τ)

First Order Logic with Fixed-points

Fixed-points in First Order Logic

- Typically fixed-points occur either implicitly or explicitly when using uninterpreted relations
	- Least Fixed-Points:
		- Constraint Logic Programming (CLP)
			- E.g., for solving Constraint Satisfaction Problems
		- Constrained Horn Clauses (CHCs)
			- $\forall \overline{x_0}, \ldots, \overline{x_n}, X_0(\overline{x_0}) \Leftarrow X_1(\overline{x_1}) \wedge \cdots \wedge X_n(\overline{x_n}) \wedge \phi(\overline{x_0}, \ldots, \overline{x_n})$
	- Greatest Fixed-Points:
		- Constraint Logic Programming
			- Finding most general solution
		- Co-Constrained Horn Clauses (coCHCs)
			- $\forall \overline{x_0}, \ldots, \overline{x_n}, X_0(\overline{x_0}) \Rightarrow X_1(\overline{x_1}) \vee \cdots \vee X_n(\overline{x_n}) \vee \phi(\overline{x_0}, \ldots, \overline{x_n})$

CHCs as Least Fixed-Points

- While $0 < x$ $\boldsymbol{\theta}$:
- $1:$ $X - -$;
- $2:$ $y++;$

$$
0 \ge x \quad x = x' \quad y = y'
$$

sem⁰(x, y, x', y')

$$
\frac{0 < x \quad \text{sem}^{1,2}(x, y, x'', y'') \quad \text{sem}^{0}(x'', y'', x', y')}{\text{sem}^{0}(x, y, x', y')}
$$

$$
\frac{x' = x - 1 \quad y = y'}{sem^1(x, y, x', y')}
$$

$$
\frac{sem^{1}(x, y, x'', y'')\quad sem^{2}(x'', y'', x', y')}{sem^{1,2}(x, y, x', y')}
$$

$$
\frac{x' = x \quad y' = y + 1}{sem^1(x, y, x', y')}
$$

muCLP Calculus

- muCLP extends Constraint Logic Programming (CLP)
	- Adds explicit use of least and greatest fixed-point operators to define the meaning of uninterpreted relations
	- Generalizes both CHCs and coCHCs

muCLP Calculus

A muCLP formula for theory T takes the following form

$$
\begin{aligned}\n\phi_0 & \text{s.t.} \\
X_1(\overline{x_1}) &=_{\alpha_1} \phi_1; \\
\vdots \\
X_n(\overline{x_n}) &=_{\alpha_n} \phi_n\n\end{aligned}
$$

Where each X_i is a predicate variable, \overline{x}_i is a sequence of term variables, ϕ_i is a first-order formula that may include positive occurrences of the predicate variables X_1 through X_n and the term variables \overline{x}_i , and each α_i is either μ representing a least fixed-point or ν representing a greatest fixed-point.

muCLP Example

Semantics

\n**6:** While
$$
0 < x \quad \forall x, y, x', y', \overline{sem^0}(x, y, x', y') \Rightarrow sem^0(y, x, x', y') s.t.
$$
\n

\n\n**1:** $x - 3$ $sem^0(x, y, x', y') = \mu \sqrt{0 < x \land \exists x'', y'', \underline{sem^1, 2}(x, y, x', y') \land sem^0(x'', y'', x', y'))};$ \n

\n\n**2:** $y + 1$; $sem^1, 2(x, y, x', y') = \mu \exists x'', y'', \underline{sem^1(x, y, x'', y'') \land sem^2(x'', y'', x', y')};$ \n

\n\n**3:** $x - 1$ $x - 2$ $x - 1$ $y' = 2$; $sem^1(x, y, x', y') = \mu x' = x - 1$ $y' = y;$ \n

\n\n**4:** $sem^0(x, y, x', y')$ $sem^0(x, y, x', y') = \mu x' = x \land y' = y + 1;$ \n

\n\n**5:** $sem^0(x, y, x', y')$ $sem^0(x, y, x', y') = \nu \land \left(\frac{0 < x \lor x'' + x \lor y' \neq y}{0 \geq x \lor \forall x'', y'', \underline{sem^1, 2}(x, y, x'', y'') \lor \underline{sem^0(x'', y'', x', y')} \right);$ \n

\n\n**6:** $sem^0(y, x, x', y')$ $sem^1(x, y, x', y') = \nu \land x'', y'', \underline{sem^1, 2}(x, y, x'', y'') \lor \underline{sem^2(x'', y'', x', y')};$ \n

\n\n**7:** $sem^1(x, y, x', y') = \nu x' \neq x \lor y' \neq y + 1$ \n

\n\n**8:** $sem^2(x, y, x', y') = \nu x' \neq x \lor y' \neq$

muCLP Satisfiability

A muCLP formula $P \stackrel{\text{def}}{=} \phi$ s. t. P is satisfiable if and only if $[P] (\phi) \models \phi$, where $\llbracket P \rrbracket(\phi)$ maps each predicate variable defined in P to its fixedpoint.

$$
X =_{\nu} X \wedge Y; Y =_{\mu} X \vee Y
$$

$$
X =_{\nu} X \wedge Y; Y =_{\mu} X \vee Y \mathbb{I} \stackrel{\text{def}}{=} \nu X. X \wedge (\mu Y. X \vee Y) \stackrel{\text{def}}{=} \{X \mapsto \top, Y \mapsto \top\}
$$

$$
Y =_{\mu} X \vee Y; X =_{\nu} X \wedge Y
$$

$$
[Y =_{\mu} X \vee Y; X =_{\nu} X \wedge Y] \stackrel{\text{def}}{=} \mu Y. (\nu X. X \wedge Y) \vee Y \stackrel{\text{def}}{=} \{X \mapsto \bot, Y \mapsto \bot\}
$$

muCLP Example

 $\forall x, y, x', y'.\overline{sem^{0}}(x, y, x', y') \Rightarrow sem^{0}(y, x, x', y') s.t.$ While $0 < x$ $\boldsymbol{\theta}$: $sem^0(x, y, x', y') =_{\mu} \vee \begin{pmatrix} (0 \ge x \wedge x' = x \wedge y' = y) \\ 0 < x \wedge \exists x'', y'', sem^{1,2}(x, y, x', y'') \wedge sem^0(x'', y'', x', y') \end{pmatrix};$ $1:$ $X - -$; $2:$ $y++;$ sem^{1,2} $(x, y, x', y') =_{\mu} \exists x'', y''$.sem¹ (x, y, x'', y'') \land sem² (x'', y'', x', y') ; $sem^{1}(x, y, x', y') =_{\mu} x' = x - 1 \wedge y' = y;$ $sem^{2}(x, y, x', y') =_{\mu} x' = x \wedge y' = y + 1;$ $\forall x, y, x', y'$. $sem^0(x, y, x', y')$ $\overline{sem^0}(x,y,x',y') =_{v} \wedge \left(\begin{matrix} (0 < x \vee x' \neq x \vee y' \neq y) \\ 0 \geq x \vee \forall x'', y''. \overline{sem^{1,2}}(x,y,x'',y'') \vee \overline{sem^0}(x'',y'',x',y') \end{matrix} \right);$ $\mathbb U$ $sem^0(y, x, x', y')$ $\overline{sem^{1,2}}(x, y, x', y') =_{y} \forall x'', y''$, $\overline{sem^{1}}(x, y, x'', y'') \vee \overline{sem^{2}}(x'', y'', x', y')$; $sem^{1}(x, y, x', y') = y^{x'} \neq x - 1 \vee y' \neq y;$ $sem^{2}(x, y, x', y') = y x' \neq x \vee y' \neq y + 1$ $sem^0 \stackrel{\text{def}}{=} \lambda x, y, x', y'. (0 \ge x \land x' = x \land y' = y) \lor (0 < x \land 0 = x' \land y' = y + x)$

 $\overline{sem^0} \stackrel{\text{def}}{=} \lambda x, y, x', y'$. $(0 \le x \vee x' \ne x \vee y' \ne y) \wedge (0 \ge x \vee 0 \ne x' \vee y' = y + x)$

Proof Systems

Proof Systems

- A proof system consists of
	- A set of axioms (or schematic axioms)
	- Rules of Inference
- Example Proof Systems:
	- Resolution (e.g., for formulas in conjunctive normal form)
	- Hilbert Proof System (e.g., axioms and modus ponens)
	- Sequent Calculus (e.g., for propositional and first-order logic)

Sequent Calculus (Propositional Logic)

$$
\overline{\Gamma, A \vdash \Delta, A}
$$
 Atom

$$
\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \wedge B \vdash \Delta} \wedge L \qquad \frac{\Gamma, A \vdash \Delta \quad \Gamma, B \vdash \Delta}{\Gamma, A \vee B \vdash \Delta} \vee L \qquad \frac{\Gamma \vdash \Delta, A \quad \Gamma, B \vdash \Delta}{\Gamma, A \rightarrow B \vdash \Delta} \rightarrow L \quad \frac{\Gamma \vdash \Delta, A}{\Gamma, \neg A \vdash \Delta} \neg L
$$

$$
\frac{\Gamma \vdash \Delta, A \quad \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \land B} \land R \quad \frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \lor B} \lor R \quad \frac{\Gamma, A \vdash \Delta, B}{\Gamma, A \to B \vdash \Delta} \to R \quad \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \neg R
$$

Sequent Calculus Example Proof

 $\vdash A \lor \neg A$ $\vdash A$, $\neg A$ $\overline{A \vdash A}$ Atom $\neg R$ V R Law of excluded middle Cyclic Proof Systems

Cyclic Proof System

A cyclic proof system is a proof system that allows using recursive reasoning via back-links:

Cyclic Proof Systems

- Cyclist (Brotherston et. al., "A Generic Cyclic Theorem Prover"): • Generic Inductive Cyclic Proof System
- Das and Pous, "A Cut-Free Cyclic Proof System for Kleene Algebra": • Cyclic Proof System for Kleene Algebra
- Afshari and Wehr, "Abstract Cyclic Proofs":
	- Cyclic Proof System for Modal μ -Calculus via non-wellfounded proof theory

Goal Oriented Proof Search

- Proof Constructed from the bottom up
	- Begin at the goal and work backwards
- Iteratively expand the incomplete proof one leaf at a time
	- Pick some leaf that isn't an axiom or have a backlink
	- Try to match leaf with ancestor
		- Find ancestor with same sequent
		- Ensure global trace condition is preserved
			- E.g., by finding appropriate invairants and/or proving well-foundedness
	- Apply sequent rule

[Tsukada and Unno. "Software Model-Checking as Cyclic-Proof Search." POPL 2022.]

Other Techniques as Cyclic Proof Search

Original View Cyclic Proof View

Other Techniques as Cyclic Proof Search

- Property Directed Reachability
	- Satisfiability of Constrained Horn Clauses
	- Program Safety (via Impact algorithm) [McMillan, "Lazy abstraction with interpolants."]
- Strategy Synthesis Algorithms
	- Reachability Games [Kincaid and Farzan, "Strategy Synthesis for Linear Arithmetic Games."]
	- Simulation Games [Murphy and Kincaid, "Relational Verification via Simulation Synthesis."]
- Symbolic Execution and Bounded Model Checking