
First Order Logic With Fixed-points
and

Cyclic Proofs

Charlie Murphy

April 26, 2024

Overview

• First Order Logic with Fixed-Points
• First Order Logic
• Fixed-Points
• First Order Logic with Fixed-Points

• Proof Systems
• Inference Rules / Non-Cyclic Case
• Cyclic Proof Systems
• Property Directed Reachability as Cyclic Proof Search

First Order Logic

First Order Logic

• Allows one to unambiguously formalize statements:
• Every person has a mother: ∀𝑝. person 𝑝 ⇒ ∃𝑚.motherOf(𝑚, 𝑝)

• The language of first-order formulas over signature Σ:

• All other logical connectives are definable:
• E.g., 𝜙! ∧ 𝜙" ≝ ¬ ¬𝜙! ∨ ¬𝜙"

𝑡 ∷= 𝑥	|	f(t!, … , t"# $)	
𝜙 ∷= 𝑋 𝑡!, … , 𝑡"# % 	|	𝑝 𝑡!, … , 𝑡"# & 	|	¬𝜙 	𝜙! ∨ 𝜙'	 ∀	𝑥 ∶ 𝑠. 𝜙

First Order Theories (over signature Σ)

• A first order theory is a set of first-order formulas:
• E.g., Peano Arithmetic, Linear Real/Rational Arithmetic, Linear Integer

Arithmetic, Theory of Arrays, Theory of Algebraic Datatypes, etc.

• A first order theory structure 𝒯 ≝ 𝐷, 𝐼 consists of:
• A universe of objects 𝐷 (𝐷(is the universe of objects of sort 𝑆)
• An interpretation function I for predicate and function symbols in Σ

First Order Satisfiability

Let 𝒯 ≝ 𝐷, 𝐼 be a first order structure over signature Σ and
𝑀 a model that maps variables to elements of universe 𝐷.

∀𝑥 ∶ 𝑆. 𝜙 𝑀 ≝ G
)∈+!

𝜙 𝑀 𝑥 ↦ 𝑣

𝑓 ̅𝑡 𝑀 ≝ 𝐼(𝑓)(̅𝑡 (𝑀)) 𝑥 𝑀 ≝ 𝑀 𝑥

𝑋 ̅𝑡 𝑀 ≝ 𝑀(𝑋)(̅𝑡 (𝑀)) 𝑝 ̅𝑡 𝑀 ≝ 𝐼(𝑝)(̅𝑡 (𝑀))

¬𝜙 𝑀 ≝ ¬ 𝜙 (M)	 𝜙! ∨ 𝜙' 𝑀 ≝ 𝜙! 𝑀 ∨ 𝜙' (𝑀)

First Order Satisfiability

Let 𝒯 ≝ 𝐷, 𝐼 be a first order structure over signature Σ,
𝑀 a model that maps variables to elements of universe 𝐷, and
𝜙 a first-order formula over signature Σ.

𝑀 satisfies 𝜙 (𝑀 ⊨ 𝜙) if and only if 𝜙 𝑀′ = true for all extensions
𝑀’ of 𝑀

𝜙 is valid (⊨ 𝜙) if and only if ∅ ⊨ 𝜙

Fixed-points

Fixed-points

• For any sort 𝑆 and function 𝑓 ∶ 𝑆 → 𝑆 a fixed-point of 𝑓 is any point
𝑥 ∈ 𝑆 such that 𝑥 = 𝑓 𝑥 . For example:
• 𝑓 𝑥 = 2𝑥 has	one	fixed-point	0
• 𝑓 𝑥 = 𝑥, has	three	fixed-points	-1,	0,	and	1.
• 𝑓 𝑥 = 𝑥 has infinitely many fixed-points
• 𝑓 𝑥 = 𝑥 + 1 has zero fixed-points

Occurrences of Fixed-points

• Program Semantics (e.g., while loops, recursive functions)
• Algebraic Data Types
• Induction and Co-Induction
• Abstract Interpretation
• Invariant Generation
• Model Checking

Greatest and Least Fixed-points

Let 𝐿,≤ be a complete lattice and 𝐹 ∶ 𝐿 → 𝐿 a monotonic function on 𝐿

𝐹 has a greatest fixed-point 𝑥
for all fixed-points 𝑦, 𝑥 is larger than 𝑦 (i.e., 𝑦 ≤ 𝑥)

𝐹 has a least fixed-point 𝑥
for all fixed-points 𝑦, 𝑥 is less than 𝑦 (i.e., 𝑥 ≤ 𝑦)

[Knaster Tarski Fixed-point Theorem]

Greatest and Least Fixed-points

Let 𝐿,≤ be a complete lattice and 𝐹 ∶ 𝐿 → 𝐿 a monotonic function on 𝐿

The greatest fixed-point of 𝐹 is 𝜈𝑥. 𝐹 𝑥 ≝ 𝐹& ⊤
(for some sufficiently large ordinal 𝜏)

The greatest fixed-point of 𝐹 is 𝜈𝑥. 𝐹 𝑥 ≝ 𝐹& ⊥
(for some sufficiently large ordinal 𝜏)

[Knaster Tarski Fixed-point Theorem]

First Order Logic
with Fixed-points

Fixed-points in First Order Logic

• Typically fixed-points occur either implicitly or explicitly when using
uninterpreted relations
• Least Fixed-Points:

• Constraint Logic Programming (CLP)
• E.g., for solving Constraint Satisfaction Problems

• Constrained Horn Clauses (CHCs)
• ∀𝑥!, … , 𝑥". 𝑋! 𝑥! ⇐ 𝑋# 𝑥# ∧ ⋯∧ 𝑋" 𝑥" ∧ 𝜙 𝑥!, … , 𝑥"

• Greatest Fixed-Points:
• Constraint Logic Programming

• Finding most general solution
• Co-Constrained Horn Clauses (coCHCs)

• ∀𝑥!, … , 𝑥". 𝑋! 𝑥! ⇒ 𝑋# 𝑥# ∨ ⋯∨ 𝑋" 𝑥" ∨ 𝜙 𝑥!, … , 𝑥"

CHCs as Least Fixed-Points

𝑠𝑒𝑚9(𝑥, 𝑦, 𝑥:, 𝑦′)
0: While 0 < x
1: x--;
2: y++;

0 ≥ 𝑥 𝑥 = 𝑥′ 𝑦 = 𝑦′

𝑠𝑒𝑚9(𝑥, 𝑦, 𝑥:, 𝑦′)
0 < 𝑥 𝑠𝑒𝑚!,'(𝑥, 𝑦, 𝑥::, 𝑦′′) 𝑠𝑒𝑚9(𝑥′′, 𝑦′′, 𝑥:, 𝑦′)

𝑠𝑒𝑚!,'(𝑥, 𝑦, 𝑥:, 𝑦′)
𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥::, 𝑦:: 𝑠𝑒𝑚' 𝑥::, 𝑦::, 𝑥:, 𝑦:

𝑠𝑒𝑚!(𝑥, 𝑦, 𝑥:, 𝑦′)
𝑥: = 𝑥 − 1 𝑦 = 𝑦′

𝑠𝑒𝑚!(𝑥, 𝑦, 𝑥:, 𝑦′)
𝑥: = 𝑥 𝑦: = 𝑦 + 1

muCLP Calculus

• muCLP extends Constraint Logic Programming (CLP)
• Adds explicit use of least and greatest fixed-point operators to define the

meaning of uninterpreted relations
• Generalizes both CHCs and coCHCs

Unno et. al. “Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.” POPL, 2023.

muCLP Calculus

A muCLP formula for theory 𝒯 takes the following form

Where each 𝑋' is a predicate variable, B𝑥' is a sequence of term variables,
𝜙' is a first-order formula that may include positive occurrences of the
predicate variables 𝑋(through 𝑋) and the term variables B𝑥', and each 𝛼'
is either 𝜇 representing a least fixed-point or 𝜈 representing a greatest
fixed-point.

𝜙9	s. t.	
 X! 𝑥! =;" 𝜙!;
 …;
 𝑋< 𝑥< =;# 	 𝜙<

muCLP Example
0: While 0 < x
1: x--;
2: y++;

∀𝑥, 𝑦, 𝑥:, 𝑦:.	
𝑠𝑒𝑚9 𝑥, 𝑦, 𝑥:, 𝑦:

⇓
𝑠𝑒𝑚9(𝑦, 𝑥, 𝑥:, 𝑦:)

∀𝑥, 𝑦, 𝑥#, 𝑦#. 𝑠𝑒𝑚$ 𝑥, 𝑦, 𝑥#, 𝑦# ⇒ 𝑠𝑒𝑚$ 𝑦, 𝑥, 𝑥#, 𝑦# 	𝑠. 𝑡.

𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥$, 𝑦′ =%∨
0 ≥ 𝑥 ∧ 𝑥$ = 𝑥 ∧ 𝑦$ = 𝑦

0 < 𝑥 ∧ ∃𝑥$$, 𝑦$$. 𝑠𝑒𝑚#,' 𝑥, 𝑦, 𝑥$$, 𝑦$$ ∧ 𝑠𝑒𝑚!(𝑥$$, 𝑦$$, 𝑥$, 𝑦$) ;

𝑠𝑒𝑚!," 𝑥, 𝑦, 𝑥#, 𝑦′ =& ∃𝑥##, 𝑦##. 𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥##, 𝑦′′ ∧ 𝑠𝑒𝑚" 𝑥##, 𝑦##, 𝑥#, 𝑦′ ;
𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥#, 𝑦′ =& 	 𝑥# = 𝑥 − 1 ∧ 𝑦# = 𝑦 ;
𝑠𝑒𝑚" 𝑥, 𝑦, 𝑥#, 𝑦′ =& 	 𝑥# = 𝑥 ∧ 𝑦# = 𝑦 + 1 ;

𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥$, 𝑦′ =(∧
0 < 𝑥 ∨ 𝑥$ ≠ 𝑥 ∨ 𝑦$ ≠ 𝑦

0 ≥ 𝑥 ∨ ∀𝑥$$, 𝑦$$. 𝑠𝑒𝑚#,' 𝑥, 𝑦, 𝑥$$, 𝑦$$ ∨ 𝑠𝑒𝑚!	(𝑥$$, 𝑦$$, 𝑥$, 𝑦$) ;

𝑠𝑒𝑚!," 𝑥, 𝑦, 𝑥#, 𝑦′ =' ∀𝑥##, 𝑦##. 𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥##, 𝑦## ∨ 𝑠𝑒𝑚" 𝑥##, 𝑦##, 𝑥#, 𝑦′ ;
𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥#, 𝑦′ =' 	 𝑥# ≠ 𝑥 − 1 ∨ 𝑦# ≠ 𝑦 ;
𝑠𝑒𝑚" 𝑥, 𝑦, 𝑥#, 𝑦′ =' 	 𝑥# ≠ 𝑥 ∨ 𝑦# ≠ 𝑦 + 1

Semantics

Dual Semantics

muCLP Satisfiability

A muCLP formula 𝒫 ≝ 𝜙 𝑠. 𝑡. 𝑃 is satisfiable if and only if 𝑃 ∅ ⊨ 𝜙,
where 𝑃 ∅ maps each predicate variable defined in 𝑃 to its fixed-
point.

𝑋 =K 𝑋 ∧ 𝑌; 𝑌 =L 𝑋 ∨ 𝑌
𝑋 =K 𝑋 ∧ 𝑌; 𝑌 =L 𝑋 ∨ 𝑌 ≝ 𝜈𝑋. 𝑋 ∧ 𝜇𝑌. 𝑋 ∨ 𝑌 ≝ {𝑋 ↦ ⊤, 𝑌 ↦ ⊤}

𝑌 =L 𝑋 ∨ 𝑌; 	𝑋 =K 𝑋 ∧ 𝑌
𝑌 =L 𝑋 ∨ 𝑌; 	𝑋 =K 𝑋 ∧ 𝑌 ≝ 𝜇𝑌. 𝜈𝑋. 𝑋 ∧ 𝑌 ∨ 𝑌 ≝ {𝑋 ↦⊥, 𝑌 ↦⊥}

muCLP Example
0: While 0 < x
1: x--;
2: y++;

∀𝑥, 𝑦, 𝑥:, 𝑦:.	
𝑠𝑒𝑚9 𝑥, 𝑦, 𝑥:, 𝑦:

⇓
𝑠𝑒𝑚9(𝑦, 𝑥, 𝑥:, 𝑦:)

∀𝑥, 𝑦, 𝑥#, 𝑦#. 𝑠𝑒𝑚$ 𝑥, 𝑦, 𝑥#, 𝑦# ⇒ 𝑠𝑒𝑚$ 𝑦, 𝑥, 𝑥#, 𝑦# 	𝑠. 𝑡.

𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥$, 𝑦′ =%∨
0 ≥ 𝑥 ∧ 𝑥$ = 𝑥 ∧ 𝑦$ = 𝑦

0 < 𝑥 ∧ ∃𝑥$$, 𝑦$$. 𝑠𝑒𝑚#,' 𝑥, 𝑦, 𝑥$$, 𝑦$$ ∧ 𝑠𝑒𝑚!(𝑥$$, 𝑦$$, 𝑥$, 𝑦$) ;

𝑠𝑒𝑚!," 𝑥, 𝑦, 𝑥#, 𝑦′ =& ∃𝑥##, 𝑦##. 𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥##, 𝑦′′ ∧ 𝑠𝑒𝑚" 𝑥##, 𝑦##, 𝑥#, 𝑦′ ;
𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥#, 𝑦′ =& 	 𝑥# = 𝑥 − 1 ∧ 𝑦# = 𝑦 ;
𝑠𝑒𝑚" 𝑥, 𝑦, 𝑥#, 𝑦′ =& 	 𝑥# = 𝑥 ∧ 𝑦# = 𝑦 + 1 ;

𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥$, 𝑦′ =(∧
0 < 𝑥 ∨ 𝑥$ ≠ 𝑥 ∨ 𝑦$ ≠ 𝑦

0 ≥ 𝑥 ∨ ∀𝑥$$, 𝑦$$. 𝑠𝑒𝑚#,' 𝑥, 𝑦, 𝑥$$, 𝑦$$ ∨ 𝑠𝑒𝑚!	(𝑥$$, 𝑦$$, 𝑥$, 𝑦$) ;

𝑠𝑒𝑚!," 𝑥, 𝑦, 𝑥#, 𝑦′ =' ∀𝑥##, 𝑦##. 𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥##, 𝑦## ∨ 𝑠𝑒𝑚" 𝑥##, 𝑦##, 𝑥#, 𝑦′ ;
𝑠𝑒𝑚! 𝑥, 𝑦, 𝑥#, 𝑦′ =' 	 𝑥# ≠ 𝑥 − 1 ∨ 𝑦# ≠ 𝑦 ;
𝑠𝑒𝑚" 𝑥, 𝑦, 𝑥#, 𝑦′ =' 	 𝑥# ≠ 𝑥 ∨ 𝑦# ≠ 𝑦 + 1

𝑠𝑒𝑚$ ≝ 𝜆𝑥, 𝑦, 𝑥#, 𝑦#. 0 ≥ 𝑥 ∧ 𝑥# = 𝑥 ∧ 𝑦# = 𝑦 ∨ 0 < 𝑥 ∧ 	0 = 𝑥# ∧	𝑦# = 𝑦 + 𝑥
𝑠𝑒𝑚$ ≝ 𝜆𝑥, 𝑦, 𝑥#, 𝑦#. 0 < 𝑥 ∨ 𝑥# ≠ 𝑥 ∨ 𝑦# ≠ 𝑦 ∧ 0 ≥ 𝑥 ∨ 	0 ≠ 𝑥# ∨	𝑦# = 𝑦 + 𝑥

Proof Systems

Proof Systems

• A proof system consists of
• A set of axioms (or schematic axioms)
• Rules of Inference

• Example Proof Systems:
• Resolution (e.g., for formulas in conjunctive normal form)
• Hilbert Proof System (e.g., axioms and modus ponens)
• Sequent Calculus (e.g., for propositional and first-order logic)

Sequent Calculus (Propositional Logic)

Γ, 𝐴 ∧ 𝐵 ⊢ Δ
Γ, 𝐴, 𝐵 ⊢ Δ

Γ ⊢ Δ, A ∧ 𝐵
Γ ⊢ Δ, A Γ ⊢ Δ, B

Γ, 𝐴 ∨ 𝐵 ⊢ Δ
Γ, 𝐴 ⊢ Δ Γ, 𝐵 ⊢ Δ

Γ ⊢ Δ, A ∨ 𝐵
Γ ⊢ Δ, A, B

Γ, 𝐴 → 𝐵 ⊢ Δ
Γ ⊢ Δ, A Γ, 𝐵 ⊢ Δ

Γ, 𝐴 → 𝐵 ⊢ Δ
Γ, 𝐴 ⊢ Δ, B

Γ,¬𝐴 ⊢ Δ
Γ ⊢ Δ, A

Γ ⊢ Δ,¬𝐴
Γ, A ⊢ Δ

Γ, 𝐴 ⊢ Δ, A

∧ 𝐿

∧ 𝑅

∨ 𝐿

∨ 𝑅

→ 𝐿

→ 𝑅

¬𝐿

¬𝑅

Atom

Sequent Calculus Example Proof

⊢ 𝐴 ∨ ¬𝐴
⊢ 𝐴,¬𝐴
𝐴 ⊢ 𝐴

Atom

¬𝑅

∨ 𝑅

Law of excluded middle

Cyclic Proof Systems

Cyclic Proof System

A cyclic proof system is a proof system that allows using recursive reasoning
via back-links:

A

A

D

B C

F GE
Recursive
Reasoning
Principle

pre-proof
Global
Trace

Condition

Cyclic Proof Systems

• Cyclist (Brotherston et. al., “A Generic Cyclic Theorem Prover”):
• Generic Inductive Cyclic Proof System

• Das and Pous, “A Cut-Free Cyclic Proof System for Kleene Algebra”:
• Cyclic Proof System for Kleene Algebra

• Afshari and Wehr, “Abstract Cyclic Proofs”:
• Cyclic Proof System for Modal 𝜇-Calculus via non-wellfounded proof theory

Goal Oriented Proof Search

• Proof Constructed from the bottom up
• Begin at the goal and work backwards

• Iteratively expand the incomplete proof one leaf at a time
• Pick some leaf that isn’t an axiom or have a backlink
• Try to match leaf with ancestor

• Find ancestor with same sequent
• Ensure global trace condition is preserved

• E.g., by finding appropriate invairants and/or proving well-foundedness
• Apply sequent rule

[Tsukada and Unno. “Software Model-Checking as Cyclic-Proof Search.” POPL 2022.]

Other Techniques as Cyclic Proof Search

A

B C

D

E F

G

Original View Cyclic Proof View

𝑎) 𝑎*

𝑏+

𝑑,

𝑓-

𝑑.

𝐴
𝑎) (𝐵) 𝑎* (𝐶)
𝐵 𝐶

𝑏+ (𝐷)
𝐷

𝑑. (𝐸) 𝑑, (𝐹)
𝐸 𝐹

𝑓- (𝐺)
𝐺

Other Techniques as Cyclic Proof Search

• Property Directed Reachability
• Satisfiability of Constrained Horn Clauses
• Program Safety (via Impact algorithm) [McMillan, “Lazy abstraction with

interpolants.”]

• Strategy Synthesis Algorithms
• Reachability Games [Kincaid and Farzan, “Strategy Synthesis for Linear

Arithmetic Games.”]
• Simulation Games [Murphy and Kincaid, “Relational Verification via

Simulation Synthesis.”]

• Symbolic Execution and Bounded Model Checking

