# First Order Logic With Fixed-points and Cyclic Proofs

Charlie Murphy

April 26, 2024

## Overview

- First Order Logic with Fixed-Points
  - First Order Logic
  - Fixed-Points
  - First Order Logic with Fixed-Points
- Proof Systems
  - Inference Rules / Non-Cyclic Case
  - Cyclic Proof Systems
  - Property Directed Reachability as Cyclic Proof Search

First Order Logic

## First Order Logic

- Allows one to unambiguously formalize statements:
  - Every person has a mother:  $\forall p. person(p) \Rightarrow \exists m. motherOf(m, p)$
- The language of first-order formulas over signature  $\Sigma$ :  $t ::= x \mid f(t_1, ..., t_{ar(f)})$   $\phi ::= X(t_1, ..., t_{ar(X)}) \mid p(t_1, ..., t_{ar(p)}) \mid \neg \phi \mid \phi_1 \lor \phi_2 \mid \forall x : s. \phi$ 
  - All other logical connectives are definable:
    - E.g.,  $\phi_1 \land \phi_2 \stackrel{\text{\tiny def}}{=} \neg (\neg \phi_1 \lor \neg \phi_2)$

# First Order Theories (over signature $\Sigma$ )

- A first order theory is a set of first-order formulas:
  - E.g., Peano Arithmetic, Linear Real/Rational Arithmetic, Linear Integer Arithmetic, Theory of Arrays, Theory of Algebraic Datatypes, etc.
- A first order theory structure  $\mathcal{T} \stackrel{\text{\tiny def}}{=} \langle D, I \rangle$  consists of:
  - A universe of objects D ( $D_s$  is the universe of objects of sort S)
  - An interpretation function I for predicate and function symbols in  $\Sigma$

### First Order Satisfiability

Let  $\mathcal{T} \stackrel{\text{def}}{=} \langle D, I \rangle$  be a first order structure over signature  $\Sigma$  and M a model that maps variables to elements of universe D.

 $\llbracket x \rrbracket(M) \stackrel{\text{\tiny def}}{=} M(x) \qquad \qquad \llbracket f(\overline{t}) \rrbracket(M) \stackrel{\text{\tiny def}}{=} I(f)(\llbracket \overline{t} \rrbracket(M))$ 

 $\llbracket \neg \phi \rrbracket(M) \stackrel{\text{\tiny def}}{=} \neg \llbracket \phi \rrbracket(M) \qquad \qquad \llbracket \phi_1 \lor \phi_2 \rrbracket(M) \stackrel{\text{\tiny def}}{=} \llbracket \phi_1 \rrbracket(M) \lor \llbracket \phi_2 \rrbracket(M)$ 

 $\llbracket X(\overline{t}) \rrbracket(M) \stackrel{\text{\tiny def}}{=} M(X)(\llbracket \overline{t} \rrbracket(M)) \qquad \llbracket p(\overline{t}) \rrbracket(M) \stackrel{\text{\tiny def}}{=} I(p)(\llbracket \overline{t} \rrbracket(M))$ 

$$\llbracket \forall x : S. \phi \rrbracket(M) \stackrel{\text{\tiny def}}{=} \bigvee_{v \in D_S} \llbracket \phi \rrbracket(M[x \mapsto v])$$

# First Order Satisfiability

Let  $\mathcal{T} \stackrel{\text{def}}{=} \langle D, I \rangle$  be a first order structure over signature  $\Sigma$ , *M* a model that maps variables to elements of universe *D*, and  $\phi$  a first-order formula over signature  $\Sigma$ .

*M* satisfies  $\phi$  ( $M \models \phi$ ) if and only if  $\llbracket \phi \rrbracket (M') =$  true for all extensions *M*' of *M* 

 $\phi$  is valid ( $\vDash \phi$ ) if and only if  $\phi \vDash \phi$ 

Fixed-points

# Fixed-points

- For any sort S and function f : S → S a fixed-point of f is any point x ∈ S such that x = f(x). For example:
  - f(x) = 2x has one fixed-point 0
  - $f(x) = x^3$  has three fixed-points -1, 0, and 1.
  - f(x) = x has infinitely many fixed-points
  - f(x) = x + 1 has zero fixed-points

# Occurrences of Fixed-points

- Program Semantics (e.g., while loops, recursive functions)
- Algebraic Data Types
- Induction and Co-Induction
- Abstract Interpretation
- Invariant Generation
- Model Checking

# Greatest and Least Fixed-points

Let  $\langle L, \leq \rangle$  be a complete lattice and  $F : L \to L$  a monotonic function on L

*F* has a greatest fixed-point *x* for all fixed-points *y*, *x* is larger than *y* (i.e.,  $y \le x$ )

F has a least fixed-point x

for all fixed-points *y*, *x* is less than *y* (i.e.,  $x \le y$ )

## Greatest and Least Fixed-points

Let  $\langle L, \leq \rangle$  be a complete lattice and  $F : L \to L$  a monotonic function on L

The greatest fixed-point of *F* is  $\nu x.F(x) \stackrel{\text{def}}{=} F^{\tau}(\top)$ (for some sufficiently large ordinal  $\tau$ )

The greatest fixed-point of *F* is  $\nu x. F(x) \stackrel{\text{def}}{=} F^{\tau}(\bot)$ (for some sufficiently large ordinal  $\tau$ ) First Order Logic with Fixed-points

# Fixed-points in First Order Logic

- Typically fixed-points occur either implicitly or explicitly when using uninterpreted relations
  - Least Fixed-Points:
    - Constraint Logic Programming (CLP)
      - E.g., for solving Constraint Satisfaction Problems
    - Constrained Horn Clauses (CHCs)
      - $\forall \overline{x_0}, \dots, \overline{x_n} . X_0(\overline{x_0}) \leftarrow X_1(\overline{x_1}) \land \dots \land X_n(\overline{x_n}) \land \phi(\overline{x_0}, \dots, \overline{x_n})$
  - Greatest Fixed-Points:
    - Constraint Logic Programming
      - Finding most general solution
    - Co-Constrained Horn Clauses (coCHCs)
      - $\forall \overline{x_0}, \dots, \overline{x_n}. X_0(\overline{x_0}) \Rightarrow X_1(\overline{x_1}) \lor \dots \lor X_n(\overline{x_n}) \lor \phi(\overline{x_0}, \dots, \overline{x_n})$

#### CHCs as Least Fixed-Points

0

- 0: While 0 < x
- 1: x--;
- 2: y++;

$$\frac{y = x + x + y + y}{sem^{0}(x, y, x', y')}$$

$$\leq x \quad sem^{1,2}(x, y, x'', y'') \quad sem^{0}(x'', y'', x', y')$$

$$sem^{0}(x, y, x', y')$$

0 > x x = x' y = y'

$$\frac{x' = x - 1 \quad y = y'}{sem^1(x, y, x', y')}$$

$$\frac{sem^{1}(x, y, x'', y'') \quad sem^{2}(x'', y'', x', y')}{sem^{1,2}(x, y, x', y')}$$

$$\frac{x' = x \quad y' = y+1}{sem^1(x, y, x', y')}$$

### muCLP Calculus

- muCLP extends Constraint Logic Programming (CLP)
  - Adds explicit use of least and greatest fixed-point operators to define the meaning of uninterpreted relations
  - Generalizes both CHCs and coCHCs

#### muCLP Calculus

A muCLP formula for theory  $\mathcal{T}$  takes the following form

$$\phi_0$$
 s.t.  
 $X_1(\overline{x_1}) =_{\alpha_1} \phi_1;$   
...;  
 $X_n(\overline{x_n}) =_{\alpha_n} \phi_n$ 

Where each  $X_i$  is a predicate variable,  $\overline{x_i}$  is a sequence of term variables,  $\phi_i$  is a first-order formula that may include positive occurrences of the predicate variables  $X_1$  through  $X_n$  and the term variables  $\overline{x_i}$ , and each  $\alpha_i$  is either  $\mu$  representing a least fixed-point or  $\nu$  representing a greatest fixed-point.

### muCLP Example

Semantics

### muCLP Satisfiability

A muCLP formula  $\mathcal{P} \stackrel{\text{def}}{=} \phi s. t. P$  is satisfiable if and only if  $\llbracket P \rrbracket(\phi) \vDash \phi$ , where  $\llbracket P \rrbracket(\phi)$  maps each predicate variable defined in P to its fixed-point.

$$X =_{\nu} X \land Y; Y =_{\mu} X \lor Y$$
$$[X =_{\nu} X \land Y; Y =_{\mu} X \lor Y] \stackrel{\text{def}}{=} \nu X.X \land (\mu Y.X \lor Y) \stackrel{\text{def}}{=} \{X \mapsto \top, Y \mapsto \top\}$$

$$Y =_{\mu} X \lor Y; X =_{\nu} X \land Y$$
$$\left[ Y =_{\mu} X \lor Y; X =_{\nu} X \land Y \right] \stackrel{\text{def}}{=} \mu Y. (\nu X. X \land Y) \lor Y \stackrel{\text{def}}{=} \{ X \mapsto \bot, Y \mapsto \bot \}$$

#### muCLP Example

 $\forall x, y, x', y'. \overline{sem^0}(x, y, x', y') \Rightarrow sem^0(y, x, x', y') s.t.$ While 0 < x0:  $sem^{0}(x, y, x', y') =_{\mu} \vee \begin{pmatrix} (0 \ge x \land x' = x \land y' = y) \\ 0 < x \land \exists x'', y''. sem^{1,2}(x, y, x'', y'') \land sem^{0}(x'', y'', x', y') \end{pmatrix};$ 1: X--; 2: y++;  $sem^{1,2}(x, y, x', y') =_{\mu} \exists x'', y''. sem^{1}(x, y, x'', y'') \land sem^{2}(x'', y'', x', y');$  $sem^{1}(x, y, x', y') =_{u} x' = x - 1 \land y' = y;$  $sem^{2}(x, y, x', y') =_{\mu} x' = x \land y' = y + 1;$  $\forall x, y, x', y'$ .  $sem^0(x, y, x', y')$  $\overline{sem^{0}}(x, y, x', y') =_{\nu} \wedge \left( \underbrace{0 \ge x \lor \forall x'', y''}_{0 \ge x \lor \forall x'', y''} \underbrace{(0 < x \lor x' \neq x \lor y' \neq y)}_{\overline{sem^{0}}(x, y, x', y'') \lor \overline{sem^{0}}(x'', y'', x', y')} \right);$  $\Downarrow$  $sem^0(y, x, x', y')$  $sem^{1,2}(x, y, x', y') =_{v} \forall x'', y''. sem^{1}(x, y, x'', y'') \lor sem^{2}(x'', y'', x', y');$  $sem^{1}(x, y, x', y') =_{y} x' \neq x - 1 \lor y' \neq y;$  $\overline{sem^2}(x, y, x', y') =_{y} x' \neq x \lor y' \neq y + 1$  $sem^0 \stackrel{\text{def}}{=} \lambda x, y, x', y'. (0 \ge x \land x' = x \land y' = y) \lor (0 < x \land 0 = x' \land y' = y + x)$ 

 $\frac{sem}{sem^0} \stackrel{\text{def}}{=} \lambda x, y, x', y'. (0 < x \lor x' \neq x \lor y' \neq y) \land (0 \ge x \lor 0 \neq x' \lor y' = y + x)$ 

Proof Systems

# **Proof Systems**

- A proof system consists of
  - A set of axioms (or schematic axioms)
  - Rules of Inference
- Example Proof Systems:
  - Resolution (e.g., for formulas in conjunctive normal form)
  - Hilbert Proof System (e.g., axioms and modus ponens)
  - Sequent Calculus (e.g., for propositional and first-order logic)

### Sequent Calculus (Propositional Logic)

$$\overline{\Gamma, A \vdash \Delta, A}^{\text{Atom}}$$

$$\frac{\Gamma, A, B \vdash \Delta}{\Gamma, A \land B \vdash \Delta} \land L \qquad \frac{\Gamma, A \vdash \Delta}{\Gamma, A \lor B \vdash \Delta} \lor L \qquad \frac{\Gamma \vdash \Delta, A}{\Gamma, A \rightarrow B \vdash \Delta} \rightarrow L \qquad \frac{\Gamma \vdash \Delta, A}{\Gamma, \neg A \vdash \Delta} \neg L$$

$$\frac{\Gamma \vdash \Delta, A \quad \Gamma \vdash \Delta, B}{\Gamma \vdash \Delta, A \land B} \land R \qquad \frac{\Gamma \vdash \Delta, A, B}{\Gamma \vdash \Delta, A \lor B} \lor R \qquad \frac{\Gamma, A \vdash \Delta, B}{\Gamma, A \to B \vdash \Delta} \rightarrow R \qquad \frac{\Gamma, A \vdash \Delta}{\Gamma \vdash \Delta, \neg A} \neg R$$

### Sequent Calculus Example Proof

 $\frac{\overline{A \vdash A}}{\vdash A, \neg A}^{\text{Atom}} \neg R \\
\overline{\vdash A, \neg A}^{\neg R} \lor R \\
\overline{\vdash A \lor \neg A}^{\lor R}$ Law of excluded middle

Cyclic Proof Systems

Cyclic Proof System

A cyclic proof system is a proof system that allows using recursive reasoning via back-links:



## Cyclic Proof Systems

- Cyclist (Brotherston et. al., "A Generic Cyclic Theorem Prover"):
  Generic Inductive Cyclic Proof System
- Das and Pous, "A Cut-Free Cyclic Proof System for Kleene Algebra":
  Cyclic Proof System for Kleene Algebra
- Afshari and Wehr, "Abstract Cyclic Proofs":
  - Cyclic Proof System for Modal  $\mu$ -Calculus via non-wellfounded proof theory

## **Goal Oriented Proof Search**

- Proof Constructed from the bottom up
  - Begin at the goal and work backwards
- Iteratively expand the incomplete proof one leaf at a time
  - Pick some leaf that isn't an axiom or have a backlink
  - Try to match leaf with ancestor
    - Find ancestor with same sequent
    - Ensure global trace condition is preserved
      - E.g., by finding appropriate invairants and/or proving well-foundedness
  - Apply sequent rule

[Tsukada and Unno. "Software Model-Checking as Cyclic-Proof Search." POPL 2022.]

### Other Techniques as Cyclic Proof Search

Original View

Cyclic Proof View





# Other Techniques as Cyclic Proof Search

- Property Directed Reachability
  - Satisfiability of Constrained Horn Clauses
  - Program Safety (via Impact algorithm) [McMillan, "Lazy abstraction with interpolants."]
- Strategy Synthesis Algorithms
  - Reachability Games [Kincaid and Farzan, "Strategy Synthesis for Linear Arithmetic Games."]
  - Simulation Games [Murphy and Kincaid, "Relational Verification via Simulation Synthesis."]
- Symbolic Execution and Bounded Model Checking