First Order Logic With Fixed-points
and
Cyclic Proofs

Charlie Murphy

April 26, 2024

Overview

* First Order Logic with Fixed-Points
* First Order Logic
* Fixed-Points
* First Order Logic with Fixed-Points

* Proof Systems
* Inference Rules / Non-Cyclic Case
* Cyclic Proof Systems
* Property Directed Reachability as Cyclic Proof Search

First Order Logic

First Order Logic

* Allows one to unambiguously formalize statements:
« Every person has a mother: Vp. person(p) = 3Im. motherOf(m, p)

* The language of first-order formulas over signature X:

t = x| f(ty, ---»tar(f))
¢ L= X(tl' ---:tar(X)) | p(tl: ---:tar(p)) | _'¢ | ¢1 \ ¢2 | Vx: S-(P

* All other logical connectives are definable:
* Eg, 1 APy & a(a¢p1 V n¢h2)

First Order Theories (over signature X)

* A first order theory 1s a set of first-order formulas:

* E.g., Peano Arithmetic, Linear Real/Rational Arithmetic, Linear Integer
Arithmetic, Theory of Arrays, Theory of Algebraic Datatypes, etc.

e A first order theory structure T £ (D, I) consists of:
* A umverse of objects D (D, 1s the universe of objects of sort S)
* An interpretation function I for predicate and function symbols 1n X

First Order Satisfiability

Let T £ (D, I) be a first order structure over signature X and
M a model that maps variables to elements of universe D.

[xI(M) = M(x) [f®OIM) = 1(H)([e] (M)
[—¢l(M) £ =[e](M) [¢1V Pl(M) = [P 1(M) Vv [p2](M)
[x(@®1M) = MX)([t](M)) [p(OIM) = I(p)([E1(M))

v : 5. o100 = \ [[$1(MLx - v])

UEDS

First Order Satisfiability

Let T £ (D, I) be a first order structure over signature X,
M a model that maps variables to elements of universe D, and
¢ a first-order formula over signature X.

M satisfies ¢ (M E ¢) if and only if [¢](M") = true for all extensions
M’ of M

¢ is valid (E ¢) ifand only if @ & ¢

Fixed-points

Fixed-points

* For any sort S and function f : § — S a fixed-point of f 1s any point
x € S such that x = f(x). For example:
* f(x) = 2x has one fixed-point 0
e f(x) = x3 has three fixed-points -1, 0, and 1.
* f(x) = x has infinitely many fixed-points
* f(x) = x + 1 has zero fixed-points

Occurrences of Fixed-points

* Program Semantics (e.g., while loops, recursive functions)
* Algebraic Data Types

* Induction and Co-Induction

* Abstract Interpretation

e Invariant Generation
* Model Checking

Greatest and Least Fixed-points

Let (L, <) be a complete lattice and F : L — L a monotonic function on L

F has a greatest fixed-point x
for all fixed-points y, x 1s larger than y (1.e., y < x)

F has a least fixed-point x
for all fixed-points y, x is less than y (i.e., x < y)

[Knaster Tarski Fixed-point Theorem]

Greatest and Least Fixed-points

Let (L, <) be a complete lattice and F : L — L a monotonic function on L

The greatest fixed-point of F is vx. F(x) & F*(T)
(for some sufficiently large ordinal 7)

The greatest fixed-point of F is vx. F(x) & F*(1)
(for some sufficiently large ordinal 7)

[Knaster Tarski Fixed-point Theorem]

First Order Logic
with Fixed-points

Fixed-points 1n First Order Logic

* Typically fixed-points occur either implicitly or explicitly when using
uninterpreted relations

* Least Fixed-Points:
* Constraint Logic Programming (CLP)
* E.g., for solving Constraint Satisfaction Problems
* Constrained Horn Clauses (CHCs)
* VX0 s X Xo(Xg) & X1 () A= A X () A (g, oo, X
* Greatest Fixed-Points:
* Constraint Logic Programming
* Finding most general solution
* Co-Constrained Horn Clauses (coCHCs)
* VXg, s X Xo(Xp) = X1 (D) V- VX, () V (X, -, Xy

CHC's as Least Fixed-Points

0: wWhile @ < x 02x x=x y=y
. . sem®(x,y,x",y")

=
X
I
I

0 < x Seml'z (X, y, XH, yn) Semo(x”, y//, X,, y/)
sem?(x,y,x",y")

x'=x—-1 y=y
sem(x,y,x",y")

Seml (X, y’ X”, yn) Semz (xll’ yII’ xl’ y/)
semV%(x,y,x',y")

x'=x y=y+1
sem(x,y,x",y")

muCLP Calculus

* muCLP extends Constraint Logic Programming (CLP)

* Adds explicit use of least and greatest fixed-point operators to define the
meaning of uninterpreted relations

e GGeneralizes both CHCs and coCHCs

Unno et. al. “Modular Primal-Dual Fixpoint Logic Solving for Temporal Verification.” POPL, 2023.

muCLP Calculus

A muCLP formula for theory J takes the following form

¢o S.t.
X1(X71) = =a, P15

lll,

Xn(Xy) = ~a, bn

Where each X; 1s a predicate variable, X; 1s a sequence of term variables,
¢; 1s a first-order formula that may include positive occurrences of the
predicate variables X; through X,, and the term variables x;, and each «;
1s either u representing a least fixed-point or v representing a greatest
fixed-point.

muCLP Example Seenantic

O: While 9 < X
1: X=--

2: y++;
vx,y,x',y’.
sem®(x,y,x",y")

J
sem®(y,x,x",y")

vx,y,x',y'.sem®(x,y,x",y") = sem®(y,x,x",y") s.t. /
O=xAx"=xAy' =vy)

0<xA3Ix",y".sem(x,y,x",y") Asem®(x",y", x’, y’)) ;

semb (x,y,x',y") =, x", y" . sem* (x,y,x",y") Asem*(x",y",x",y") ;

sem' (x,y,x",y) =, x' =x—1Ay =y;

sem®(x,y,x",y) =, x' =xAy' =y +1;

sem®(x,y,x',y") =,V (

, O<xvx'"#xVy' +vy)
semO(x,y,x",y) =, A

0>xVvvx",y" . semb2(x,y,x",y") vsem® (x",y", x’,y’))’

14 ! 144 144 144 144 144 144 14 ! .
semb2 (x,y,x",y") =, vx",y".semi(x,y,x",y") vsem?(x",y", x",y");

sem! (x,y,x",y)=, xX' #x—-1vy' #y;
sem?(x,y,x",y)=, x' #FxVy #y+1

~

Dual Semantics

muCLP Satisfiability

A muCLP formula P & ¢ s.t. P is satisfiable if and only if [P](D) E ¢,

where [P] (@) maps each predicate variable defined in P to its fixed-
point.

X=,XAY;Y=,XVY
[X=, XAY;Y =, XVY| € vXXA@Y.XVY) ©{X > TY > T}

Y=, XVY; X=,XAY
[Y =, XVY; X =, XAY[| L uY.WX.XAY)VY E {X 1Y »1}

0
1
2

muCLP Example

While © < Xx
X=-=,
y++;

vx,y,x',y’.
sem®(x,y,x",y")
U
sem®(y,x,x',y")

vx,y,x',y'.sem®(x,y,x",y") = sem®(y, x,x",y') s.t.

O=xAx"=xAy =y)
sem®(x,y,x',y") =,V : ;
HE\O<xATx",y" . sem¥2(x,y,x",y") Asem®(x",y",x",y")
sem®™ (x,y,x',y") =, Ix", y" . sem! (x,y,x",y") Asem*(x",y",x",y");
sem' (x,y,x",y) =, x' =x—1Ay =y;

sem®(x,y,x",y) =, x' =xAy' =y +1;

O<xvx'#xVy' +vy))

semO(x,y,x",yv) =, A _— — ;
(y y) 14 (O > xV VX”, y//. Seml'z (X, y, xl”yll) V Semo (X”, yu’ X',y,)

semb? (x,y,x",y") =, Vx",y".semt(x,y,x",y") vsem?(x",y", x",y") ;
sem! (x,y,x',y) =, x' #x—1Vy' #y;
sem?(x,y,x",y) =, x' #xvy' £y +1

sem® & Ax,y,x",y.(0=2xAx"'=xAy =) VO<xAO0=x"Ay =y+x)
sem® & Ax,y,x,y. (0<xVvVx'"#xVy ' #y)A(0=xV O0#x'Vy =y+x)

Proof Systems

Proof Systems

* A proof system consists of
* A set of axioms (or schematic axioms)
* Rules of Inference

* Example Proof Systems:
* Resolution (e.g., for formulas in conjunctive normal form)
* Hilbert Proof System (e.g., axioms and modus ponens)
* Sequent Calculus (e.g., for propositional and first-order logic)

Sequent Calculus (Propositional Logic)

Atom

CLAFAA
LABFA LAFA T,BFA ~TrAA [BrA ~ TEAA
LAABFA [AVB F A [A—>BF A [,=A4 FA
'-AA THAB I'-AAB FrA- AR LAFA

AR V R . —R
'-AAAB '-AAVB FTA>BFA R TrA-A

Sequent Calculus Example Proot

Atom

Ar-A
FAﬂAx
FAV A

R

Law of excluded middle

Cyclic Proof Systems

Cyclic Proof System

A cyclic proof system 1s a proof system that allows using recursive reasoning
via back-links:

pre-proof
Global
Trace /
.. A
Condition
. D E F G
Recursive

Reasoning B C
Principle A

Cyclic Proof Systems

* Cyclist (Brotherston et. al., “A Generic Cyclic Theorem Prover”):
* Generic Inductive Cyclic Proof System

* Das and Pous, “A Cut-Free Cyclic Proof System for Kleene Algebra”:
* Cyclic Proof System for Kleene Algebra

» Afshari and Wehr, “Abstract Cyclic Proofs”:
* Cyclic Proof System for Modal u-Calculus via non-wellfounded proof theory

Goal Oriented Prootf Search

* Proof Constructed from the bottom up
* Begin at the goal and work backwards

e Iteratively expand the incomplete proof one leaf at a time
* Pick some leaf that 1sn’t an axiom or have a backlink

* Try to match leaf with ancestor
* Find ancestor with same sequent

* Ensure global trace condition 1s preserved
* E.g., by finding appropriate invairants and/or proving well-foundedness

* Apply sequent rule

[Tsukada and Unno. “Software Model-Checking as Cyclic-Proof Search.” POPL 2022.]

Other Techniques as Cyclic Proof Search

Original View Cyclic Proof View

G
[£,1(6)
E F
[d.](E) Td,] (F)
D
[ba1(D)
B C

lap](B) [a 1(C)
A

Other Techniques as Cyclic Proof Search

* Property Directed Reachability
* Satisfiability of Constrained Horn Clauses

* Program Safety (via Impact algorithm) [McMillan, “Lazy abstraction with
interpolants.”]

* Strategy Synthesis Algorithms

* Reachability Games [Kincaid and Farzan, “Strategy Synthesis for Linear
Arithmetic Games.”]

* Simulation Games [Murphy and Kincaid, “Relational Verification via
Simulation Synthesis.”]

* Symbolic Execution and Bounded Model Checking

