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Overview

• Finite Games
• Game Semantics
• Strategy Synthesis
• Infinite Games
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Finite Games
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Two-person Perfect Information Finite Games

• Between two players I and II
• Zero-sum: Player I wins iff Player II loses and vice versa
• Both players have perfect knowledge:
• Of how the game is played
• Of the moves played so far

• Examples: Chess, Checkers, Tic-Tac-Toe, Reversi, Go
• Negative Examples: Backgammon, Yahtzee, Rock-Paper-Scissors, 

Stratego
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Finite Games

[Khomskii, 2010]



• Let 𝑛 ∈ ℕ and 𝐴 ⊆ ℕ!" then 𝐺 𝐴 " is a game:
• Two players: I and II

• Take turns choosing a natural number
• Both know 𝐴 the set of wins for player I (losses for player II)
• 𝑥! and 𝑦! represents the ith move by I and II respectively

• After n moves by each player the game ends:

• 𝑠 = 𝑥!𝑦!𝑥"𝑦"…𝑥#$"𝑦#$" is a play of 𝐺 𝐴 #
• Player I wins iff s ∈ 𝐴 and Player II wins iff 𝑠 ∉ 𝐴

Finite Games
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[Khomskii, 2010]



Tic-Tac-Toe

• Two players 𝑋 and 𝑂.
• Encode moves as 0 − 9.
• 𝐴 = Legal\Wins' ∪ 𝐼𝑙𝑙𝑒𝑔𝑎𝑙'
• 𝐴( = Legal×Wins) ∪ 𝐼𝑙𝑙𝑒𝑔𝑎𝑙'
• 𝑋 wins iff 𝑋 wins 𝐺(𝐴) and 𝐺 𝐴’
• 𝑂 wins iff 𝑂 wins 𝐺(𝐴) and 𝐺 𝐴’
• Otherwise 𝑋 and 𝑂 draw
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Strategies

• Given a game, 𝐺(𝐴),
• What move should I or II make next?
• A function from partial plays to moves.

• Tic-Tac-Toe
• Strategy, 𝜎, of player 𝑋
• Strategy, 𝜏, of player 𝑂
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𝜎 𝜖 = 0
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𝜎 04 = 6 𝜎 0463 = 5 𝜎 046357 = 1 𝜎 04635712 = 8

𝜏 0 = 4 𝜏 046 = 3 𝜏 0463571 = 2 𝜏 046357128 = 9𝜏 04635 = 7



Strategies

• Given a game 𝐺 𝐴 ":
• A Strategy for player I is a function, 𝜎:

• 𝜎 ∶ 𝑠 ∈ ⋃"#$%ℕ" : 𝑠 is even → ℕ
• A strategy for player II is a function, 𝜏:

• 𝜏 ∶ 𝑠 ∈ ⋃"#$%ℕ" : 𝑠 is odd → ℕ
• 𝜎 ∗ 𝑡 is a play where I plays with 𝜎 and II plays 𝑡
• 𝑠 ∗ 𝜏 is a play where I plays with 𝑠 and II plays 𝜏
• 𝑝𝑙𝑎𝑦𝑠 𝜎 # = 𝜎 ∗ 𝑡 ∶ 𝑡 ∈ ℕ#
• 𝑝𝑙𝑎𝑦𝑠 𝜏 # = 𝑠 ∗ 𝜏 ∶ 𝑠 ∈ ℕ#

8[Khomskii, 2010]



Winning Strategies

• Given a game 𝐺 𝐴 ":
• 𝜎 is	a	winning	strategy	iff 𝑝𝑙𝑎𝑦𝑠 𝜎 # ⊆ 𝐴
• 𝜏 is	a	winning	strategy	iff 𝑝𝑙𝑎𝑦𝑠 𝜏 # ⊆ ℕ(#\𝐴
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Theorem:	For	all	games,	𝐺(𝐴),	player	I	and	II	cannot
				both	have	a	winning	strategy.
Proof.
		Suppose	not.
		I	has	a	winning	strategy	𝜎	and	II	a	winning	strategy	𝜏.
		Let	𝑠 = 𝜎 ∗ 𝜏	be	the	play	where	I	follows	𝜎	and	II	follows	𝜏.
		Necessarily	𝑠 ∈ 𝐴	and	𝑠 ∉ 𝐴,	a	contradiction.	 	 QED



Determinacy

• A game G(A) is determined iff Player I or II has a winning strategy
• There is at most one winner
• Is there at least one winner?
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Theorem:	For	all	finite	games,	𝐺 𝐴 #,	player	I	or	II	must	have
a	winning	strategy.
Proof.	Player	I	has	a	winning	strategy	iff

∃𝑥&∀𝑦&…∃𝑥%'(∀𝑦%'(. 𝑥&𝑦&…𝑥%'(	𝑦%'( ∈ 𝐴
		Suppose	I	does	not	have	a	winning	strategy:

¬(∃𝑥&∀𝑦&…∃𝑥%'(∀𝑦%'(. (𝑥&𝑦&…𝑥%'(	𝑦%'( ∈ 𝐴))
…

∃𝑥&∀𝑦&…∃𝑥%'(∀𝑦%'(. (𝑥&𝑦&…𝑥%'(	𝑦%'( ∉ 𝐴)
		Player	II	must	have	a	winning	strategy.	 	 	 			QED



Game Semantics
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Game Semantics

• Given a sentence 𝑆 ∈ 𝐿 and a model, 𝑀, of non-logical symbols:
• Define a game, 𝐺(𝑆; 𝑀) to show if 𝑆 ∈ 𝐿

• First Order Logic:
• 𝐺(𝑆; 𝑀) is a game between Myself (init. verifier) and Nature (init. falsifier)
• 𝐺(𝑆; 𝑀) is played using the following rules:

12[Hintikka, 1982]

R ∨. 	 𝐺(𝑆" ∨ 𝑆%;𝑀)	verifier	chooses	to	continue	as	𝐺 𝑆";𝑀 	or	𝐺(𝑆%;𝑀)
R ∧. 	 𝐺(𝑆" ∧ 𝑆%;𝑀)	falsifier	chooses	to	continue	as	𝐺 𝑆";𝑀 	or	𝐺(𝑆%;𝑀)
R	∃. 	 𝐺(∃𝑥. 𝑆;𝑀)	verifier	chooses	𝑐 ∈ 𝑑𝑜(𝑀)	and	continues	as	𝐺(𝑆 𝑐/x ;𝑀)
R	∀. 	 𝐺(∀𝑥. 𝑆;𝑀)	falsifier	chooses	𝑐 ∈ 𝑑𝑜(𝑀)	and	continues	as	𝐺(𝑆 𝑐/x ;𝑀)
R	¬. 	 𝐺(¬𝑆;𝑀)	falsifier	and	verifier	swap	roles	and	play	𝐺(𝑆;𝑀)
R	atom. 	 𝐺(𝑐&;𝑀)	the	current	verifier	wins	if	𝑐& 	interpreted	in	𝑀	is	true	otherwise	falsifier	wins



Game Semantics

• Given a sentence 𝑆 ∈ 𝐿 and a model, 𝑀, of non-logical symbols:
• Define a game, 𝐺(𝑆; 𝑀) to show if M ⊨ 𝑆

• First Order Logic:
• 𝐺(𝑆; 𝑀) is a game between Myself (init. verifier) and Nature (init. falsifier)
• 𝐺(𝑆; 𝑀) is played using the following rules:

• 𝑅 ∨., 𝑅 ∧., 𝑅 ∃., 𝑅 ∀. , 𝑅 ¬., and 𝑅 atom.
• 𝑀 ⊨ 𝑆 iff Myself wins 𝐺(𝑆;𝑀)

13[Hintikka, 1982]



First Order Logic
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𝑆 = ∀𝑥∃𝑦. 𝑎𝑏𝑠(𝑥) = 𝑦

𝑀 = ℤ ∪ {𝑎𝑏𝑠,<,+,=}

𝐺(𝑆;𝑀)

𝑆',)

𝐺(∃𝑦. 𝑆$",B; 𝑀) 𝐺(∃𝑦. 𝑆!,B; 𝑀) 𝐺(∃𝑦. 𝑆",B; 𝑀)

𝐺(1 = 0;𝑀) 𝐺(1 = 1;𝑀)

… …

… … 𝐺(0 = 0;𝑀) 𝐺(1 = 1;𝑀)… … … …



First Order Logic
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𝑆 = ∀𝑥∃𝑦. 𝑎𝑏𝑠(𝑥) = 𝑦

𝑀 = ℤ ∪ {𝑎𝑏𝑠,<,+,=}

𝐺(𝑆;𝑀)

𝑆',)

𝐺(∃𝑦. 𝑆D,B; 𝑀)

𝐺(𝑎𝑏𝑠(𝑐) = 𝑎𝑏𝑠(𝑐);𝑀)

FalsiIier	Chooses	𝑐

VeriIier	Chooses	𝑎𝑏𝑠(𝑐)



Strategy Synthesis
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Strategy Synthesis

• Given a game 𝐺(𝐴):
• Can we know if a player has some winning strategy?
• Can we produce this strategy?

• Logical Games:
• Defined using logical formulae
• Strategy synthesis corresponds to

• Functional & Reactive Synthesis
• Adversarial Planning
• Modular Verification
• Branching-Time Verification

17[Farzan & Kincaid, 2016]



Satisfiability Games

• Given a sentence in some theory (e.g. Linear Arithmetic)

18

Linear Arithmetic Satisfiability Games

• Given a sentence, 𝜑, in Linear Arithmetic
• Two players SAT and UNSAT	take	turns	instantiating	quantifiers
• SAT controls existentials and wants to prove 𝜑
• UNSAT controls universals and wants to disprove 𝜑
• SAT	wins a play 𝑐!…𝑐#	if [x! ↦ 𝑐!, … , 𝑥# ↦ 𝑐#] ⊨ 𝐹
• If SAT has a winning strategy 𝜑 is satisfiable

𝑠, 𝑡 ∈ 𝑇𝑒𝑟𝑚	 ∷= 𝑐 	𝑥	 𝑠 + 𝑡	|	𝑐 ⋅ 𝑡
F, 𝐺 ∈ 𝐹𝑜𝑟𝑚𝑢𝑙𝑎	 ∷= 𝑡 < 0 	𝑡 = 0	 𝐹 ∧ 𝐺	|	𝐹 ∨ 𝐺

𝜑 ∷= 𝑄!𝑥!…𝑄#𝑥#. 𝐹      𝑄R ∈ {∀, ∃}
𝜑 is	a	sentence	if	it	has	no	free	variables

construct a game, 𝐺(𝜑):

[Farzan & Kincaid, 2016]



Strategy Improvement

• We first compute a strategy skeleton for SAT

19[Farzan & Kincaid, 2016]



Skeleton Strategy

20[Farzan & Kincaid, 2016]

∃𝑤∀𝑥∃𝑦∀𝑧. 𝑦 < 1 ∨ 2𝑤 < 𝑦 ∧ (𝑧 < 𝑦 ∨ 𝑥 < 𝑧)

0

𝑥 2𝑥



Strategy Improvement

• We first compute a strategy skeleton for SAT
• Is this strategy winning?

21[Farzan & Kincaid, 2016]



Winning Condition
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𝐹(𝑤, 𝑥, 𝑦, 𝑧)

∀𝑧. 𝐹(𝑤, 𝑥, 𝑦, 𝑧) ∀𝑧. 𝐹(𝑤, 𝑥, 𝑦, 𝑧)

∀𝑧. 𝐹(𝑤, 𝑥, 2𝑥, 𝑧)∀𝑧. 𝐹(𝑤, 𝑥, 𝑥, 𝑧)

∀𝑥 ∀𝑧. 𝐹 𝑤, 𝑥, 𝑥, 𝑧 ∨ (∀𝑧. 𝐹 𝑤, 𝑥, 2𝑥, 𝑧 )

∀𝑥 ∀𝑧. 𝐹 0, 𝑥, 𝑥, 𝑧 ∨ (∀𝑧. 𝐹 0, 𝑥, 2𝑥, 𝑧 )

[Farzan & Kincaid, 2016]

∃𝑤∀𝑥∃𝑦∀𝑧. 𝑦 < 1 ∨ 2𝑤 < 𝑦 ∧ (𝑧 < 𝑦 ∨ 𝑥 < 𝑧)

0

𝑥 2𝑥



Strategy Improvement

• We first compute a strategy skeleton for SAT
• Is this strategy winning?
• Yes, return winning strategy skeleton
• No, compute UNSAT’s counter-strategy

23[Farzan & Kincaid, 2016]



Counter Strategy

24[Farzan & Kincaid, 2016]

𝑤𝑖𝑛 = 	∀𝑥 ∀𝑧. 𝐹 0, 𝑥, 𝑥, 𝑧 ∨ ∀𝑧. 𝐹 0, 𝑥, 2𝑥, 𝑧

0

𝑥 2𝑥

𝑆

¬𝑤𝑖𝑛 = ∃𝑥 ∃𝑧. ¬𝐹 0, 𝑥, 𝑥, 𝑧 ∧ ∃𝑧. ¬𝐹 0, 𝑥, 2𝑥, 𝑧¬𝑤𝑖𝑛	is	sat	 iff	∃𝑀.𝑀 ⊨ ¬𝐹 0, 𝑥, 𝑥, 𝑧" ∧ ¬𝐹 0, 𝑥, 2𝑥, 𝑧%

𝑀 = {𝑥 ↦ −2, 𝑧" ↦ −2, 𝑧% ↦ −3}

𝑀* = {𝑤 ↦ 0}𝑀* = {𝑤 ↦ 0, 𝑥 ↦ −2}𝑀* = {𝑤 ↦ 0, 𝑥 ↦ −2, 𝑦 ↦ −2}𝑀* = {𝑤 ↦ 0, 𝑥 ↦ −2, 𝑦 ↦ −2, 𝑧 ↦ −2}

¬𝐹(𝑤, 𝑥, 𝑦, 𝑧)



Model-based Term Selection
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𝑠𝑒𝑙𝑒𝑐𝑡 𝑀, 𝑋, 𝐹 =

𝑒𝑞 𝑀, 𝑥, 𝐹 	
1
2 (𝑙𝑢𝑏 𝑀, 𝑥, 𝐹 + 𝑔𝑙𝑏(𝑀, 𝑥, 𝐹))

𝑙𝑢𝑏 𝑀, 𝑥, 𝐹 − 1	
𝑔𝑙𝑏 𝑀, 𝑥, 𝐹 + 1	
0	

if	𝐸𝑄 𝑀, 𝑥, 𝐹 ≠ ∅	
if	𝑈𝐵 𝑀, 𝑥, 𝐹 ≠ ∅	
and	𝐿𝐵 M, x, F ≠ ∅	
if	𝑈𝐵 𝑀, 𝑥, 𝐹 ≠ ∅	
if	𝐿𝐵 𝑀, x, F ≠ ∅	
otherwise	

𝐸𝑄 𝑀, 𝑥, 𝐹 = 𝑠 ∶ 𝑥 = 𝑠 ∈ 𝐹' ∧ 𝑥 + = 𝑠 +

𝑈𝐵 𝑀, 𝑥, 𝐹 = 𝑠 ∶ 𝑥 < 𝑠 ∈ 𝐹' ∧ 𝑥 + < 𝑠 +

𝑈𝐵 𝑀, 𝑥, 𝐹 = 𝑠 ∶ 𝑠 > 𝑥 ∈ 𝐹' ∧ 𝑠 + < 𝑥 +

𝑀 ⊨ 𝐹 ⇒ 𝑀 ⊨ 𝐹[𝑠𝑒𝑙𝑒𝑐𝑡(𝑀, 𝑥, 𝐹)/𝑥]
𝑠𝑒𝑙𝑒𝑐𝑡 𝑀, 𝑥, 𝐹 :𝑀 ⊨ 𝐹  is	finite

Properties of select



Counter Strategy

26[Farzan & Kincaid, 2016]

0

𝑥 2𝑥

𝑈

¬𝑤𝑖𝑛	is	sat	 iff	∃𝑀.𝑀 ⊨ ¬𝐹 0, 𝑥, 𝑥, 𝑧" ∧ ¬𝐹 0, 𝑥, 2𝑥, 𝑧%

𝑀 = {𝑥 ↦ −2, 𝑧" ↦ −2, 𝑧% ↦ −3}

𝑀* = {𝑤 ↦ 0}𝑀* = {𝑤 ↦ 0, 𝑥 ↦ −2}𝑀* = {𝑤 ↦ 0, 𝑥 ↦ −2, 𝑦 ↦ −2}𝑀* = {𝑤 ↦ 0, 𝑥 ↦ −2, 𝑦 ↦ −2, 𝑧 ↦ −2}𝑀* = {𝑤 ↦ 0, 𝑥 ↦ −2, 𝑦 ↦ −4}𝑀* = {𝑤 ↦ 0, 𝑥 ↦ −2, 𝑦 ↦ −4, 𝑧 ↦ −3}

¬𝐹(𝑤, 𝑥, 𝑦, 𝑧)

𝑦

¬𝐹(𝑤, 𝑥, 𝑦, 𝑦)

¬𝐹(𝑤, 𝑥, 𝑥, 𝑥)

¬𝐹(𝑤, 𝑥, 𝑦, 𝑧)

𝑥 + 𝑦
2

¬𝐹 𝑤, 𝑥, 𝑦,
𝑥 + 𝑦	
2

∧ ¬𝐹 𝑤, 𝑥, 2𝑥,
3𝑥	
2

¬𝐹 𝑤,−1,−1, −1 ∧ ¬𝐹 𝑤,−1,−2, −
3
2

−1

𝑀* = {}

¬𝐹 0,−1, −1, −1 ∧ ¬𝐹 0,−1, −2, −
3
2 = 𝑡𝑟𝑢𝑒



Strategy Improvement

• We first compute a strategy skeleton for SAT
• Is this strategy winning?
• Yes, return winning strategy skeleton
• No, compute UNSAT’s counter-strategy

27

𝑆!

𝑈!

𝑆"

𝑈"

⊆

⊆

𝑆%

𝑈%

⊆

⊆

…

…

beats

[Farzan & Kincaid, 2016]

, trade roles, and repeat



Winning Strategy Skeleton

28[Farzan & Kincaid, 2016]

0

𝑥 + 1
2

𝑥 + 2

𝑆

∃𝑤∀𝑥∃𝑦∀𝑧. 𝑦 < 1 ∨ 2𝑤 < 𝑦 ∧ (𝑧 < 𝑦 ∨ 𝑥 < 𝑧)



Strategy Synthesis

• A winning strategy skeleton isn’t a strategy:
• Some strategy conforming skeleton, S, is winning
• Can we compute a winning strategy from S?

• Label skeleton node’s with deterministic guards
• Computed using Tree Interpolants

• Interpolants represent plays reaching a node where UNSAT may win

29

YES 0

𝑥 + 1
2

𝑥 + 2

𝑆

[Farzan & Kincaid, 2018]



Tree Interpolation
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0

𝑥 + 1
2

𝑥 + 2

𝑆

∃𝑤∀𝑥∃𝑦∀𝑧. 𝑦 < 1 ∨ 2𝑤 < 𝑦 ∧ (𝑧 < 𝑦 ∨ 𝑥 < 𝑧)
𝐹(𝑤, 𝑥, 𝑦, 𝑧)

Φ 𝑛! = 𝑡𝑟𝑢𝑒

Φ 𝑛" = 𝑡𝑟𝑢𝑒

Φ 𝑛, = 𝑡𝑟𝑢𝑒

Φ 𝑛- = ¬𝐹 0, 𝑥, 𝑥 + 2, 𝑧%

Φ 𝑛. = 𝑡𝑟𝑢𝑒

Φ 𝑛- = ¬𝐹 0, 𝑥,
𝑥 + 1
2 , 𝑧" Φ 𝑛- = 1 ≤ 𝑥 ≤ 0 ∨ 𝑥 ≤ 𝑧% ≤ 𝑥 + 2Φ 𝑛- =	false𝐼 𝑛- =	false

𝐼 𝑛, =	false

𝐼 𝑛" =	false

𝐼 𝑛! =	false

Φ 𝑛- =
𝑥 + 1
2 ≤ 𝑧" ≤ 𝑥𝐼 𝑛- =

𝑥 + 1
2 ≤ 𝑧" ≤ 𝑥

𝐼 𝑛. = 1 ≤ 𝑥



Strategy Synthesis

31

0

𝑥 + 1
2

𝑥 + 2

𝑆

∃𝑤∀𝑥∃𝑦∀𝑧. 𝑦 < 1 ∨ 2𝑤 < 𝑦 ∧ (𝑧 < 𝑦 ∨ 𝑥 < 𝑧)

[𝑡𝑟𝑢𝑒]

[𝑡𝑟𝑢𝑒]

[𝑡𝑟𝑢𝑒]

[𝑡𝑟𝑢𝑒]

[𝑥 < 1]

[𝑥 < 1]

𝜎 𝑤𝑥 = 𝑥 + 2

𝜎 𝜖 = 0 𝜎/ 𝜖 = 0

𝜎/ 𝑤𝑥 = if	𝑥 < 1	then
𝑥 + 1
2 	else	𝑥 + 2

or or			…



Infinite Games
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Infinite Games

• Given 𝐴 ⊆ ℕℕ, 𝐺(𝐴) is an infinite game:
• Two players: I and II

• Take turns choosing a natural number (forever)
• Both know 𝐴 the set of wins for player I (losses for player II)
• 𝑥! and 𝑦! represents the ith move by I and II respectively

• 𝑠 = 𝑥!𝑦!𝑥"𝑦"… is a play of 𝐺(𝐴)
• Player I wins iff s ∈ 𝐴 and Player II wins iff 𝑠 ∉ 𝐴

33

I
II

𝑥!

𝑦!

𝑥"

𝑦"

⋯

⋯

𝑥0

𝑦0

⋯

⋯

[Khomskii, 2010]



Strategies

• Given an infinite game 𝐺(𝐴):
• A Strategy for player I is a function, 𝜎:

• 𝜎 ∶ 𝑠 ∈ ℕ∗: 𝑠 is even → ℕ
• A strategy for player II is a function, 𝜏:

• 𝜏 ∶ 𝑠 ∈ ℕ∗: 𝑠 is odd → ℕ
• 𝜎 ∗ 𝑡 is a play where I plays with 𝜎 and II plays 𝑡
• 𝑠 ∗ 𝜏 is a play where I plays with 𝑠 and II plays 𝜏
• 𝑝𝑙𝑎𝑦𝑠 𝜎 = 𝜎 ∗ 𝑡 ∶ 𝑡 ∈ ℕℕ
• 𝑝𝑙𝑎𝑦𝑠 𝜏 = 𝑠 ∗ 𝜏 ∶ 𝑠 ∈ ℕℕ

34[Khomskii, 2010]



Winning Strategies

• Given a game 𝐺(𝐴):
• 𝜎 is	a	winning	strategy	iff 𝑝𝑙𝑎𝑦𝑠(𝜎) ⊆ 𝐴
• 𝜏 is	a	winning	strategy	iff 𝑝𝑙𝑎𝑦𝑠(𝜏) ⊆ ℕℕ\𝐴

35

Theorem:	For	all	games,	𝐺(𝐴),	player	I	and	II	cannot
				both	have	a	winning	strategy.
Proof.
		Suppose	not.
		I	has	a	winning	strategy	𝜎	and	II	a	winning	strategy	𝜏.
		Let	𝑠 = 𝜎 ∗ 𝜏	be	the	play	where	I	follows	𝜎	and	II	follows	𝜏.
		Necessarily	𝑠 ∈ 𝐴	and	𝑠 ∉ 𝐴,	a	contradiction.	 	 QED



Determinacy

• A game G(A) is determined iff Player I or II has a winning strategy
• There is at most one winner
• Is there at least one winner?

• Finitely decided games:
• 𝐺(𝐴) is finitely decided iff ∀𝑠 ∈ 𝐴. ∃𝑛. 𝑠+: ∀𝑖 < 𝑛. 𝑠!+ = 𝑠! ⊆ 𝐴

36

Theorem:	There	exists	an	infinite	game	that	is	not	determined.

Theorem:	All	finitely	decided	games	are	determined.

[Khomskii, 2010]



Strategy Synthesis
(for infinite games)
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Reachability Games

• 𝐺(𝑖𝑛𝑖𝑡, 𝑟𝑒𝑎𝑐ℎ,safe) is an infinite game:
• Two players REACH	and SAFE	alternate picking ℚ� positions
• REACH	starts by picking 𝑟! satisfying 𝑖𝑛𝑖𝑡
• SAFE	moves from REACH’s choice,	𝑟R,	to any state 𝑠R satisfying safe(𝑟R, 𝑠R)
• REACH then continues play choosing 𝑟R�" satisfying 𝑟𝑒𝑎𝑐ℎ 𝑠R, 𝑟R�"
• The first player to make an illegal move loses.
• SAFE wins all games where both players only make legal moves.
• The game is determined
• Deciding which player wins is undecidable

38[Farzan & Kincaid, 2018]



Strategy Synthesis

• Key Idea: use bounded games to produce satisfiability games.
∃𝑥(∀𝑦(…∃𝑥%∀𝑦%. 𝑖𝑛𝑖𝑡 𝑥( ∧ safe 𝑥(, 𝑦( ⇒ 𝑢𝑛𝑟𝑜𝑙𝑙(1, 𝑛 − 1)
𝑢𝑛𝑟𝑜𝑙𝑙 𝑘, 0 ≝ false
𝑢𝑛𝑟𝑜𝑙𝑙 𝑘, 𝑑 ≝ 𝑟𝑒𝑎𝑐ℎ 𝑦,, 𝑥,-( ∧ (safe 𝑥,-(, 𝑦,-( ⇒ 𝑢𝑛𝑟𝑜𝑙𝑙(𝑘 + 1, 𝑑 − 1))
• If REACH (SAT) wins the bounded game

• REACH	wins the unbounded game
• Any extension of the finite strategy is a winning strategy

• If SAFE	(UNSAT)	wins the bounded game
• Attempt to generalize strategy to infinite games

39[Farzan & Kincaid, 2018]



Cinderella-Stepmother Game

• Two players Cinderella and her Stepmother.
• Each round
• Stepmother adds 1L of water to a buckets (3L capacity)
• Cinderella can empty two adjacent buckets

• Cinderella wins if no bucket overflows

40[Farzan & Kincaid, 2018]
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Safety Tree

41[Farzan & Kincaid, 2018]

𝑛!: 𝑏 ≤ 3,3,1,1,1 ∧ 𝑏" + 𝑏# ≤ 1

𝑛$: 𝑏 ≤ 3,3,2,2,2 ∧ 𝑏" + 𝑏# ≤ 2

𝑡𝑟𝑢𝑒 ∶ 0,0, 𝑏", 𝑏%, 𝑏#

𝑡𝑟𝑢𝑒 ∶ 0,0, 𝑏", 𝑏%, 𝑏#

𝑛": 𝑏 ≤ 1,1,3,3,3 ∧ 𝑏" + 𝑏# ≤ 3

𝑛": 𝑏 ≤ 1,1,4,4,4 ∧ 𝑏" + 𝑏# ≤ 4

𝑡𝑟𝑢𝑒 ∶ 0,0, 𝑏", 𝑏%, 𝑏#



Cinderella-Stepmother Game

42[Farzan & Kincaid, 2018]
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0

Round
Stepmother fills 𝑏.
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Refine Safety Tree
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𝑛!: 𝑏 ≤ 3,3,1,1,1 ∧ 𝑏" + 𝑏# ≤ 1

𝑛$: 𝑏 ≤ 3,3,2,2,2 ∧ 𝑏" + 𝑏# ≤ 2

𝑡𝑟𝑢𝑒 ∶ 0,0, 𝑏", 𝑏%, 𝑏#

𝑡𝑟𝑢𝑒 ∶ 0,0, 𝑏", 𝑏%, 𝑏#

𝑛": 𝑏 ≤ 1,1,3,3,3 ∧ 𝑏" + 𝑏# ≤ 3

𝑛%: 𝑏 ≤ 3,3,1,1,3 𝑛#: 𝑏 ≤ 2,2,3,3,1

𝑏" ≤ 2 ∶ 𝑏!, 𝑏$, 𝑏", 0,0𝑏# ≤ 2 ∶ 𝑏!, 𝑏$, 0,0, 𝑏#

𝑛&: 𝑏 ≤ 1,1,4,2,2 ∧ 𝑏" + 𝑏# ≤ 4𝑛': 𝑏 ≤ 1,1,2,2,4 ∧ 𝑏" + 𝑏# ≤ 4

𝑡𝑟𝑢𝑒 ∶ 0,0, 𝑏", 𝑏%, 𝑏# 𝑡𝑟𝑢𝑒 ∶ 0,0, 𝑏", 𝑏%, 𝑏#



Cinderella-Stepmother Game

44[Farzan & Kincaid, 2018]
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5:
𝑏.𝑏"

Cinderella’s Strategy
Empty 𝑏" and 𝑏% always but rd 3
Rd 3 empty 𝑏.	if full else 𝑏1



Refine Safety Tree

45[Farzan & Kincaid, 2018]

𝑛!: 𝑏 ≤ 3,3,1,1,1 ∧ 𝑏" + 𝑏# ≤ 1

𝑛$: 𝑏 ≤ 3,3,2,2,2 ∧ 𝑏" + 𝑏# ≤ 2

𝑡𝑟𝑢𝑒 ∶ 0,0, 𝑏", 𝑏%, 𝑏#

𝑡𝑟𝑢𝑒 ∶ 0,0, 𝑏", 𝑏%, 𝑏#

𝑛%: 𝑏 ≤ 2,2,1,3,3 𝑛#: 𝑏 ≤ 2,2,3,3,1

𝑛&: 𝑏 ≤ 3,3,2,2,2 ∧ 𝑏" + 𝑏# ≤ 2

𝑛(: 𝑏 ≤ 1,1,3,3,3 ∧ 𝑏" + 𝑏# ≤ 3

𝑛': 𝑏 ≤ 3,3,2,2,2 ∧ 𝑏" + 𝑏# ≤ 2

𝑛): 𝑏 ≤ 1,1,3,3,3 ∧ 𝑏" + 𝑏# ≤ 3

𝑛": 𝑏 ≤ 1,1,3,3,3 ∧ 𝑏" + 𝑏# ≤ 3

𝑏" ≤ 2 ∶ 𝑏!, 𝑏$, 𝑏", 0,0𝑏# ≤ 2 ∶ 𝑏!, 𝑏$, 0,0, 𝑏#

𝑡𝑟𝑢𝑒 ∶ 𝑏!, 𝑏$, 𝑏", 0,0

𝑡𝑟𝑢𝑒 ∶ 0,0, 𝑏", 𝑏%, 𝑏# 𝑡𝑟𝑢𝑒 ∶ 0,0, 𝑏", 𝑏%, 𝑏#

𝑡𝑟𝑢𝑒 ∶ 𝑏!, 𝑏$, 0,0, 𝑏#



Conclusion

• Finite Games
• Game Semantics
• Connection between quantification and choices
• Satisfiability Games
• Strategy Improvement & Strategy Synthesis

• Infinite Games
• Reachability Games
• Strategy Synthesis by generalizing bounded game strategies
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