Introduction to Game Semantics and Logical Games Charlie Murphy

3/31/2020

Overview

- Finite Games
- Game Semantics
- Strategy Synthesis
- Infinite Games

Finite Games

Two-person Perfectile formation Finite Games

- Between two players I and II
- Zero-sum: Player I wins iff Player II loses and vice versa
- Both players have perfect knowledge:
 - Of how the game is played
 - Of the moves played so far
- Examples: Chess, Checkers, Tic-Tac-Toe, Reversi, Go
- Negative Examples: Backgammon, Yahtzee, Rock-Paper-Scissors, Stratego

Finite Games

- Let $n \in \mathbb{N}$ and $A \subseteq \mathbb{N}^{2n}$ then $G(A)_n$ is a game:
 - Two players: I and II
 - Take turns choosing a natural number
 - Both know *A* the set of wins for player I (losses for player II)
 - x_i and y_i represents the ith move by I and II respectively
 - After n moves by each player the game ends:

I

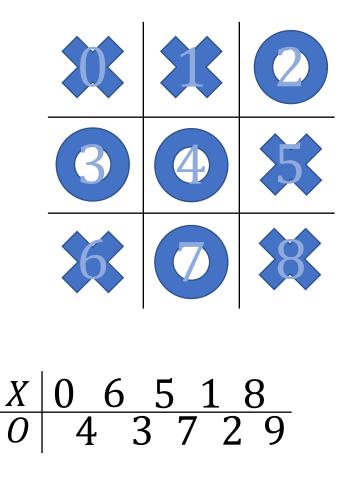
$$x_0$$
 x_1
 ...
 x_{n-1}

 II
 y_0
 y_1
 ...
 y_{n-1}

- $s = x_0 y_0 x_1 y_1 \dots x_{n-1} y_{n-1}$ is a play of $G(A)_n$
- Player I wins iff $s \in A$ and Player II wins iff $s \notin A$

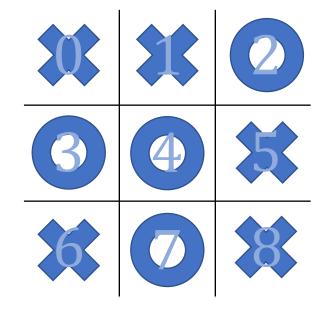
Tic-Tac-Toe

- Two players *X* and *O*.
- Encode moves as 0 9.
- $A = Legal \setminus Wins_O \cup Illegal_O$
- $A' = Legal \times Wins_X \cup Illegal_O$
- X wins iff X wins G(A) and G(A')
- *O* wins iff *O* wins G(A) and G(A')
- Otherwise X and O draw



Strategies

- Given a game, G(A),
 - What move should I or II make next?
 - A function from partial plays to moves.
- Tic-Tac-Toe
 - Strategy, σ , of player *X*
 - Strategy, τ , of player *O*



 $\sigma(\epsilon) = 0$ $\sigma(04) = 6$ $\sigma(0463) = 5$ $\sigma(046357) = 1$ $\sigma(04635712) = 8$

 $\tau(0) = 4$ $\tau(046) = 3$ $\tau(04635) = 7$ $\tau(0463571) = 2$ $\tau(046357128) = 9$

Strategies

- Given a game $G(A)_n$:
 - A Strategy for player I is a function, σ :
 - $\sigma : \{s \in \bigcup_{m < 2n} \mathbb{N}^m : |s| \text{ is even}\} \to \mathbb{N}$
 - A strategy for player II is a function, τ :
 - $\tau : \{s \in \bigcup_{m < 2n} \mathbb{N}^m : |s| \text{ is odd}\} \to \mathbb{N}$
 - $\sigma * t$ is a play where I plays with σ and II plays t
 - $s * \tau$ is a play where I plays with s and II plays τ
 - $plays(\sigma)_n = \{\sigma * t : t \in \mathbb{N}^n\}$
 - $plays(\tau)_n = \{s * \tau : s \in \mathbb{N}^n\}$

Winning Strategies

- Given a game $G(A)_n$:
 - σ is a winning strategy iff $plays(\sigma)_n \subseteq A$
 - τ is a winning strategy iff $plays(\tau)_n \subseteq \mathbb{N}^{2n} \setminus A$

Theorem: For all games, G(A), player I and II cannot

both have a winning strategy.

Proof.

Suppose not.

I has a winning strategy σ and II a winning strategy τ . Let $s = \sigma * \tau$ be the play where I follows σ and II follows τ . Necessarily $s \in A$ and $s \notin A$, a contradiction. **QED**

Determinacy

- A game G(A) is determined iff Player I or II has a winning strategy
 - There is at most one winner
 - Is there at least one winner?

Theorem: For all finite games, $G(A)_n$, player I or II must have a winning strategy.

Proof. Player I has a winning strategy iff

 $\exists x_0 \forall y_0 \dots \exists x_{n-1} \forall y_{n-1} . x_0 y_0 \dots x_{n-1} y_{n-1} \in A$ Suppose I does not have a winning strategy:

$$\neg (\exists x_0 \forall y_0 \dots \exists x_{n-1} \forall y_{n-1}. (x_0 y_0 \dots x_{n-1} y_{n-1} \in A))$$

 $\exists x_0 \forall y_0 \dots \exists x_{n-1} \forall y_{n-1}. (x_0 y_0 \dots x_{n-1} y_{n-1} \notin A)$ Player II must have a winning strategy. **QED**

Game Semantics

Game Semantics

- Given a sentence $S \in L$ and a model, M, of non-logical symbols:
 - Define a game, G(S; M) to show if $S \in L$
- First Order Logic:
 - *G*(*S*; *M*) is a game between Myself (init. verifier) and Nature (init. falsifier)
 - G(S; M) is played using the following rules:

R V. $G(S_1 \vee S_2; M)$ verifier chooses to continue as $G(S_1; M)$ or $G(S_2; M)$

R \land . $G(S_1 \land S_2; M)$ falsifier chooses to continue as $G(S_1; M)$ or $G(S_2; M)$

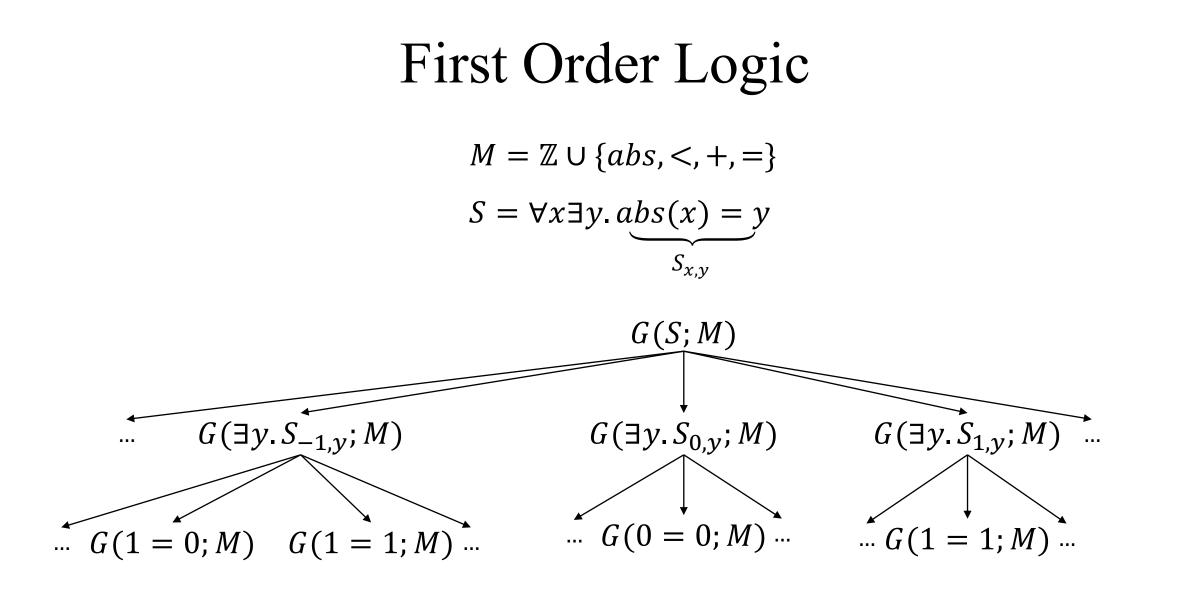
- R \exists . $G(\exists x. S; M)$ verifier chooses $c \in do(M)$ and continues as G(S[c/x]; M)
- R ∀. $G(\forall x. S; M)$ falsifier chooses $c \in do(M)$ and continues as G(S[c/x]; M)

R ¬. $G(\neg S; M)$ falsifier and verifier swap roles and play G(S; M)

R atom. $G(c_a; M)$ the current verifier wins if c_a interpreted in M is true otherwise falsifier wins

Game Semantics

- Given a sentence $S \in L$ and a model, M, of non-logical symbols:
 - Define a game, G(S; M) to show if $M \models S$
- First Order Logic:
 - *G*(*S*; *M*) is a game between Myself (init. verifier) and Nature (init. falsifier)
 - G(S; M) is played using the following rules:
 - $R \lor$, $R \land$, $R \exists$, $R \forall$, $R \neg$, and R atom.
 - $M \models S$ iff Myself wins G(S; M)



First Order Logic

S

$$M = \mathbb{Z} \cup \{abs, <, +, =\}$$

$$S = \forall x \exists y. abs(x) = y$$

$$G(S; M)$$

$$\downarrow Falsifier Chooses c$$

$$G(\exists y. S_{c,y}; M)$$

$$\downarrow Verifier Chooses abs(c)$$

$$G(abs(c) = abs(c); M)$$

Strategy Synthesis

Strategy Synthesis

- Given a game G(A):
 - Can we know if a player has some winning strategy?
 - Can we produce this strategy?
- Logical Games:
 - Defined using logical formulae
 - Strategy synthesis corresponds to
 - Functional & Reactive Synthesis
 - Adversarial Planning
 - Modular Verification
 - Branching-Time Verification

Linear ArstatinettabiSiatyisfaatbadsty Games

- Given a sentence, i φ sometime or A (ielegentime time and A triated the time time $G(\varphi)$:
 - Two players SAT and UNSAT take turns instantiating quantifiers
 SAT controls existentials and wants to prove φ

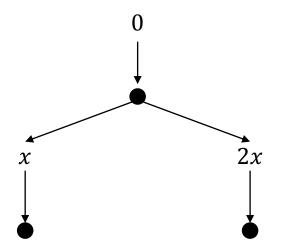
 - UNSAT controls unfiversals unfit wants to disprove $\int F \wedge G \mid F \vee G$
 - SAT wins a play $c_0 \dots \varphi_n$ if $f(x_0 \ltimes c_0 Q_n x_{\kappa_n} F \mapsto Q_n) \in \{\mathbb{N}, \exists\}$
 - If SAT has a winning strategy pris statisfies ho free variables

Strategy Improvement

• We first compute a strategy skeleton for SAT

Skeleton Strategy

$\exists w \forall x \exists y \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$



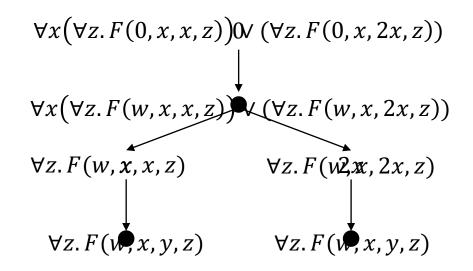
Strategy Improvement

- We first compute a strategy skeleton for SAT
- Is this strategy winning?

Winning Condition

 $\exists w \forall x \exists y \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$

F(w, x, y, z)



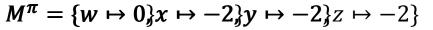
[Farzan & Kincaid, 2016]

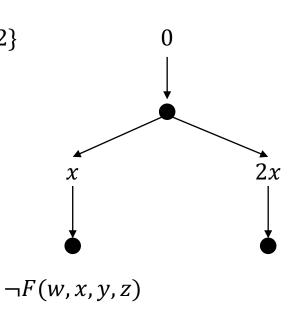
Strategy Improvement

- We first compute a strategy skeleton for SAT
- Is this strategy winning?
 - Yes, return winning strategy skeleton
 - No, compute UNSAT's counter-strategy

Counter Strategy

 $M = \{ \underline{x} \mapsto -2, \underline{z_1} \mapsto -2, \underline{z_2} \mapsto -3 \}$





S

Model-based Term Selection

$$select(M, X, F) = \begin{cases} eq(M, x, F) & \text{if } EQ(M, x, F) \neq \emptyset \\ \frac{1}{2}(lub(M, x, F) + glb(M, x, F)) & \text{if } UB(M, x, F) \neq \emptyset \\ lub(M, x, F) - 1 & \text{if } UB(M, x, F) \neq \emptyset \\ glb(M, x, F) + 1 & \text{if } LB(M, x, F) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}$$

 $EQ(M, x, F) = \{s : x = s \in F_x \land [x]^M = [s]^M\}$ $UB(M, x, F) = \{s : x < s \in F_x \land [x]^M < [s]^M\}$ $UB(M, x, F) = \{s : s > x \in F_x \land [s]^M < [x]^M\}$

Properties of select $M \models F \Rightarrow M \models F[select(M, x, F)/x]$ $\{select(M, x, F): M \models F\}$ is finite

$$Counter Strategy$$

$$\neg win \text{ is sat iff } \exists M. M \models \neg F(0, \underline{x}, \underline{x}, \underline{z_1}) \land \neg F(0, \underline{x}, 2\underline{x}, \underline{z_2})$$

$$M = \{\underline{x} \mapsto -2, \underline{z_1} \mapsto -2, \underline{z_2} \mapsto -3\}$$

$$U \neg F(0, -1, -1, -1) \land \neg F(0, -1, -2, -\frac{3}{2}) = true$$

$$M^{\pi} = \{\{ w \mapsto 0\} x \mapsto -2\} y \mapsto -2\} z \mapsto -2\}$$

$$\neg F(w, x, x, x) \land \neg F(w, x, 2x, \frac{3x}{2})$$

$$\neg F(w, x, y, z) \qquad \neg F(w, x, y, z)$$

$$F(w, x, y, z) \qquad \neg F(w, x, y, z)$$

$$F(w, x, y, z) \qquad \neg F(w, x, y, z)$$

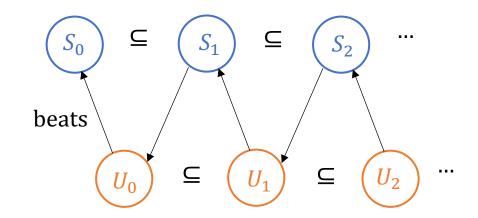
$$F(w, x, y, z) \qquad \neg F(w, x, y, z)$$

$$F(w, x, y, z) \qquad \neg F(w, x, y, z)$$

$$F(w, x, y, z) \qquad \neg F(w, x, y, z)$$

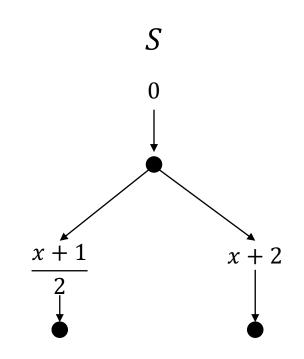
Strategy Improvement

- We first compute a strategy skeleton for SAT
- Is this strategy winning?
 - Yes, return winning strategy skeleton
 - No, compute UNSAT's counter-strategy, trade roles, and repeat



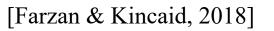
Winning Strategy Skeleton

 $\exists w \forall x \exists y \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$



Strategy Synthesis

- A winning strategy skeleton isn't a strategy:
 - Some strategy conforming skeleton, S, is winning
 - Can we compute a winning strategy from S? **YES**
- Label skeleton node's with deterministic guards
 - Computed using Tree Interpolants
 - Interpolants represent plays reaching a node where UNSAT may win



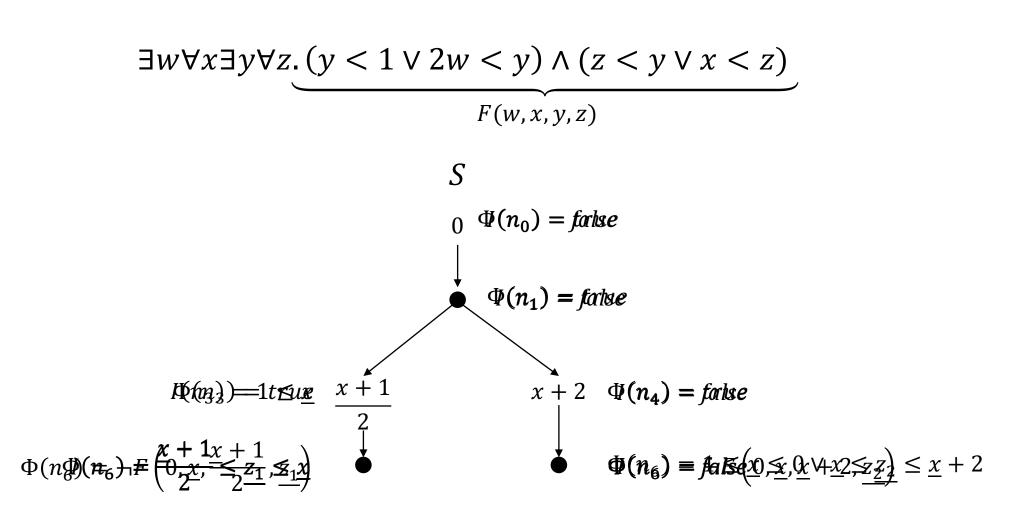
x + 2

S

()

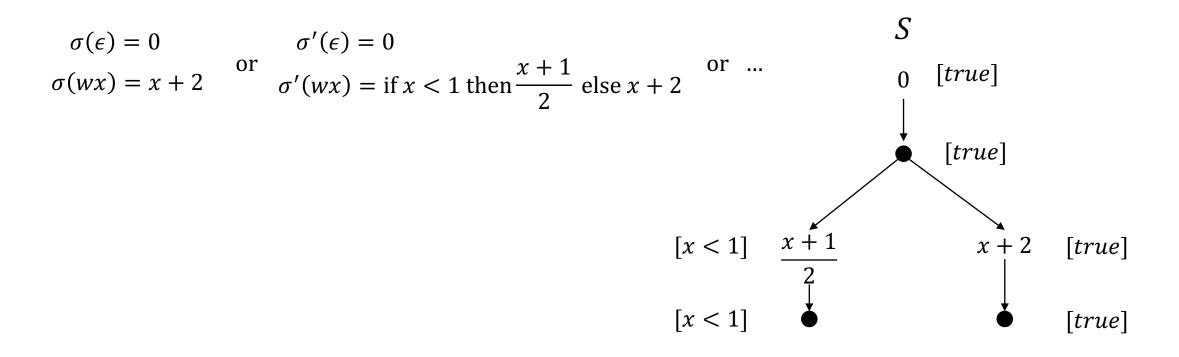
x + 1

Tree Interpolation



Strategy Synthesis

 $\exists w \forall x \exists y \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$



Infinite Games

Infinite Games

- Given $A \subseteq \mathbb{N}^{\mathbb{N}}$, G(A) is an infinite game:
 - Two players: I and II
 - Take turns choosing a natural number (forever)
 - Both know *A* the set of wins for player I (losses for player II)
 - x_i and y_i represents the ith move by I and II respectively

- $s = x_0 y_0 x_1 y_1 \dots$ is a play of G(A)
- Player I wins iff $s \in A$ and Player II wins iff $s \notin A$

Strategies

- Given an infinite game G(A):
 - A Strategy for player I is a function, σ :
 - $\sigma : \{s \in \mathbb{N}^* : |s| \text{ is even}\} \to \mathbb{N}$
 - A strategy for player II is a function, τ :
 - $\tau : \{s \in \mathbb{N}^* : |s| \text{ is odd}\} \to \mathbb{N}$
 - $\sigma * t$ is a play where I plays with σ and II plays t
 - $s * \tau$ is a play where I plays with s and II plays τ
 - $plays(\sigma) = \{\sigma * t : t \in \mathbb{N}^{\mathbb{N}}\}\$
 - $plays(\tau) = \{s * \tau : s \in \mathbb{N}^{\mathbb{N}}\}\$

Winning Strategies

- Given a game G(A):
 - σ is a winning strategy iff $plays(\sigma) \subseteq A$
 - τ is a winning strategy iff $plays(\tau) \subseteq \mathbb{N}^{\mathbb{N}} \setminus A$

Theorem: For all games, G(A), player I and II cannot

both have a winning strategy.

Proof.

Suppose not.

I has a winning strategy σ and II a winning strategy τ . Let $s = \sigma * \tau$ be the play where I follows σ and II follows τ . Necessarily $s \in A$ and $s \notin A$, a contradiction. **QED**

Determinacy

- A game G(A) is determined iff Player I or II has a winning strategy
 - There is at most one winner
 - Is there at least one winner?

Theorem: There exists an infinite game that is not determined.

- Finitely decided games:
 - G(A) is finitely decided iff $\forall s \in A$. $\exists n. \{s': \forall i < n. s'_i = s_i\} \subseteq A$

Theorem: All finitely decided games are determined.

Strategy Synthesis (for infinite games)

Reachability Games

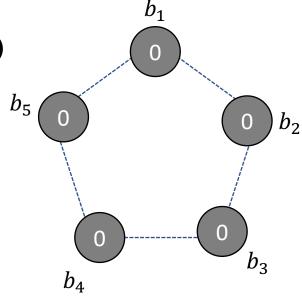
- *G(init, reach, safe)* is an infinite game:
 - Two players REACH and SAFE alternate picking \mathbb{Q}^d positions
 - REACH starts by picking r_0 satisfying *init*
 - SAFE moves from REACH's choice, r_i , to any state s_i satisfying $safe(r_i, s_i)$
 - REACH then continues play choosing r_{i+1} satisfying $reach(s_i, r_{i+1})$
 - The first player to make an illegal move loses.
 - SAFE wins all games where both players only make legal moves.
 - The game is determined
 - Deciding which player wins is undecidable

Strategy Synthesis

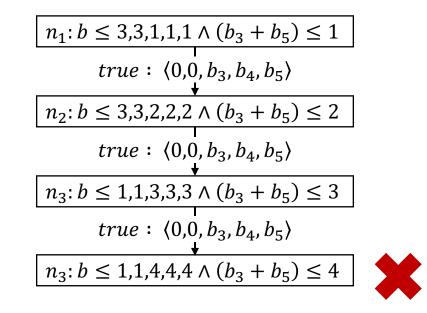
- Key Idea: use bounded games to produce satisfiability games. $\exists x_1 \forall y_1 \dots \exists x_n \forall y_n. init(x_1) \land safe(x_1, y_1) \Rightarrow unroll(1, n - 1)$ $unroll(k, 0) \stackrel{\text{def}}{=} false$ $unroll(k, d) \stackrel{\text{def}}{=} reach(y_k, x_{k+1}) \land (safe(x_{k+1}, y_{k+1}) \Rightarrow unroll(k + 1, d - 1))$
 - If REACH (SAT) wins the bounded game
 - REACH wins the unbounded game
 - Any extension of the finite strategy is a winning strategy
 - If SAFE (UNSAT) wins the bounded game
 - Attempt to generalize strategy to infinite games

Cinderella-Stepmother Game

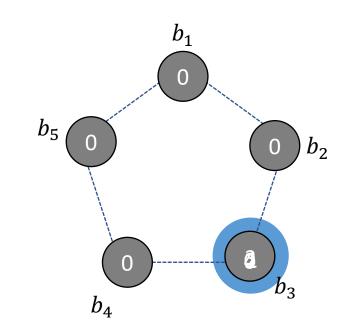
- Two players Cinderella and her Stepmother.
- Each round
 - Stepmother adds 1L of water to a buckets (3L capacity)
 - Cinderella can empty two adjacent buckets
- Cinderella wins if no bucket overflows



Safety Tree



Cinderella-Stepmother Game

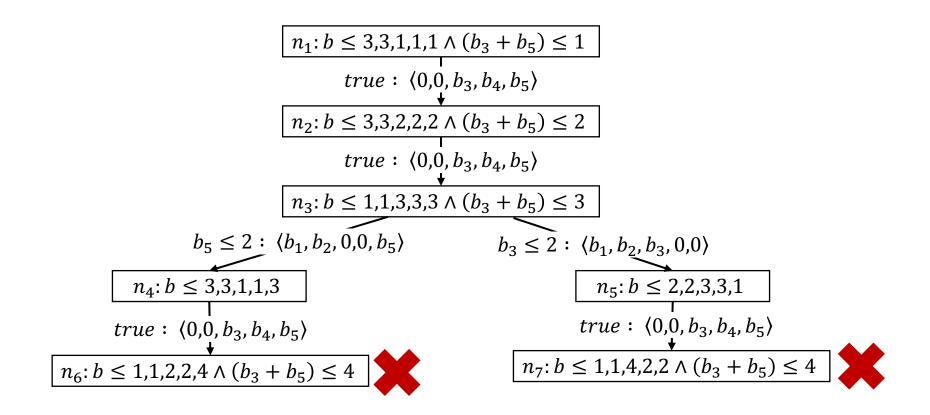


Cinderella's Strategy Always empty b_1 and b_2

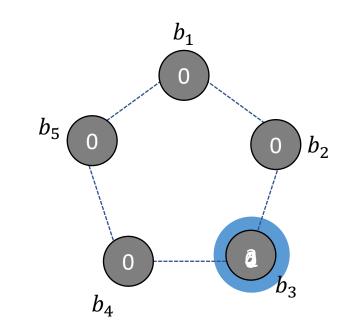
Round **1**:

Stepmother fills b_3

Refine Safety Tree



Cinderella-Stepmother Game



Cinderella's Strategy Empty b_1 and b_2 always but rd 3 Rd 3 empty b_3 if full else b_5

Round **1**:

Stepmother fills b_3

Refine Safety Tree



[Farzan & Kincaid, 2018]

Conclusion

- Finite Games
 - Game Semantics
 - Connection between quantification and choices
 - Satisfiability Games
 - Strategy Improvement & Strategy Synthesis
- Infinite Games
 - Reachability Games
 - Strategy Synthesis by generalizing bounded game strategies

References

Farzan, Azadeh and Kincaid, Zachary. Linear Arithmetic Satisfiability via Strategy Improvement. IJCAI. 2016.

- Farzan, Azadeh and Kincaid, Zachary. Strategy Synthesis for Linear Arithmetic Games. *Proc. ACM Program. Lang.* 2, POPL, Article 61 (January 2018)
- Hintikka, Jaakko. 1982. Game-theoretical semantics: insights and prospects. *Notre Dame Journal of Formal Logic Notre-Dame*, Ind. 23, 2 (1982), 219–241.
- Khomskii, Yurii. Infinite Games. Lecture Notes. University of Sofia, Bulgaria. July 19, 2010. Accessed March 28, 2020. [link]