Introduction to Game Semantics and Logical Games Charlie Murphy

3/31/2020

Overview

- Finite Games
- Game Semantics
- Strategy Synthesis
- Infinite Games

Finite Games

Two-person Perfection Formation Finite Games

- Between two players I and II
- Zero-sum: Player I wins iff Player II loses and vice versa
- Both players have perfect knowledge:
	- Of how the game is played
	- Of the moves played so far
- Examples: Chess, Checkers, Tic-Tac-Toe, Reversi, Go
- Negative Examples: Backgammon, Yahtzee, Rock-Paper-Scissors, Stratego

Finite Games

- Let $n \in \mathbb{N}$ and $A \subseteq \mathbb{N}^{2n}$ then $G(A)_n$ is a game:
	- Two players: I and II
		- Take turns choosing a natural number
		- Both know A the set of wins for player I (losses for player II)
		- x_i and y_i represents the ith move by I and II respectively
	- After n moves by each player the game ends:

$$
\begin{array}{c|cccc}\nI & x_0 & x_1 & \cdots & x_{n-1} \\
\hline\nII & y_0 & y_1 & \cdots & y_{n-1} \\
\end{array}
$$

- $s = x_0 y_0 x_1 y_1 ... x_{n-1} y_{n-1}$ is a play of $G(A)_n$
- Player I wins iff $s \in A$ and Player II wins iff $s \notin A$

Tic-Tac-Toe

- Two players X and O .
- Encode moves as $0 9$.
- $A = Legal\Wins_O \cup Illegal_O$
- $A' = \text{Legal} \times \text{Wins}_X \cup \text{Illegal}_O$
- X wins if X wins $G(A)$ and $G(A')$
- O wins iff O wins $G(A)$ and $G(A')$
- Otherwise X and $\ddot{\theta}$ draw

Strategies

- Given a game, $G(A)$,
	- What move should I or II make next?
	- A function from partial plays to moves.
- Tic-Tac-Toe
	- Strategy, σ , of player X
	- Strategy, τ , of player O

 $\sigma(\epsilon) = 0 \quad \sigma(04) = 6 \quad \sigma(0463) = 5 \quad \sigma(046357) = 1 \quad \sigma(04635712) = 8$

 $\tau(0) = 4$ $\tau(046) = 3$ $\tau(04635) = 7$ $\tau(0463571) = 2$ $\tau(046357128) = 9$

Strategies

- Given a game $G(A)_n$:
	- A Strategy for player I is a function, σ :
		- $\sigma : \{s \in \bigcup_{m < 2n} \mathbb{N}^m : |s| \text{ is even}\} \to \mathbb{N}$
	- A strategy for player II is a function, τ :
		- $\tau : \{s \in \bigcup_{m < 2n} \mathbb{N}^m : |s| \text{ is odd}\} \to \mathbb{N}$
	- $\sigma * t$ is a play where I plays with σ and II plays t
	- $s * \tau$ is a play where I plays with s and II plays τ
	- $plays(\sigma)_n = {\sigma * t : t \in \mathbb{N}^n}$
	- $play(s(\tau)_n = \{s * \tau : s \in \mathbb{N}^n\}$

Winning Strategies

- Given a game $G(A)_n$:
	- σ is a winning strategy iff $plays(\sigma)_n \subseteq A$
	- τ is a winning strategy iff $plays(\tau)_n \subseteq \mathbb{N}^{2n} \backslash A$

Theorem: For all games, $G(A)$, player I and II cannot

both have a winning strategy.

Proof.

Suppose not.

I has a winning strategy σ and II a winning strategy τ . Let $s = \sigma * \tau$ be the play where I follows σ and II follows τ . Necessarily $s \in A$ and $s \notin A$, a contradiction. QED

Determinacy

- A game $G(A)$ is determined iff Player I or II has a winning strategy
	- There is at most one winner
	- Is there at least one winner?

Theorem: For all finite games, $G(A)_n$, player I or II must have a winning strategy.

Proof. Player I has a winning strategy iff

 $\exists x_0 \forall y_0 ... \exists x_{n-1} \forall y_{n-1} \dots x_0 y_0 ... x_{n-1} y_{n-1} \in A$ Suppose I does not have a winning strategy:

$$
\neg(\exists x_0 \forall y_0 \dots \exists x_{n-1} \forall y_{n-1}. (x_0 y_0 \dots x_{n-1} y_{n-1} \in A))
$$

 $\exists x_0 \forall y_0 ... \exists x_{n-1} \forall y_{n-1} . (x_0 y_0 ... x_{n-1} y_{n-1} \notin A)$ Player II must have a winning strategy. **The CED**

Game Semantics

Game Semantics

- Given a sentence $S \in L$ and a model, M, of non-logical symbols:
	- Define a game, $G(S; M)$ to show if $S \in L$
- First Order Logic:
	- $G(S; M)$ is a game between Myself (init. verifier) and Nature (init. falsifier)
	- $G(S; M)$ is played using the following rules:

R ∨. $G(S_1 \vee S_2; M)$ verifier chooses to continue as $G(S_1; M)$ or $G(S_2; M)$

R \wedge . $G(S_1 \wedge S_2; M)$ falsifier chooses to continue as $G(S_1; M)$ or $G(S_2; M)$

- R ∃. $G(\exists x. S; M)$ verifier chooses $c \in do(M)$ and continues as $G(S[c/x]; M)$
- R \forall . $G(\forall x. S; M)$ falsifier chooses $c \in do(M)$ and continues as $G(S[c/x]; M)$

R \neg . $G(\neg S; M)$ falsifier and verifier swap roles and play $G(S; M)$

R atom. $G(c_a; M)$ the current verifier wins if c_a interpreted in M is true otherwise falsifier wins

Game Semantics

- Given a sentence $S \in L$ and a model, M, of non-logical symbols:
	- Define a game, $G(S; M)$ to show if $M \models S$
- First Order Logic:
	- $G(S; M)$ is a game between Myself (init. verifier) and Nature (init. falsifier)
	- $G(S; M)$ is played using the following rules:
		- $R \vee R \wedge R \wedge R = R \vee R \wedge R$..., and R atom.
	- $M \models S$ iff Myself wins $G(S; M)$

First Order Logic

$$
M = \mathbb{Z} \cup \{abs, <, +, =\}
$$
\n
$$
S = \forall x \exists y. \, abs(x) = y
$$
\n
$$
G(S; M)
$$
\n
$$
\downarrow_{Falsifier Choses c}
$$
\n
$$
G(\exists y. S_{c,y}; M)
$$
\n
$$
\downarrow_{Verifier Choses abs(c)}
$$
\n
$$
G(abs(c) = abs(c); M)
$$

Strategy Synthesis

Strategy Synthesis

- Given a game $G(A)$:
	- Can we know if a player has some winning strategy?
	- Can we produce this strategy?
- Logical Games:
	- Defined using logical formulae
	- Strategy synthesis corresponds to
		- Functional & Reactive Synthesis
		- Adversarial Planning
		- Modular Verification
		- Branching-Time Verification

Linear Arstatin Stabistatisfiability Games

- Given a sentence, in psimile it the arry nuclear ation and the international metric $G(\varphi)$:
	- Two players SAT and UNSAT take turns instantiating quantifiers
	- SAT controls existentials and wants to prove $\ddot{\phi}$ $s, t \in Term ::= c \mid x \mid s+t \mid c \cdot t$
	- UNSAT controls the restall wants to this prove $\varphi^F \wedge G \mid F \vee G$
	- SAT wins a play $c_0 \dots \varphi_n$:i $\forall x_0 \in \mathbb{C}_0 Q_n x x_n F \rightarrow Q_n$] $\models \{\forall, \exists\}$
	- · If SAT has a winnipgstrategyencis ifatisfiash the variables

Strategy Improvement

• We first compute a strategy skeleton for SAT

Skeleton Strategy

∃ $w \forall x \exists y \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$

Strategy Improvement

- We first compute a strategy skeleton for SAT
- Is this strategy winning?

Winning Condition

∃w∀x∃y∀z. $(y < 1 \vee 2w < y) \wedge (z < y \vee x < z)$

 $F(w, x, y, z)$

[Farzan & Kincaid, 2016]

Strategy Improvement

- We first compute a strategy skeleton for SAT
- Is this strategy winning?
	- Yes, return winning strategy skeleton
	- No, compute UNSAT's counter-strategy

Counter Strategy

= ∀ ∀. 0, , , ∨ ∀. 0, , 2, ¬ ¬is sat = ∃iff∃∃. ¬. ⊨0,¬,, 0, ,∧,∃". ¬∧¬0,0,,2,,2, %

 $M = {\underline{x} \mapsto -2, z_1 \mapsto -2, z_2 \mapsto -3}$

 $M^{\pi} = \{ w \mapsto 0 \} x \mapsto -2 \} y \mapsto -2 \} z \mapsto -2 \}$

 \overline{S}

 $[Farzan & Kincaid, 2016]$ ²⁴

Model-based Term Selection

$$
select(M, X, F) = \begin{cases} eq(M, x, F) & \text{if } EQ(M, x, F) \neq \emptyset \\ \frac{1}{2} (lub(M, x, F) + glb(M, x, F)) & \text{if } UB(M, x, F) \neq \emptyset \\ lub(M, x, F) - 1 & \text{if } UB(M, x, F) \neq \emptyset \\ glb(M, x, F) + 1 & \text{if } LB(M, x, F) \neq \emptyset \\ 0 & \text{otherwise} \end{cases}
$$

$$
EQ(M, x, F) = \{s : x = s \in F_x \land [x]^M = [s]^M\}
$$

$$
UB(M, x, F) = \{s : x < s \in F_x \land [x]^M < [s]^M\}
$$

$$
UB(M, x, F) = \{s : s > x \in F_x \land [s]^M < [x]^M\}
$$

$M \vDash F \Rightarrow M \vDash F[select(M, x, F)/x]$ $\{select(M, x, F): M \in F\}$ is finite **Properties of** *select*

Counter Strategy
\n= {*x*
$$
\mapsto
$$
 –*F* (0, *x*, *z*, *z*₁) \wedge \neg *F* (0, *x*, 2*x*, *z*₂)
\n
$$
M = \{x \mapsto -2, z_1 \mapsto -2, z_2 \mapsto -3\}
$$
\n
$$
U \qquad \neg
$$
\n
$$
V = \{w \mapsto 0\}x \mapsto -2\}y \mapsto -2\}z \mapsto -3
$$
\n
$$
V = \neg
$$
\n
$$
M^{\pi} = \{w \mapsto 0\}x \mapsto -2\}y \mapsto -2\}z \mapsto -3
$$
\n
$$
= \neg
$$
\n
$$
V = \neg F(w, -1, -1, -1) \wedge \neg F(w, -1, -2, -\frac{3}{2})
$$
\n
$$
= \neg F(w, x, x, x) \wedge \neg F(w, x, 2x, \frac{3x}{2})
$$
\n
$$
= \neg F(w, x, y, y)
$$
\n
$$
= \neg F(w, x, y, z)
$$
\n
$$
= \neg F(w, x, y, z)
$$
\n[Farzan & Kincaid, 2016]

Strategy Improvement

- We first compute a strategy skeleton for SAT
- Is this strategy winning?
	- Yes, return winning strategy skeleton
	- No, compute UNSAT's counter-strategy , trade roles, and repeat

Winning Strategy Skeleton

∃ $w \forall x \exists y \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$

Strategy Synthesis

- A winning strategy skeleton isn't a strategy:
	- Some strategy conforming skeleton, S, is winning
	- Can we compute a winning strategy from S? **YES** ⁰
- Label skeleton node's with deterministic guards
	- Computed using Tree Interpolants
		- Interpolants represent plays reaching a node where UNSAT may win

 $x + 2$

 $x + 1$

 \mathcal{S}

2

Tree Interpolation

Strategy Synthesis

∃ $w \forall x \exists y \forall z. (y < 1 \lor 2w < y) \land (z < y \lor x < z)$

Infinite Games

Infinite Games

- Given $A \subseteq \mathbb{N}^{\mathbb{N}}, G(A)$ is an infinite game:
	- Two players: I and II
		- Take turns choosing a natural number (forever)
		- Both know A the set of wins for player I (losses for player II)
		- x_i and y_i represents the ith move by I and II respectively

I	x_0	x_1	...	x_i	...
II	y_0	y_1	...	y_i	...

- $s = x_0 y_0 x_1 y_1 ...$ is a play of $G(A)$
- Player I wins iff $s \in A$ and Player II wins iff $s \notin A$

Strategies

- Given an infinite game $G(A)$:
	- A Strategy for player I is a function, σ :
		- $\sigma : \{s \in \mathbb{N}^* : |s| \text{ is even}\} \to \mathbb{N}$
	- A strategy for player II is a function, τ :
		- $\tau : \{s \in \mathbb{N}^* : |s| \text{ is odd}\} \to \mathbb{N}$
	- $\sigma * t$ is a play where I plays with σ and II plays t
	- $s * \tau$ is a play where I plays with s and II plays τ
	- $plays(\sigma) = {\sigma * t : t \in \mathbb{N}}^{\mathbb{N}}$
	- $plays(\tau) = \{s * \tau : s \in \mathbb{N}^{\mathbb{N}}\}\$

Winning Strategies

- Given a game $G(A)$:
	- σ is a winning strategy iff $plays(\sigma) \subseteq A$
	- τ is a winning strategy iff $plays(\tau) \subseteq \mathbb{N}^{\mathbb{N}}\backslash A$

Theorem: For all games, $G(A)$, player I and II cannot

both have a winning strategy.

Proof.

Suppose not.

I has a winning strategy σ and II a winning strategy τ . Let $s = \sigma * \tau$ be the play where I follows σ and II follows τ . Necessarily $s \in A$ and $s \notin A$, a contradiction. QED

Determinacy

- A game G(A) is determined iff Player I or II has a winning strategy
	- There is at most one winner
	- Is there at least one winner?

Theorem: There exists an infinite game that is not determined.

- Finitely decided games:
	- $G(A)$ is finitely decided iff $\forall s \in A$. $\exists n$. { $s': \forall i < n$. $s'_i = s_i$ } $\subseteq A$

Theorem: All finitely decided games are determined.

Strategy Synthesis (for infinite games)

Reachability Games

- $G(int, reach, safe)$ is an infinite game:
	- Two players REACH and SAFE alternate picking \mathbb{Q}^d positions
	- REACH starts by picking r_0 satisfying *init*
	- SAFE moves from REACH's choice, r_i , to any state s_i satisfying *safe*(r_i , s_i)
	- REACH then continues play choosing r_{i+1} satisfying reach(s_i , r_{i+1})
	- The first player to make an illegal move loses.
	- SAFE wins all games where both players only make legal moves.
	- The game is determined
	- Deciding which player wins is undecidable

Strategy Synthesis

• Key Idea: use bounded games to produce satisfiability games. $\exists x_1 \forall y_1 ... \exists x_n \forall y_n \text{ } init(x_1) \land \text{ } safe(x_1, y_1) \Rightarrow unroll(1, n - 1)$ $unroll(k, 0) \stackrel{\text{def}}{=} false$

 $unroll(k, d) \triangleq reach(y_k, x_{k+1}) \wedge (safe(x_{k+1}, y_{k+1}) \Rightarrow unroll(k+1, d-1))$

- If REACH (SAT) wins the bounded game
	- REACH wins the unbounded game
	- Any extension of the finite strategy is a winning strategy
- If SAFE (UNSAT) wins the bounded game
	- Attempt to generalize strategy to infinite games

Cinderella-Stepmother Game

- Two players Cinderella and her Stepmother.
- Each round
	- Stepmother adds 1L of water to a buckets (3L capacity)
	- Cinderella can empty two adjacent buckets
- Cinderella wins if no bucket overflows

Safety Tree

Cinderella-Stepmother Game

Cinderella's Strategy Always empty b_1 and b_2

Round 2: 1 3 4

Stepmother fills b_3

Refine Safety Tree

Cinderella-Stepmother Game

Cinderella's Strategy Empty b_1 and b_2 always but rd 3 Rd 3 empty b_3 if full else b_5

Round 2: 1 3 4 5:

Stepmother fills b_3

Refine Safety Tree

 $[Farzan & Kincaid, 2018]$ 45

Conclusion

- Finite Games
	- Game Semantics
	- Connection between quantification and choices
	- Satisfiability Games
	- Strategy Improvement & Strategy Synthesis
- Infinite Games
	- Reachability Games
	- Strategy Synthesis by generalizing bounded game strategies

References

Farzan, Azadeh and Kincaid, Zachary. Linear Arithmetic Satisfiability via Strategy I

- Farzan, Azadeh and Kincaid, Zachary. Strategy Synthesis for Linear Arithmetic Gan POPL, Article 61 (January 2018)
- Hintikka, Jaakko. 1982. Game-theoretical semantics: insights and prospects. *Notre I* Ind. 23, 2 (1982), 219–241.

Khomskii, Yurii. Infinite Games. *Lecture Notes*. University of Sofia, Bulgaria. July