
Research Statement

Charlie Murphy, CS Department, University of Wisconsin–Madison

Software has become a ubiquitous part of modern society—e.g., the applications we use to com-
municate with each other, process banking transactions, operate medical systems, facilitate infras-
tructure, and more. Our reliance on these computerized systems in our everyday lives means that
we as a society and as individuals can face large consequences when the software running these
systems do not behave as intended.

My research aims to build tools that assist software developers—both amateur and professional—
in creating software the behaves as intended.

My research starts from the principle that developing frameworks (general purpose solu-
tions) is better than building one-off tools for a specific task. While program verification—
proving that a program behaves as intended—and synthesis—generating a program that behaves
as intended—are foundational problems in computer science that have been long studied ([7, 18]).
The vast majority of methodologies and solutions proposed ([11, 16, 19, 22, 23, 26]) are one-off
solutions that are tied to a specific language and specification type (e.g., safety of C programs).
My work aims to address this limitation by building general purpose verification and synthesis
techniques on top of language frameworks—frameworks that are capable of expressing verification
and synthesis problems across a large class of languages and specification types (e.g., the K [3] and
Semantics-Guided Synthesis [14] frameworks).

My work in this area can be broadly classified into three interconnected pieces: (i) development
of language frameworks and general purpose verification and synthesis techniques, (ii) generalizing
domain specific techniques to language frameworks, and (iii) co-development of logic solvers to
enable and improve reasoning about language frameworks.

1 Development of Synthesis and Verification Frameworks

While frameworks have been applied successfully to many problems in computer science, they have
only recently seen use within program synthesis and verification (e.g., [3, 14, 30, 26]). This is
in part due to the complexity of these problems. Developing a general-purpose framework for
program verification and synthesis requires a unified representation across different programming
languages, specifications, and paradigms (i.e., imperative, functional, and declarative languages).
While there are many programming languages with a large variety of syntactic structures each with
their own semantics, a natural lingua-franca is first-order logic (with fixed-points e.g., constrained
horn clauses (CHCs))—i.e., the semantics of any program can naturally be encoded in first-order
logic with fixed-points used to capture recursive behaviors. In fact, this is what many techniques
for program verification (e.g., [10]) and synthesis (e.g., [1]) already do, except often on an ad-hoc
program-by-program basis as opposed to at the language level via a framework.

The development of these frameworks is attractive as they allow representing verification and
synthesis problems from a very general class of languages; however, there are 2 main problems to
overcome to make their use feasible. First, one must represent their desired language within the
framework, which requires a formal semantics for the language be available. While it has long been
considered difficult to develop a formal semantics for a programming language, recent advances have
made it easier and companies (e.g., Runtime Verification: https://runtimeverification.com/)

Charlie Murphy - Research Statement Page 1 of 6

https://runtimeverification.com/


even offer their services in developing such semantics. Finally, the generality of the framework is
a double-edged sword: while it lets one uniformly represent and solve problems in a domain and
solver agnostic way, general purpose solvers must deal with the generality (often at the cost of
scalability).

To date, two language-agnostic frameworks have been proposed for program verification and
synthesis: The K framework [3] and—the one I have been involved in developing—the Semantics-
Guided Synthesis framework [5]. Both frameworks share similarities—they allow a user to define
a language in their framework by defining its syntax and a semantics that is inductively defined
over its syntactic constructs. The key difference between the two is their focus. The K framework
is focused on providing language tooling (e.g., compiler, interpreter, and type checker), while the
Semantics-Guided Synthesis (SemGuS) framework is focused on representing synthesis problems
in a solver and domain-agnostic way to facilitate the development of general-purpose synthesis
techniques.

In the paper “Synthesizing Formal Semantics from Executable Interpreters” [17], my co-authors
and I aim to reduce the burden of a user by developing a technique to automatically synthesize
a SemGuS compatible formal semantics from an executable interpreter for a given language.
We employ a counter-example guided inductive synthesis procedure that reduces the problem of
synthesizing the semantics of an entire language to synthesizing first-order constraints that capture
the semantics of each individual semantic construct (i.e., production of the grammar)—reducing
the monolithic semantics synthesis problem to a series of simpler synthesis problems that can be
solved via a syntax-guided synthesis (SyGuS) solver (e.g., CVC5).

My work “Verifying solutions to Semantics-Guided Synthesis Problems” ([27]) builds upon the
SemGuS framework and develops the logical underpinnings of reasoning about SemGuS
problems with logical specifications. Previously, SemGuS solvers were limited to SemGuS
problems whose specifications consisted of a (finite) set of input-output examples. In contrast, my
work has enabled the development of a SemGuS solver that (for the first time) was capable of
solving SemGuS problems with arbitrary (quantified) logical specifications. More concretely, my
work offers a complete reduction from SemGuS verification problems to µCLP validity (a first-
order fixed-point logic with least and greatest fixed-point operators [31]). Finally, my work uses
the connection between SemGuS verification and µCLP to develop the SemGuSµ framework (an
extension of SemGuS) that is capable of representing both functional and reactive (e.g., controller)
synthesis problems—two classes of synthesis problems that have long been considered disjoint.

2 Generalizing Domain Specific Techniques

While general-purpose frameworks allow one to develop techniques that work for any problem
instance, general purpose techniques may scale significantly worse than corresponding domain-
specific (e.g., language/specification aware) techniques. Thus, my work also aims to identify sub-
classes of problem instances in which specialized techniques (possibly inspired by domain specific
techniques) may be applied.

For example, in “Verifying solutions to Semantics-Guided Synthesis Problems” ([27]), I identify
two sub-classes of problems in which verification can be respectively reduced to a single verification
condition expressed in the satisfiability modulo theories (SMT) or CHC fragment of first-order
logic—for which more scalable solvers exist (in comparison to µCLP). In addition, I embedded the
developed SemGuS verifier into an enumerative synthesis algorithm to develop the first SemGuS
synthesizer capable of solving SemGuS problems with logical specifications.

Charlie Murphy - Research Statement Page 2 of 6



3 Co-development of Logic Solvers

As noted previously, first-order logic is a natural lingua-franca for expressing programs regardless
of language or paradigm. As such, it is natural to expect techniques for reasoning about programs
to require the use of logic/constraint-based solvers. In fact, even language and specification aware
techniques for verification and synthesis typically require multiple calls to logic solvers (e.g., [2,
10, 25]). Thus, a natural way to improve and/or enable the development of such techniques is by
improving the logic solvers that underly the verification and synthesis techniques. For
example, improvements to SAT solvers in the early 2000’s allowed for the development of many
hardware model checking techniques [4]. Similarly, the development of SMT and CHC solvers
enabled the development of many program verification, synthesis, and analysis techniques [6, 9].
And most recently, µCLP has emerged as a first-order fixed-point logic that is capable of uniformly
expressing a large class of program verification problems [31].

My work on logic solvers has primarily focused on developing techniques that naturally
support the construction of proofs that can be inspected and used in higher-level tasks (e.g.,
program verification and synthesis). My work in “Linear Arithmetic Satisfiability Via Fine-Grained
Strategy Improvement” ([28]) develops a decision procedure for quantified linear arithmetic satis-
fiability (and more generally for decidable theories of a specific form). My technique takes a game
theoretic approach to satisfiability and produces a winning strategy (i.e., a certificate/proof) that
either proves the formula is satisfiable or unsatisfiable. In “Relational Verification via Weak Simu-
lation” ([29]), I show how a winning strategy to an LIA satisfiability game can be used to handle
complications arising from angelic non-determinism. Furthermore, in my recent work “Strategy
Synthesis for Validity of the µCLP Calculus” (work in progress), I similarly take a game theoretic
view to develop a semi-decision procedure for proving the validity of a µCLP query by synthesizing
a winning strategy that proves the µCLP formula valid (or invalid), which allows one to use the
extracted proof in higher-level tasks (e.g., using the extracted proof to generate counter-examples
when a verification condition (represented in µCLP) is violated).

4 Future Directions

My current and future research is focused on co-developing logic solvers and general purpose frame-
works for program synthesis and verification. As part of this research direction, last spring I sub-
mitted (with Loris D’Antoni) an NSF small grant proposal to develop the logical foundations of
verification and synthesis for the Semantics-Guided Synthesis framework, which while not funded
received competitive scores. My recent and current work (described above) addresses the problem
of developing a logical foundation to reason about SemGuSµ problems.

Software development has flourished in modern society, and software developers write code
in an ever increasing number of programming languages—for which domain specific tech-
niques/tools may not apply. My research directly addresses the lack of domain-specific tools for
new or under-resourced languages by offering language-agnostic verification and synthesis tech-
niques that work for any language—whether the software developer is developing a safety-critical
application in a new C-like language or writing a reactive controller in some domain specific lan-
guage that must satisfy a complex hyperproperty. While the developer would need to provide a
formal semantics of the language, my work on automatically synthesizing formal semantics from an
executable interpreter reduces the burden placed on the developer and need only be done once per
language. Additionally, I plan to develop an ecosystem for the verification and synthesis framework

Charlie Murphy - Research Statement Page 3 of 6



that provides the user with semantics of common languages.
Furthermore, my research on language-agnostic verification and synthesis has opened up new

opportunities to explore cross-language reasoning—e.g., equivalence of programs in different lan-
guages [15], verification of programs that use linked libraries [32], and proving equivalence of spec-
ifications in different specification languages [13]. Specifically, my work on program verification
and synthesis frameworks allows one to reason about programs written in more than one program-
ming language by providing the semantics of all languages involved—effectively creating a program
verifier/synthesizer for the combination of languages.

Cross-language program equivalence. When programming, a common task is transpiling
code from one language to a user (e.g., by using stack overflow or more recently large language
models like chat-gpt) [33]. The translation task from one language to another can be error prone
(even for automated techniques) [33]. Work on automatically transpiling code has either focused on
(i) soundly translating code from one specific language to another [20] or (ii) on unsound methods
which have typically used machine learning/large language models [33]. My work offers the ability
to either (i) automatically verify that the transpiled program is equivalent to the original program
or (ii) synthesize a correctly transpiled program (assuming one is willing to encode both the source
and target languages within a verification/synthesis framework).

Verifying programs with linked code. Similarly, a common practice in software development
is the use of linked code from different languages (e.g., a python program that includes library code
that was written in C) [24]. Existing approaches to address this problem have typically required a
kind of rely-guarantee style reasoning of the program and library code [21]—i.e., by requiring the
user to provide a specification at the boundary of the two languages—or via compilation to some
intermediate language [8]. In contrast, my research enables reasoning at the source level of both
languages without the user needing to provide a specification at the language boundaries (e.g., of
the library code).

Equivalence of specifications. Finally, in large scale proof and verification efforts it is common
to use multiple tools/proof systems to reason about the proof/program, which can often require
translating a specification from one specification language to another at the “boundaries” of the
proofs—e.g., as done in IronFleet which uses both TLA+ and Dafny to prove correct a distributed
system [12]. The translation of the specification at the boundaries of the proof efforts are typically
done by hand (by an expert) and trusted. My work enables proving that the specifications at
the boundaries of the proof effort (written in two separate specification languages) are equivalent
(and thus that the proof of both parts can be soundly combined)—i.e., specification languages like
programming languages can be defined by their syntax and semantics and formally reasoned about.

References

[1] Ahlgren, J., and Yuen, S. Y. Efficient program
synthesis using constraint satisfaction in inductive
logic programming. The Journal of Machine Learn-
ing Research 14, 1 (2013), 3649–3682.

[2] Beyer, D., Dangl, M., and Wendler, P. A uni-
fying view on smt-based software verification. Jour-
nal of automated reasoning 60, 3 (2018), 299–335.

[3] Chen, X., and Roşu, G. A language-independent
program verification framework. In International
Symposium on Leveraging Applications of Formal
Methods (2018), Springer, pp. 92–102.

[4] Claessen, K., Een, N., Sheeran, M., and
Sorensson, N. Sat-solving in practice. In 2008 9th
International Workshop on Discrete Event Systems
(2008), IEEE, pp. 61–67.

Charlie Murphy - Research Statement Page 4 of 6



[5] D’Antoni, L., Hu, Q., Kim, J., and Reps, T. Pro-
grammable program synthesis. In Computer Aided
Verification: 33rd International Conference, CAV
2021, Virtual Event, July 20–23, 2021, Proceedings,
Part I 33 (2021), Springer, pp. 84–109.

[6] Ferrara, P., Arceri, V., and Cortesi, A. Chal-
lenges of software verification: the past, the present,
the future. International Journal on Software Tools
for Technology Transfer (2024), 1–10.

[7] Fetzer, J. H. Program verification: The very idea.
Communications of the ACM 31, 9 (1988), 1048–
1063.

[8] Garzella, J. J., Baranowski, M., He, S., and
Rakamarić, Z. Leveraging compiler intermediate
representation for multi-and cross-language verifica-
tion. In Verification, Model Checking, and Abstract
Interpretation: 21st International Conference, VM-
CAI 2020, New Orleans, LA, USA, January 16–21,
2020, Proceedings 21 (2020), Springer, pp. 90–111.

[9] Gurfinkel, A. Program verification with con-
strained horn clauses. In International Conference
on Computer Aided Verification (2022), Springer,
pp. 19–29.

[10] Gurfinkel, A., Kahsai, T., Komuravelli, A.,
and Navas, J. A. The seahorn verification frame-
work. In International Conference on Computer
Aided Verification (2015), Springer, pp. 343–361.

[11] Havelund, K. Runtime verification of c programs.
In International Workshop on Formal Approaches to
Software Testing (2008), Springer, pp. 7–22.

[12] Hawblitzel, C., Howell, J., Kapritsos, M.,
Lorch, J. R., Parno, B., Roberts, M. L., Setty,
S., and Zill, B. Ironfleet: proving practical dis-
tributed systems correct. In Proceedings of the 25th
Symposium on Operating Systems Principles (2015),
pp. 1–17.

[13] Hristov, M., and Bieniusa, A. Erla+: Translating
tla+ models into executable actor-based implemen-
tations. In Proceedings of the 23rd ACM SIGPLAN
International Workshop on Erlang (2024), pp. 13–
23.

[14] Kim, J., Hu, Q., D’Antoni, L., and Reps, T.
Semantics-guided synthesis. Proceedings of the ACM
on Programming Languages 5, POPL (2021), 1–32.

[15] Larson, M. L. Meaning-based translation: A guide
to cross-language equivalence. University press of
America, 1997.

[16] Le Charlier, B., Leclère, C., Rossi, S., and
Cortesi, A. Automated verification of prolog pro-
grams. The Journal of Logic Programming 39, 1-3
(1999), 3–42.

[17] Liu, J., Murphy, C., Grover, A., Johnson,
K. J., Reps, T., and D’Antoni, L. Synthesizing
formal semantics from executable interpreters. arXiv
preprint arXiv:2408.14668 (2024).

[18] Manna, Z., and Waldinger, R. A deductive ap-
proach to program synthesis. ACM Transactions on
Programming Languages and Systems (TOPLAS) 2,
1 (1980), 90–121.

[19] Maryasov, I. V., Nepomnyaschy, V. A., Prom-
sky, A. V., and Kondratyev, D. A. Automatic
c program verification based on mixed axiomatic se-
mantics. Automatic Control and Computer Sciences
48 (2014), 407–414.

[20] Metere, R., Lindner, A., and Guanciale,
R. Sound transpilation from binary to machine-
independent code. In Formal Methods: Foundations
and Applications: 20th Brazilian Symposium, SBMF
2017, Recife, Brazil, November 29—December 1,
2017, Proceedings 20 (2017), Springer, pp. 197–214.

[21] Müller, P. Modular specification and verification
of object-oriented programs. Springer, 2002.

[22] Pascutto, C. Runtime verification of OCaml pro-
grams. PhD thesis, Université Paris-Saclay, 2023.

[23] Pereira, M., and Ravara, A. Cameleer: a deduc-
tive verification tool for ocaml (extended version).
arXiv preprint arXiv:2104.11050 (2021).

[24] Shen, B., Zhang, W., Yu, A., Wei, Z., Liang,
G., Zhao, H., and Jin, Z. Cross-language code
coupling detection: A preliminary study on android
applications. In 2021 IEEE International Confer-
ence on Software Maintenance and Evolution (IC-
SME) (2021), IEEE, pp. 378–388.

[25] Si, X., Lee, W., Zhang, R., Albarghouthi, A.,
Koutris, P., and Naik, M. Syntax-guided synthe-
sis of datalog programs. In Proceedings of the 2018
26th ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foun-
dations of Software Engineering (2018), pp. 515–527.

[26] Solar-Lezama, A. The sketching approach to pro-
gram synthesis. In Asian symposium on program-
ming languages and systems (2009), Springer, pp. 4–
13.

[27] Murphy, C., Johnson, K., Reps, T., and
D’Antoni, L. Verifying solutions to semantics-
guided synthesis problems. arXiv preprint
arXiv:2408.15475 (2024).

[28] Murphy, C., and Kincaid, Z. Quantified linear
arithmetic satisfiability via fine-grained strategy im-
provement. In International Conference on Com-
puter Aided Verification (2024), Springer, pp. 89–
109.

[29] Murphy, T. C. Relational Verification of Dis-
tributed Systems Via Weak Simulations. Princeton
University, 2023.

Charlie Murphy - Research Statement Page 5 of 6



[30] Torlak, E., and Bodik, R. Growing solver-aided
languages with rosette. In Proceedings of the 2013
ACM international symposium on New ideas, new
paradigms, and reflections on programming & soft-
ware (2013), pp. 135–152.

[31] Unno, H., Terauchi, T., Gu, Y., and Koski-
nen, E. Modular primal-dual fixpoint logic solving
for temporal verification. Proceedings of the ACM
on Programming Languages 7, POPL (2023), 2111–
2140.

[32] Wang, P., Cuellar, S., and Chlipala, A. Com-
piler verification meets cross-language linking via
data abstraction. ACM SIGPLAN Notices 49, 10
(2014), 675–690.

[33] Yang, Z., Liu, F., Yu, Z., Keung, J. W., Li, J.,
Liu, S., Hong, Y., Ma, X., Jin, Z., and Li, G. Ex-
ploring and unleashing the power of large language
models in automated code translation. Proceedings
of the ACM on Software Engineering 1, FSE (2024),
1585–1608.

Charlie Murphy - Research Statement Page 6 of 6


