Proving Weak Simulation via Strategy Synthesis

ANONYMOUS AUTHOR(S)

Simulation has been widely used to relate the behavior of two programs. A (strong) simulation relates a program state to another when any action executable from the first is available to be executed by the second and the resulting post states remain related. Weak simulation is defined similarly; however, it introduces a notion of observability (e.g., sending or receiving messages). While strong simulations preserve exact sequences of actions, weak simulation only requires preserving observationally equivalent sequences of actions. For many applications, strong simulation is not permissive enough. For example, consider two programs that both receive a key as input then look up in a hash table the value to output. If the two hash tables use different hash functions, then strong simulation would say the two programs are not equivalent. While under weak simulation the two programs would be equivalent (as internal computations are considered unobservable).

This paper introduces a method to automatically prove weak simulation between two integer message passing programs. Our technique is the first to automatically prove simulation (weak or otherwise) between two non-deterministic infinite-state programs. Our technique is a semi-algorithm that employs the game semantics of weak simulation to synthesize a (finite representation of a) strategy that witnesses the existence of a simulation.

ACM Reference Format:

1 INTRODUCTION

There are many ways to define program equivalence including variants of Benton [2004]’s relational Hoare logic (RHL), trace equivalence, and variants of simulation [Milner 1971]. An important but challenging setting is message-passing programs, where we have to contend with (1) nondeterminism and (2) observability. Examples of this setting include distributed, reactive, and real-time systems and cryptographic protocols.

While variants of RHL and trace equivalence have seen extensive use in applications like translation validation, they are ill-suited to the context of message-passing programs. Consider the RHL specification \(\overline{x} = \overline{x}' \) \(P \sim P' \) \(\overline{x} = \overline{x}' \), where \(P' \) is a copy of program \(P \) with each variable \(x \) replaced by a copy \(x' \). The specification states that under any possible execution of \(P \) and \(P' \) if the programs start in identical states, then the programs end in identical states. Intuitively, one would expect this specification to always hold; however, if \(P \) is non-deterministic, then it may not. Additionally, it is possible for two programs \(P \) and \(Q \) to be trace equivalent even though \(Q \) may deadlock and \(P \) does not.

Milner [1989]’s work on simulation lays the foundation for defining program equivalence in the context of message-passing systems. In this paper, we consider a relational specification based on divergence preserving weak simulation. A classical (strong) simulation from program \(X \) to program \(Y \) requires that every behavior of \(X \) is matched step-by-step to a behavior of \(Y \). In the context of message-passing programs (among others), simulation is not permissive enough. It is possible
We consider simple message passing programs represented as control flow graphs. Weak simulation addresses this concern by relaxing the conditions for simulation to only consider observable behaviors—sending and receiving messages. However, weak simulation is too permissive, when X infinite loops, Y is free to do anything (e.g., terminate, infinite loop, or even send or receive messages). However, if the weak simulation relating X and Y is divergence preserving (X and Y have similar live-lock behaviors), Y must be able to infinite loop whenever X does.

We introduce a relational Hoare-style specification we call contextual simulation that takes the form $\{P\} X \preceq Y \{Q\}$. Contextual simulation specifies that X must be related to Y by a divergence preserving weak simulation within the context of a pre-specification P and post-specification Q.

In addition to defining contextual simulation, the main technical contribution of this paper is a semi-algorithm for proving or refuting the validity of a contextual simulation. While there are many techniques that can automatically compute simulation relations (of various kinds), our technique is the first to automatically prove the existence of a simulation (weak or otherwise) between two non-deterministic infinite state programs.

Verifying the validity of a contextual simulation $\{P\} X \preceq Y \{Q\}$ comes with several challenges. It combines aspects of program safety verification (i.e., all executions of X must be simulated by Y), termination verification (X and Y should be co-terminating), and program synthesis (non-determinism of Y should be treated angelically). In fact, the traditional Hoare logic partial correctness specification $\{P\} S \{Q\}$ can be encoded as the contextual simulation $\{P\} S \preceq \text{while}(\ast) \text{skip} \{Q\}$, while the total correctness specification $\{P\} S \{Q\}$ can be encoded as $\{P\} S \preceq \text{skip} \{Q\}$.

Our semi-algorithm, like several other methods for computing simulation [Bulychev et al. 2007; Etessami et al. 2005], is based on the game semantics of simulation. To prove or refute a contextual simulation $\{P\} X \preceq Y \{Q\}$, we exhibit a (finite-representation of) a strategy for the induced simulation game. To compute such a strategy, we iteratively solve finite duration games (for the next n moves of the game). To solve finite duration games, the first step removes data non-determinism from Y by instantiating any non-deterministic term with a deterministic term. This process is similar to solving a sketch-based synthesis problem. Specifically, one could think of each non-deterministic term of Y as a hole and the task is to synthesize a (deterministic) term for each hole such that Y continues to simulate X. Afterwards, invariant generation techniques are used to label the finite game’s strategy with labels that prove Y continues to simulate X. Then, the labeled strategy is used to extend the overall strategy for a greater duration; however, only expanding is insufficient to handle programs with loops. At certain points, we check to see if the current state of the game to be expanded has already been expanded before. If so, the semi-algorithm tries to re-use the strategy previously expanded. If this would form a cycle in the strategy, we ensure that any fragments of X and Y contained within the cycle are co-terminating (cf. Section 4 for full details).

The remainder of this paper is structured as follows. Section 2 provides background and defines contextual simulations. Section 3 gives the game semantics for contextual simulations. Section 4 describes our algorithm for synthesizing strategies for simulation games, which can be used to verify and refute contextual simulations. Section 5 describes SimVer, an implementation of our algorithm, and evaluates its performance. Section 6 compares our technique to related literature.

2 PRELIMINARIES

2.1 Programs

We consider simple message passing programs represented as control flow graphs.

Definition 2.1. A Control Flow Graph (CFG) is a finite labeled graph $G = (Loc, \rightarrow, in, out)$, where:

, Vol. 1, No. 1, Article . Publication date: February 2024.
• Loc is a finite set of control locations.
• \(\rightarrow \subseteq \text{Loc} \times \text{com} \times \text{Loc} \) is a finite set of directed edges, each labeled by a command.
• \(\text{in} \in \text{Loc} \) is a distinguished entry location
• \(\text{out} \in \text{Loc} \) is a distinguished exit location with no outgoing edges.

The language of commands is as follows:

\[
\langle \text{com} \rangle ::= \langle \{ \langle \text{bexp} \rangle \} \rangle \mid \langle \text{var} \rangle ::= \langle \text{exp} \rangle
\]
\[
\mid \text{havoc} \langle \text{var} \rangle. \langle \text{bexp} \rangle
\]
\[
\mid \text{send} \langle \text{exp} \rangle \text{chan}(\langle \text{exp} \rangle)
\]
\[
\mid \text{receive} \langle \text{var} \rangle \text{chan}(\langle \text{exp} \rangle)
\]

The language of expressions and Boolean expressions coincides with the languages of ground terms and formulas in linear integer arithmetic (LIA). In the remainder of the paper, we use “programs” and “control flow graphs” interchangeably. A program may include commands for guards (denoted as \([b] \) to mean assume \(b\)), deterministic and non-deterministic assignments, and communication (using send and receive) along shared channels, which are identified by integers. Programs contain three forms of non-determinism: scheduler non-determinism arising from locations with multiple outgoing edges, message non-determinism (arising from receive), as well as the instruction havoc \(x . b\), which non-deterministically assigns \(x\) a value such that \(x\) satisfies the Boolean expression \(b\). For any instruction receive \(x\) chan(\(c\)), we assume \(x\) does not appear in the expression \(c\). CFGs may represent both sequential and concurrent programs. The standard construction of the CFG of two processes running concurrently is the Cartesian product of the CFG of the two concurrent processes.

Semantics. A valuation \(\lambda : X \rightarrow \mathbb{Z}\) is a map from a finite set of variables \(X\) to the integers. We use \(\lambda[x \mapsto v]\) to denote the valuation that maps \(x\) to \(v\) and every other variable \(y\) to \(\lambda(y)\). For valuations \(\lambda_1\) and \(\lambda_2\) over disjoint domains, we use \(\lambda_1 \uplus \lambda_2\) to denote their common extension. We use \([e]_\lambda\) to denote the evaluation of a (Boolean) expression \(e\) under the valuation \(\lambda\), assuming that the domain of \(\lambda\) contains the variables in \(e\) (with its usual interpretation).

Given a program, \(P = \langle \text{Loc}, \rightarrow, \text{in}, \text{out} \rangle\) and a set of variables \(X\), the semantics of \(P\) are defined by a labeled transition system \(\text{Trans}(P) = \langle S, \rightarrow, \text{Init}, \text{Final} \rangle\). The labels are drawn from an observable alphabet \(\Sigma\) and a single distinguished unobservable action which we denote by \(\tau\). \(\Sigma\) contains two types of actions: send actions of the form \(s(v, c)\) ("send \(v\) on channel \(c\)"") and receive actions of the form \(r(v, c)\) ("receive \(v\) on channel \(c\)"), where \(v\) and \(c\) range over integers. A program state \(\lambda \cdot \ell\) is a valuation \(\lambda : X \rightarrow \mathbb{Z}\) paired with a control location \(\ell \in \text{Loc}\). \(S\) is the set of all such program states, \(\text{Init}\) is the set of all initial states (where \(\ell = \text{in}\)), and \(\text{Final}\) is the set of all final states (where \(\ell = \text{out}\)). Figure 1 gives the rules defining the transition relation \(\rightarrow\). Note that we use an open world assumption for communication: we suppose that the program is executed in an environment where external processes outside of the program can send and receive along any channel. Thus, communication instructions are never blocked, and a process may receive any value (including values that are not sent along that channel within the program); as a result, our semantics does not require an explicit representation of channel state. For brevity, for a program \(P\), we will use \(\text{Loc}_P\), \(\rightarrow_P\), \(\text{inp}_P\), and \(\text{out}_P\) to refer to the components of \(P\) (i.e. \(P = \langle \text{Loc}_P, \rightarrow_P, \text{inp}_P, \text{out}_P \rangle\)). Similarly, we use \(\text{Sp}_P\), \(\rightarrow_P\), \(\text{Init}_P\), and \(\text{Final}_P\) to refer to the components of its transition system (i.e. \(\text{Trans}(P) = \langle \text{Sp}_P, \rightarrow_P, \text{Init}_P, \text{Final}_P \rangle\)).

2.2 Simulation

We relate the behavior of two programs using divergence preserving [Van Glabbeek 2001] weak simulations [Milner 1989]. In a classical (strong) simulation, every transition of the system must be
matched step by step with a transition of the protocol. Weak simulations relax this condition by matching every transition of the system with an observationally equivalent sequence of transitions. A simulation is divergence preserving if every divergent path (infinite sequence of unobservable transitions) of the system is matched by a divergent path of the protocol. To motivate our choice of simulation, consider the below schematic example implementation (left) and protocol (right), which differ in that the implementation includes some (communication-free) computation between receiving and sending a message.

\[\text{while true do} \]
\[\text{receive message;} \]
\[\text{do_work();} \]
\[\text{send response} \]
\[\text{done} \]

Example 2.1.

Under strong simulation there is no possible simulation—the implementation takes more steps than the protocol. Under a weak simulation, there is a simulation even if “do_work” fails to terminate, which is undesirable because an important correctness property of the protocol—that every request is eventually serviced—is invalidated by the implementation. A divergence preserving weak simulation between the implementation and specification is only possible if “do_work” is terminating. In Theorem 2.4, we show that divergence preserving weak simulations preserve the universal fragment of action CTL* without next-time operators [Nicola and Vaandrager 1990].

First we give some auxiliary definitions. Given a program, \(P \), a program state \(\sigma \) silently reaches a program state \(\sigma' \) (\(\sigma \xrightarrow{\alpha} P \sigma' \)), when there is a (possibly empty) sequence of silent transitions from \(\sigma \) to \(\sigma' \); that is, \(\xrightarrow{\tau} \sigma \xrightarrow{\sigma' \bar{\tau} \bar{\alpha}} P \sigma' \). For an observable action \(\alpha \in \Sigma \), \(\sigma \xrightarrow{\alpha} P \sigma' \), when there is a sequence of transitions from \(\sigma \) to \(\sigma' \), where one transition is an \(\alpha \) transition and the rest are silent transitions; that is, \(\xrightarrow{\sigma'} P \xrightarrow{\sigma \bar{\alpha} \tau} \xrightarrow{(\bar{\alpha} \tau)} P \).

Definition 2.2 (Weak Simulation). A binary relation \(R \subseteq S_P \times S_Q \) from program states of \(P \) to program states of \(Q \) is a weak simulation (from \(P \) to \(Q \)), if for any pair of states \(\sigma_P \) and \(\sigma_Q \) related by \(R \) (written \(\sigma_P R \sigma_Q \)), and all \(\sigma' \in S_P \) and \(\alpha \in \Sigma \cup \{\tau\} \) such that \(\sigma_P \xrightarrow{\alpha} P \sigma'_P \), there exists some \(\sigma'_Q \in S_Q \) such that \(\sigma_Q \xrightarrow{\alpha} P \sigma'_Q \) and \(\sigma'_P R \sigma'_Q \).

Definition 2.3 (Divergence Preserving). A weak simulation, \(R \subseteq S_P \times S_Q \), from program \(P \) to program \(Q \) is divergence preserving if for any pair of states \(\sigma_P \) and \(\sigma_Q \) related by \(R \) (\(\sigma_P R \sigma_Q \)), and all infinite silent paths \(\sigma_{P_0} \xrightarrow{\tau} P \sigma_{P_1} \xrightarrow{\tau} P \ldots \), starting from \(\sigma_P \) (\(\sigma_P = \sigma_{P_0} \)), there exists an infinite silent path \(\sigma_{Q_0} \xrightarrow{\tau} Q \sigma_{Q_1} \xrightarrow{\tau} Q \ldots \) starting from \(\sigma_Q \) (\(\sigma_Q = \sigma_{Q_0} \)) and an infinite sequence \(k_i, k_2, \ldots \) of naturals such that \(\sigma_{P_i} \) is \(R \)-related to \(\sigma_{Q_{k_i}} \) for all \(i \), and which is ascending (\(k_i \leq k_{i+1} \) for all \(i \)) and unbounded (for all \(n \in \mathbb{N} \), there is some \(i \) such that \(k_i > n \)).
It is well known that simulation relations preserve temporal logic formulas [Bensalem et al. 1992; Bulychev et al. 2007; Parrow et al. 2017]. We show that every divergence preserving weak simulation preserves the universal fragment of action CTL* without next time operators. Action CTL* is a branching-time logic for reasoning about labeled transition systems with observable actions [Nicola and Vaandrager 1990]. For example, action CTL* is able to formalize specifications such as “every request eventually receives a response” and “eventually every node will respond with the same value.” We provide full details of our formalization in the proof of Theorem 2.4 in Appendix C.

THEOREM 2.4. Let \(\varphi \) be any formula of the universal fragment of action CTL* without next-time operators (\(\forall \text{CTL}^*\)-\{X_p, X_r\}). If program \(P \) is related to program \(Q \) by a divergence preserving weak simulation and \(Q \) satisfies \(\varphi \) then \(P \) satisfies \(\varphi \).

See proof on page 30.

Contextual simulations are modular specifications of correctness of message passing programs based on divergence preserving weak simulation. A contextual simulation is a quadruple \(\{P\} \ src \leq tgt \ {Q} \) where \(src \) and \(tgt \) are both programs (presumed to be operating over disjoint sets of variables, say \(X \) and \(Y \)), and \(P \) and \(Q \) are Boolean expressions ranging over variables of both \(src \) and \(tgt \). We call \(src \) the source or implementation program and \(tgt \) the target or specification program. Since \(src \) and \(tgt \) operate over disjoint variables, we may use ordinary first-order formulas over both sets of variables as predicates for these joint states. Intuitively, \(\{P\} \ src \leq tgt \ {Q} \) asserts that any pair consisting of a \(src \)-state and \(tgt \)-state that jointly satisfy \(P \) are observationally equivalent and (after executing \(src \) and \(tgt \)) end in states that are related by \(Q \). For example, contextual simulations can express that a distributed system only implements the protocol when started in equivalent states, or that when both the implementation and protocol terminate they do so in related states.

Definition 2.5 (Contextual Simulation). We say a contextual simulation holds, \(\models \{P\} \ src \leq tgt \ {Q} \), if there exists a divergence preserving weak simulation \(R \subseteq S_{src} \times S_{tgt} \) such that

- \(R \) respects the pre-condition \(P \): every initial state of \(src \) and \(tgt \) that jointly satisfies \(P \) is related by \(R \). That is, for all \(\lambda_{src} : X \rightarrow \mathbb{Z}, \lambda_{tgt} : Y \rightarrow \mathbb{Z} \) such that \(\llbracket P \rrbracket_{\lambda_{src} \bowtie \lambda_{tgt}} \) is true, we have \(\langle \lambda_{src} \triangleright in_{src} \rangle R \langle \lambda_{tgt} \triangleright in_{tgt} \rangle \).
- \(R \) respects the post-condition \(Q \): whenever a final state \(\sigma_{src} \) is related to a state \(\sigma_{tgt} \) by \(R \), then \(\sigma_{tgt} \) must silently reach a final state \(\sigma_{tgt}' \) such that \(\sigma_{src} \) and \(\sigma_{tgt}' \) jointly satisfy the post-condition \(Q \). That is, for all \(\langle \lambda_{src} \triangleright out_{src} \rangle \) and \(\sigma_{tgt} \) such that \(\langle \lambda_{src} \triangleright out_{src} \rangle R \sigma_{tgt} \), there is some \(\lambda_{tgt} \) such that \(\sigma_{tgt} \xrightarrow{\tau} tgt (\lambda_{tgt} \triangleright out_{tgt}) \) and \(\llbracket Q \rrbracket_{\lambda_{src} \bowtie \lambda_{tgt}} \) is true.

3 GAME SEMANTICS OF SIMULATION

This section describes (1) a game semantics for contextual simulations and (2) labeled simulation game unwoundings, a finite representation of a (partial) strategy for Verifier in a simulation game. This forms the basis of the algorithm in Section 4 for verifying contextual simulations. Figure 2 displays a contextual simulation along with a complete well-labeled game unwinding, which we will use as a running example.

3.1 Semantic Simulation Game

Every contextual simulation defines an infinite game \(G(\{P\} \ src \leq tgt \ {Q}) \) played by two players, Falsifier and Verifier. Verifier’s goal is to prove the validity of the contextual simulation, Falsifier’s is to disprove it. If we look at Definition 2.2, we see that each step of the implementation must be matched by an observably equivalent sequence of transitions from the specification. In our game, Falsifier controls the implementation and Verifier the Specification. Intuitively, in a play of the game,
Falsifier tries to construct a trace of the implementation that has no observationally equivalent trace in the Specification, whereas Verifier tries to construct an observationally equivalent trace of the specification for the trace Falsifier constructs.

A play of the game proceeds with Falsifier and Verifier taking turns choosing moves forever (not necessarily strictly alternating between the two players). A move consists of the active player choosing the next place. A place is either a Falsifier place or Verifier place. A Falsifier place dictates that the next move belongs to Falsifier, while Verifier places dictate that the next move belongs to Verifier. A Falsifier place takes the form \(F(\ell_{src}, \ell_{tgt}, \lambda) \) where \(\ell_{src} \in \text{Loc}_{src}, \ell_{tgt} \in \text{Loc}_{tgt}, \) and \(\lambda : (X \cup Y) \rightarrow \mathbb{Z} \) (recall we assume src and tgt operate over disjoint sets of variables, X and Y). A Verifier place takes the form \(V(\alpha, \ell_{src}, \ell_{tgt}, \lambda) \) where \(\alpha \in \Sigma \cup \{\tau\} \) indicates the most recent label a transition executed by src, and \(\ell_{src}, \ell_{tgt}, \) and \(\lambda \) are as before.

The set of all moves \(M \) is the set of all Verifier and Falsifier places. A position \(s \in M^* \) is a finite sequence of moves, and a play \(p \in M^* \) is an infinite sequence of moves. Falsifier makes the first move. Afterwards, the next player to make a move is dictated by the final place of the position (e.g. Falsifier makes the next move if and only if the final place of the position is a Falsifier place). We define the winning conditions in terms of the legal positions of the game. The legal positions are defined inductively as follows:

- (Initialization) The game begins in an arbitrary joint state \(\lambda \) satisfying the pre-condition \(\mathcal{P} \), with the source and target in their initial positions and with Falsifier to play. Formally:
 1. If \(\mathcal{P}_{\lambda} \) is true, then \(F\left(in_{src}, in_{tgt}, \lambda \right) \) is legal.
 2. (Falsifier) For a legal prefix ending in a Falsifier place, the game continues where Falsifier must choose an outgoing transition of src and let Verifier attempt to match the chosen transition. Formally:

 - If \(s \cdot F\left(\ell_{src}, \ell_{tgt}, \lambda \right) \) is legal and \(\lambda \triangleright \ell_{src} \xrightarrow{\alpha}_{src} \ell'_{src} \triangleright \ell'_{src} \), then \(s \cdot F\left(\ell_{src}, \ell_{tgt}, \lambda \right) \cdot V\left(\alpha, \ell'_{src}, \ell_{tgt}, \lambda' \right) \) is legal
 - (Match) For a legal prefix ending in a Verifier place, Verifier may continue the game by choosing an outgoing transition of tgt that is labeled with the same action of the transition previously chosen by Falsifier. Verifier then continues its turn released of its obligation of executing a transition matching Verifier’s action. Formally:

 - If \(s \cdot V\left(\alpha, \ell_{src}, \ell_{tgt}, \lambda \right) \) is legal and \(\lambda \triangleright \ell_{tgt} \xrightarrow{\alpha}_{tgt} \ell'_{tgt} \triangleright \ell'_{tgt} \), then \(s \cdot V\left(\alpha, \ell_{src}, \ell_{tgt}, \lambda \right) \cdot V\left(\tau, \ell_{src}, \ell_{tgt}, \lambda' \right) \) is legal
 - (Continue) For a legal prefix ending in a Verifier place, Verifier may continue the game by choosing a silent transition of tgt. Verifier then continues its turn. Formally:

 - If \(s \cdot V\left(\alpha, \ell_{src}, \ell_{tgt}, \lambda \right) \) is legal and \(\lambda \triangleright \ell_{tgt} \xrightarrow{\tau}_{tgt} \ell'_{tgt} \triangleright \ell'_{tgt} \), then \(s \cdot V\left(\alpha, \ell_{src}, \ell_{tgt}, \lambda \right) \cdot V\left(\alpha, \ell_{src}, \ell'_{tgt}, \lambda' \right) \) is legal
 - (Pass) For a legal prefix ending in a Verifier place, if Verifier has satisfied its matching obligation then Verifier may choose to pass their turn. Formally:

 - If \(s \cdot V\left(\tau, \ell_{src}, \ell_{tgt}, \lambda \right) \) is legal, then \(s \cdot V\left(\tau, \ell_{src}, \ell_{tgt}, \lambda \right) \cdot F\left(\ell_{src}, \ell_{tgt}, \lambda \right) \) is legal

We say that Falsifier wins a play if

- There is an illegal prefix of the form \(s \cdot V\left(\alpha, \ell_{src}, \ell_{tgt}, \lambda \right) \cdot m \) such that \(s \cdot V\left(\alpha, \ell_{src}, \ell_{tgt}, \lambda \right) \) is legal (i.e., Verifier makes the first illegal move), or
- There is a legal prefix of the form \(s \cdot V\left(\tau, out_{src}, \ell_{tgt}, \lambda \right) \cdot F\left(\tau, out_{src}, \ell_{tgt}, \lambda \right) \) where \(\mathcal{Q}_{\lambda} \) is false or \(\ell_{tgt} \neq out_{tgt} \), or
- Every prefix is legal and Verifier either always passes or always continues.

A strategy for Verifier is a function \(g : \{ V\left(\alpha, \ell_{src}, \ell_{tgt}, \lambda \right) \in M \} \rightarrow M \) that maps each Verifier place to a move. We say a play \(p = p_0p_1p_2 \ldots \) conforms to Verifier’s strategy, \(g \), when every move
We propose simulation game unwindings as a finite representation of strategies for Verifier. Simulations of games conform to a strategy. Each node represents (a set of) places which belong to either Falsifier (square) or Verifier (circle). Any legal play starts at the root node 0_0 (indicating a Falsifier place). In the next move, Falsifier executes its havoc action and Verifier responds by passing its

made by Verifier is decided by g; that is, for all i such that p_i is a Verifier place, we have $p_{i+1} = g(p_i)$. We say g is **winning** if every play that conforms to g is won by Verifier. Strategies for Falsifier are defined analogously.

THEOREM 3.1. The contextual simulation $\{P\}$ $src \leq tgt \{Q\}$ is valid if and only if Verifier has a winning strategy for $G(\{P\})$ $src \leq tgt \{Q\}$.

See proof on page 33.

3.2 Simulation Game Unwindings

We propose simulation game unwindings as a finite representation of strategies for Verifier. Simulation game unwindings are proof objects that certify a given contextual simulation (analogous to program unwindings in program verification [McMillan 2006]). Figure 2 displays an example contextual simulation and a complete well-labeled simulation game unwinding proving its validity.

We first give intuition into how the example game unwinding corresponds to a strategy for Verifier, then derive the definition of (un)labeled simulation game unwindings, and finish by defining when a simulation game unwinding is well-labeled and complete.

Figure 2 can be understood as a representation of an infinite set of legal plays of the simulation game that conform to a strategy. Each node represents (a set of) places which belong to either Falsifier (square) or Verifier (circle). Any legal play starts at the root node 0_0 (indicating a Falsifier place). In the next move, Falsifier executes its havoc action and Verifier responds by passing its
Definition 3.2 (Simulation Game Unwinding). A Simulation Game Unwinding from program src to program tgt is a finite bipartite tree \(U = (F, V, E, r, L, S, T) \), where:

1. \(F \) and \(V \) are finite disjoint sets of nodes. Define \(N \doteq F \cup V \) to be the set of all nodes.
2. \((N, E) \) is a finite tree rooted at \(r \in F \).
3. \(S : N \rightarrow \text{Loc}_{src} \) and \(T : N \rightarrow \text{Loc}_{tgt} \) map each node to a src and tgt control location, respectively.
4. \(L : E \rightarrow \text{com} \) maps each edge to a command.

Such that \(S(r) = \text{in}_{src} \) and \(T(r) = \text{in}_{tgt} \), and for each edge \(\langle u, v \rangle \in E \):

- If \(u \in F \), then \(S(u) \xrightarrow{L(u, v)}_{src} S(v) \) and \(T(u) = T(v) \), and
- If \(u \in V \), then \(T(u) \xrightarrow{L(u, v)}_{src} T(v) \) and \(S(u) = S(v) \).

In Figure 2, each node is given the label \(S(n) \eta_{T(n)} \). We represent \(F \)-nodes with squares (e.g. \(0_0 a \)) and \(V \)-nodes with circles (e.g. \(2_0 a \)). Every edge \(\langle u, v \rangle \) is labeled with the command \(L(u, v) \). A simulation game unwinding from \(src \) to \(tgt \) represents a joint-unwinding of the two programs starting from the initial location of both programs. Each \(F \)-node unwinds one step of \(src \), while each \(V \)-node unwinds one step of \(tgt \). For instance, we see that from node 0 there is a single edge to node 1 labeled with the first command executed by \(src \). Similarly, node 2 has a single edge to node 3 labeled with the first command executed by \(tgt \).

Definition 3.3 (Labeled Simulation Game Unwinding). A Labeled Simulation Game Unwinding (from \(src \) to \(tgt \)) is a tuple \(\mathcal{L} = (U, \Phi, K, G, X, \triangleright, m) \), where:

1. \(U = (F, V, E, r, L, S, T) \) is a simulation game unwinding from \(src \) to \(tgt \).
2. \(\Phi : N \rightarrow \text{bexp} \) is a vertex label mapping each node to a formula over the variables of both \(src \) and \(tgt \).
3. \(K : E \rightarrow \exp \) is a partial map, which maps each edge \(\langle u, v \rangle \), where \(u \in V \) and \(L(u, v) \) is a havoc, to an expression that determinizes the havoc command.
4. \(G : E \rightarrow \text{bexp} \) is a partial map, which maps each edge \(\langle u, v \rangle \) where \(u \in V \) to a guard, a formula encoding the condition when the edge is taken.
5. \(X \subseteq N \) is a set of expanded nodes; nodes in \(N \setminus X \) are leaves of the tree.
6. \(\triangleright \subseteq (N \setminus X) \times X \) is a covering relation, with \(u \triangleright v \) indicating that the state of the simulation game represented by \(u \) is subsumed by the state of the game at \(v \). \(F \)-nodes may only be covered by \(F \)-nodes, and \(V \)-nodes may only be covered by \(V \)-nodes (i.e. if \(u \triangleright v \) then \(u \in F \Rightarrow v \in F \) and \(u \in V \Rightarrow v \in V \)).
7. \(m_F \) and \(m_V \) are measures (ranking functions), which serve as witnesses to certain well-foundedness conditions to be described in the following. The well-foundedness conditions ensure that Verifier may neither pass forever nor continue forever.

In Figure 2, next to each node, \(n \), we display the formula \(\Phi(n) \) (e.g. \(\Phi(0) \) is \(2i = j \)). Each \(V \)-edge, \(\langle u, v \rangle \), \((u \in V) \) is labeled with a guard (displayed as \(\{G(u, v)\} \)). Additionally, each \(V \)-edge from \(u \) to \(v \) labeled with a havoc command \(L(u, v) \) is some havoc \(x \). b) is labeled with a term \(K(u, v) \) (displayed as \(x \leftarrow K(u, v) \)). We display each \(u \triangleright v \) as a dotted edge from node \(u \) to node \(v \). X is
primarily a book-keeping variable and does not have a graphical representation. We also omit
the measures \(m_F \) and \(m_V \) from Figure 2, since the well-foundedness conditions are trivial for this
example.

Each labeled unwinding, \(\mathcal{L} \), represents a Verifier strategy, \(g_L \). To define \(g_L \), we first associate
each node \(n \) with a set of places \(\text{Places}(n) \), represented by the node’s labels. If \(n \) is an F-node, then
\(n \) is associated with all Falsifier places of the form \(F \langle S(n), T(n), \lambda \rangle \), where \(\Phi(n) \) is true. If \(n \) is
a V-node, then \(n \) is associated with Verifier places of the form \(V \langle \alpha, S(n), T(n), \lambda \rangle \) where \(\alpha \) is the
action to be matched, and \(\Phi(n) \) is true. (Note: we can compute \(\alpha \) by looking at the path from
the root of the unwinding to \(n \).)

For example in Figure 2, \(\text{Places}(3) \) contains all places \(V \langle r(msg, c), 2, b, \lambda \rangle \), where \(\varphi_2 \) is true,
\(msg = \llbracket x \rrbracket \) and \(c = \llbracket 2n \rrbracket \), since the preceding \(F \)-edge from node 1 to node 2 is labeled with
\(\text{receive } x \times \text{chan}(2n) \). \(\text{Places}(4) \) contains all places \(V \langle r, 2, c, \lambda \rangle \), where \(\varphi_3 \) is true, because the
\(\text{receive} \) command from node 1 to node 2 was already matched by the \(V \)-edge from node 3 to node 4.

Given \(\text{Places} \) we can define \(g_L \): given any Verifier place, \(V \langle \alpha, \ell, t, \lambda \rangle \), if \(V \langle \alpha, \ell, t, \lambda \rangle \) belongs
to \(\text{Places}(n) \) for some expanded node \(n \), then Verifier chooses a successor \(n' \) of \(n \), whose guard is
satisfied by \(\lambda \) and plays according to that edge. If \(V \langle \alpha, \ell, t, \lambda \rangle \) does not belong to \(\text{Places}(n) \) for any
\(n \), Verifier passes the turn.

Consider the place \(V \langle r, 2, c, \lambda \rangle \), where \(\varphi_3 \) is true. This place is associated with node 4. Necessarily,
\(\lambda \) either satisfies \(x < 0 \) (the guard from node 4 to node 5) or \(x \geq 0 \) (the guard from node 4 to node 6).
In the first case, we see the edge from node 4 to 5 is labeled with \(\text{havoc } z \cdot 0 \leq z \) and
a term \(\neg x \) that represents Verifier’s chosen strategy (\(z \) is assigned the value of \(\neg x \)). In this case,
the next move is \(V \langle r, 2, d, \lambda [z \mapsto c] \rangle \) where \(c = \llbracket \neg x \rrbracket \). The process proceeds analogously for all
Verifier places. We show in Theorem 3.6, that if the unwinding is well-labeled and complete, then
\(g_L \) is a winning strategy for Verifier.

Definition 3.4 (Complete). A labeled simulation game unwinding, \(\mathcal{L} = \langle U, \Phi, K, G, X, \triangleright, m \rangle \), is
complete when every node \(u \in N \) is either expanded (\(u \in X \)) or covered (\(\exists v : u \triangleright v \)).

The simulation game unwinding in Figure 2 is complete. The only un-expanded nodes are 8, 20,
and 31, which are covered by nodes 7, 5, and 6 respectively. The unwinding is also well-labeled, as
we will now define.

Given a labeled unwinding \(\mathcal{L} \), for any node \(v \in N \), there is a unique tree path \(v_0 v_1 ... v_n \) from
the root to \(v \) (i.e., \(r = v_0, v_n = v \), and \(v_i, v_{i+1} \in E \) for all \(i \)). Define \(F-pred(v) \) to be \(v_i \), where \(i \) is the
greatest index such that \(v_i \in F \), and define \(F-pred_c(v) = L(v_i, v_{i+1}) \) to be the command labeling the
edge leaving \(F-pred(v) \). \(F-pred(v) \) is well-defined for all nodes (in particular, \(F-pred(v) = v \) for all
\(v \in F \)). \(F-pred_c(v) \) is defined only if \(v \in V \).

Figure 3 defines two auxiliary functions on edges: \(\text{legal} \), which represents when the given \(V-
edge \) is allowed to be played; and \(\text{act} \), which represents how the post-state (primed variables) is
related to the pre-state (un-primed variables) when taking the given edge. Note that \(\text{legal} \) and \(\text{act} \)
(1) determine \(V \)-edge havoc commands (using the \(K \) map) and (2) encode when \(V \)-edge send
(resp. \(\text{receive} \)) commands are legal (if the preceding \(F \)-edge is labeled with a send (resp. \(\text{receive} \))
command, then equal messages are sent (resp. received) along equal channels).

Definition 3.5 (Well-Labeled). A labeled simulation game unwinding, \(\mathcal{L} = \langle U, \Phi, K, G, X, \triangleright, m \rangle \), is
well-labeled for a contextual simulation, \(\{ P \} src \leq tgt \{ Q \} \), when the Initial, Final, Consecution,
Observational Matching, Covering, Well-foundedness, and Adequacy conditions are met.

Initial: The root node annotation is entailed by the precondition: \(\{ P \} \models \Phi(r) \).
{\(b \) if \(L(u, v) = [b] \)
\{ \(b[x \leftarrow K(u, v)] \) if \(L(u, v) = \text{havoc } x \cdot b \)
\{ \(c_t = c_t \) \& \(c_t = c_t \) if \(L(u, v) = \text{send } e_t \text{ chan}(c_t) \) and
\{ \(F\text{-pred}(u) = \text{send } e_t \text{ chan}(c_t) \) if \(L(u, v) = \text{receive } x \text{ chan}(c_t) \) and
\{ \(c_t = c_t \) \& \(c_t = c_t \) if \(F\text{-pred}(u) = \text{receive } y \text{ chan}(c_t) \) and
\{ \(\text{false} \) if \(L(u, v) = \text{observable} \)
\{ \(\text{true} \) otherwise

\[
\text{legal}(u, v) = \begin{cases}
\{ x' = e \land \land_{\text{y_rel}} y = y' \} & \text{if } L(u, v) = x \equiv e \\
\{ x' = K(u, v) \land \land_{\text{y_rel}} y = y' \} & \text{if } L(u, v) = \text{havoc } x \cdot b \text{ and } u \in V \\
\{ b[x \leftarrow x'] \land \land_{\text{y_rel}} y = y' \} & \text{if } L(u, v) = \text{havoc } x \cdot b \text{ and } u \in F \\
\{ L(u, v) = \text{receive } x \text{ chan}(c_t) \} & \text{if } L(u, v) = \text{send } e_t \text{ chan}(c_t) \\
\{ y' = y' \} & \text{if } L(u, v) = \text{receive } y \text{ chan}(c_t) \text{ and } u \in F \\
\{ b \land \land_{\text{y_rel}} x = x' \} & \text{if } L(u, v) = [b] \text{ and } u \in F \\
\{ b \land \land_{\text{y_rel}} x = x' \} & \text{otherwise}
\end{cases}
\]

Fig. 3. Determines the legality and action of an edge of the game unwinding.

The initial condition ensures that every initial state of the source program and target program related by the pre-condition \(\mathcal{P} \) are related by the annotations of the root node. We can verify that this condition holds for the labeled unwinding in Figure 2: the root node’s annotation is \(2i = j \), which is exactly the given pre-condition.

Final: Every final node must have a label strong enough to prove the required post-condition \(\mathcal{Q} \):

\[
\forall u \in X \cdot S(u) = out_{\text{src}} \land T(u) = out_{\text{tgt}} \Rightarrow \Phi(u) \models \mathcal{Q}
\]

The final condition ensures that when both the source and target program reach a final state, they jointly satisfy the post-condition \(\mathcal{Q} \). We see that the labeled unwinding in Figure 2 has only one final node (node 9) and its annotation \(x = y \) is exactly the required post-condition.

Consecution: Each edge \(\langle u, v \rangle \in E \) must satisfy both of the following conditions.

1. If \(u \in F \), then \(\Phi(u)(X) \land act(u, v)(X, X') \models \Phi(v)(X') \)
2. If \(u \in V \), then \(\Phi(u)(X) \land G(u, v)(X) \land act(u, v)(X, X') \models legal(u, v)(X) \land \Phi(v)(X') \)

The first rule ensures that if Falsifier has a legal response \(m' \) following the edge from \(u \) to \(v \) to some place in \(\text{Places}(u) \), then \(m' \) belongs to \(\text{Places}(v) \). The second rule ensures that for any place \(m \) in \(\text{Places}(u) \) such that the valuation of \(m \) satisfies the guard \(G(u, v) \), Verifier has a legal move \(m' \) (executing the command \(L(u, v) \), treating \(\text{havoc } x \cdot b \) as an assignment of \(K(u, v) \) to \(x \)) such that \(m' \in \text{Places}(v) \).

For example, for any place associated to node 4, the valuation either satisfies the guard from node 4 to node 5 \((x < 0) \) or the guard from node 4 to node 6 \((x \geq 0) \). If it satisfies the guard from 4 to 5, the second consecution rule ensures that there is a legal move associated with node 5 that is decided by \(K \). It holds analogously, if the valuation satisfies the guard from 4 to 6.

Observational Matching: Every send (resp. receive) command labeling an edge outgoing from an \(F \)-node must eventually be matched by a send (resp. receive) command labeling an edge outgoing from a \(V \)-node along every path starting from the \(F \)-node’s send (resp. receive) command. More formally, for any \(F \)-edge, \(\langle u, v \rangle \in E \) and \(u \in F \) such that \(L(u, v) \) is a send (resp. receive) command, then for each path \(p = v_0, \ldots, v_n \) from \(v = v_0 \) to a leaf node \(v_n \) there is a unique \(v_i \) such that \(u \) is its most recent \(F \)-ancestor \((F\text{-pred}(u) = u) \), and either \(v_i \) is \(v_n \) and is un-expanded \((v_i = v_n \notin X) \) or \(L(v_j, v_{j+1}) \) is a send (resp. receive) command.

This rule ensures the syntactic requirements that every \(F \)-edge labeled with a send (resp. receive) command is always eventually matched by a single send (resp. receive) command labeling a \(V \)-edge before the next \(F \)-node is encountered. That is, when Verifier ends their turn, it is legal for Verifier to do so. For example, in Figure 2, we see that the receive command along the edge from 1 to 2 is followed by a receive command along the edge from 3 to 4 and the only edges between the two
and between nodes 4 and 5 and 4 and 6—Verifier ends their turn at nodes 5 and 6—are labeled with havocs (unobservable) commands.

Covering: If \(u \triangleright v \) then \(\Phi(u) \models \Phi(v) \), \(S(u) = S(v) \), \(T(u) = T(v) \). Moreover, if \(u \in V \), then either both \(F\text{-}\text{pred}_e(u) \) and \(F\text{-}\text{pred}_e(v) \) are unobservable or \(F\text{-}\text{pred}_e(u) = F\text{-}\text{pred}_e(v) \).

In order to cover a node (closing the path it ends), we must ensure there is an expanded node covering it such that any move associated with the covered node is also associated with the covering node. In Figure 2, nodes 8, 20, and 31 are covered by 7, 5, and 6 respectively.

Well-foundedness: We require that every path consisting of both tree edges and covering edges is either finite or visits both \(F \)-nodes and \(V \)-nodes infinitely often. To ensure this property, we require that the measure \(m_F \) (mapping state pairs to some well-founded order) is positive and strictly decreasing on every edge outgoing from an \(F \)-node. Similarly, \(m_V \) must be positive and strictly decreasing on every edge outgoing from a \(V \)-node.

The condition on \(m_F \) ensures that the Verifier strategy associated with a well-labeled unwinding always passes the turn to Falsifier after a finite number of steps. The condition on \(m_F \) ensures that the produced strategy is also divergent preserving. These conditions rule out cases where the target (resp. source) program has an infinite cycle containing only unobservable actions (and is not matched by an equi-terminating unobservable cycle within the source (resp. target) program).

While \(m_V \) tends to rule out a pathological case—the protocol contains a silent loop—, \(m_F \) is often important in distributed systems, since application logic may introduce loopy (but terminating) computations on messages received or messages to be sent. Recall Example 2.1, \(m_F \) ensures that we only allow proving simulation if “do_work” is terminating. All of the loops in Figure 2 contain both \(V \)-nodes and \(F \)-nodes, and so explicit measures are not necessary.

Adequacy: For each expanded node \(u \in X \),

1. If \(u \in F \), then for each \(S(u) \overset{a}{\rightarrow} l_x \) such that \(a \) is consistent with \(\Phi(u) \), there must be some node \(v \) such that \(\langle u, v \rangle \in E \), \(L(u, v) = a \), and \(S(v) = l_x \).
2. If \(u \in V \), then \(\Phi(u) \models \bigvee_{(u,v) \in E} G(u, v) \).

The first adequacy condition ensures that if Falsifier has a legal response \(m' \) to a place \(m \in \text{Places}(u) \) then there is some successor \(v \) of \(u \) with \(m' \in \text{Places}(v) \). The second ensures that starting from any place \(m \in \text{Places}(u) \), Verifier has some response to make (i.e. \(m' \)’s valuation satisfies at least one guard labeling the outgoing edges of \(u \)). In Figure 2, we can verify both of these conditions for every node. While nodes 10 and 21 of the labeled unwinding are at location 4 of the source program, which is a branching point of the CFG we see only one outgoing edge for either node. This is because the annotations of 10 and 21 are sufficient to rule out the other branch of the CFG. Similarly, most \(V \)-nodes trivially satisfy the second condition as they only have one successor node and the strategy guard of the outgoing edge is true. The interesting case is node 4. We see one outgoing edge guarded by \(x < 0 \) and the other guarded by \(0 \leq x \), which together cover \(\varphi_3 \) (the label of node 4).

Theorem 3.6. If there is a well-labeled complete simulation game tree for \(\{P\} \ src \preceq \ tgt \ \{Q\} \), then Verifier has a winning strategy for \(\mathcal{G}(\{P\} \ src \preceq \ tgt \ \{Q\}) \).

See proof on page 34.

4 SIMULATION VERIFICATION

This section presents an algorithm, Algorithm 1, for verification and refutation of contextual simulations. The algorithm is based on the game semantics for contextual simulation (Section 3). Given a contextual simulation, \(\{P\} \ src \preceq \ tgt \ \{Q\} \), the algorithm either (1) constructs a complete well-labeled game unwinding (a strategy for Verifier, which serves as a proof of the validity of the
contextual simulation), (2) constructs a winning strategy for Falsifier for a finite unrolling of the
game (a refutation of the contextual simulation), or (3) runs forever.

Algorithm 1 is inspired by Farzan and Kincaid [2017]’s method for synthesizing strategies for
safety games. It maintains a well-labeled simulation game unwinding L, which is initialized to
contain just the root node r. If at any step L is complete, then Verifier has a winning strategy
and the contextual simulation is valid. Otherwise, there is a witness to failure of the completeness
condition: a node v of L that is neither expanded nor covered. The algorithm proceeds by finding a
node to cover v, or (failing that) expanding the node v by computing a winning strategy for either
Verifier or Falsifier for a finite-horizon of the game. If Verifier wins the finite-horizon game, the
algorithm uses Verifier’s winning strategy to expand v; if Falsifier wins, it backtracks and expands
v’s parent with a greater horizon. If Falsifier wins a finite-horizon game starting from the root, then
the contextual simulation is refuted.

Algorithm 1: Strategy synthesis for contextual simulation.

```
1 Procedure Strategy-synthesis($\{P\} \preceq \{Q\}$)
2     $r \leftarrow$ fresh vertex, $F \leftarrow \{r\}$, $V \leftarrow \emptyset$, $\Phi(r) \leftarrow P$;
3     $S(r) \leftarrow \text{in}_\{P\}$, $T(r) \leftarrow \text{in}_\{Q\}$, $E \leftarrow \emptyset$, $L \leftarrow \emptyset$;
4     $X \leftarrow \emptyset$, $K \leftarrow \emptyset$, $G \leftarrow \emptyset$, $\preceq \leftarrow \emptyset$;
5     while $L$ is not complete do
6         Pick any $v \in N \setminus X$ that is not covered;
7         if $\text{force-cover}(v)$ then
8             continue
9         switch expand($v, 1$) do
10             case $\text{Fail}$: $f$ do
11                 return Counter strategy $f$
12             case $\text{Success}$ do
13                 continue
14         return simulation strategy $L$
```

Theorem 4.1. Algorithm 1 is sound. For any contextual simulation, if Strategy-synthesis($\{P\} \preceq \{Q\}$) terminates with a simulation strategy, then $\models \{P\} \preceq \{Q\}$. If Strategy-synthesis
instead terminates with a simulation counter-strategy then $\not\models \{P\} \preceq \{Q\}$.

See proof on page 36.

4.1 Expansion

To expand a node n commands, Algorithm 2 constructs the finite horizon game, $G(L, v, Q, n)$,
which is played as $G(\{P\} \preceq \{Q\})$ except that:

- legal plays begin with any place $m \in \text{Places}(v)$
- rather than having infinite duration, plays are sequences of moves containing n Verifier places
 (and at most n Falsifier place), excluding the first move of the play

The first condition ensures that play starts from a place associated with v. The second ensures
that any legal play consists of moves corresponding to a sequence of n commands. Every source
program command adds a single Verifier place to the play, a target command either adds a single
Verifier place or a Verifier place and Falsifier place when the next command is a source command.
We exclude the first place in the count as it doesn’t correspond to executing some command.
Falsifier wins the play if either of the first two winning conditions from simulation games apply—Verifier makes the first illegal move or Verifier has violated the final conditions of the game. Otherwise Falsifier wins the play.

Algorithm 2 computes a winning strategy of the finite-horizon game for the winning player. If Falsifier wins the finite-horizon game, then the algorithm backtracks to v’s parent and expands the game with a horizon of \(n + 1 \) (or if \(v \) is the root, it returns Falsifier’s strategy). If Verifier wins the finite-horizon game, then we may compute a well-labeled unwinding \(L_n \) for it. We may then “paste” \(L_n \) onto \(v \) by deleting the sub-tree rooted at \(v \) (including any possible covering edges) and then copying \(L_n \) below it.

Algorithm 2: Expand a vertex \(n \) commands

```plaintext
1 Procedure expand(v, n)
2   switch SimSat(VW(v, n)) do
3     case Sat: strat do
4       update-tree(v, n, strat);
5       return Success
6     case Unsat: strat do
7       if \( v = r \) then
8         return Fail: strat
9       Let \( u \) be \( v \)'s parent;
10      return expand(u, n + 1)
11   end
12 Procedure relabel(v, R)
13   \( \Phi(v) \leftarrow \neg R(Q_v); \)
14   if \( \Phi(v) \models false \) then
15     delete(v)
16   end
17   foreach \( \langle u, v \rangle \in E \) do
18     if \( v \in V \) then
19       \( G(v, u) \leftarrow \neg R(Q_v); \)
20       relabel(u, R)
21   end
22   foreach \( u \rightarrow v \) s.t. \( \Phi(u) \not\models \Phi(v) \) do
23     \( \triangleright \leftarrow \triangleright \setminus \{ \langle u, v \rangle \} \)
24 Procedure VW(v, n)
25   if \( v \in F \) then
26     \( \psi \leftarrow \text{VW}_F(S(v), T(v), n) \)
27   else
28     \( b \leftarrow F-\text{pred}^*_d(v); \)
29     \( \psi \leftarrow \text{VW}_F(S(v), T(v), b, n) \)
30     return
31   end
32 Function VW_F(l_s, l_t, n)
33   if \( l_s = \text{out}_{src} \) or \( n = 0 \) then
34     return true
35   else
36     return false
37   end
38 Procedure update-tree(v, n, strat)
39   delete(v);
40   copy-strat(a, n, strat);
41   Let \( R \) be a solution to Rules-of(v);
42   relabel(v, R)
43 Function VW_V(l_s, l_t, b, n)
44   if \( l_t = \text{out}_{tgt} \) and \( b \neq \text{None} \) then
45     return false
46   else
47     return \( Q \)
48   end
49 foreach \( l_t \rightarrow a \) do
50   if \( a \) is observable then
51     \( \psi \leftarrow \text{VW}_V(l'_s, l_t, a, n - 1); \)
52     \( \psi \leftarrow \text{match}(a, b, \psi); \)
53     \( \psi \leftarrow \text{VW}_V(l'_s, l_t, \text{None}, n - 1); \)
54     \( \psi \leftarrow \text{pre}(a, \psi); \)
55     \( \psi \leftarrow \psi \lor \text{pre}(a, \psi) \)
56   else
57     return \( \psi \)
58     return \( \psi \)
59   end
60   return \( \psi \)
```

Finite-Horizon Games. This section describes how to compute well-labeled unwindings for finite-horizon games. We use Figure 4 as a running example, which depicts the processes of expanding node 0 of Figure 2 four commands.

The first step is to encode the game into a quantified LIA formula. In the encoding, Falsifier is the demonic/UNSAT player—controlling conjunctions and universal quantifiers—and Verifier...
is the angelic/SAT player—controlling disjunctions and existential quantifiers. The finite game is constructed by unrolling the CFG of src and tgt for n commands starting from S(v) and T(v) and encoding the resulting tree into a LIA formula. Figure 4 (A) shows this unrolling starting from node 0 of Figure 2. Square nodes are where the outgoing commands are from src, circles for commands from tgt, and half each for nodes where the unrolling has commands from both programs. Figure 4 (B) shows the LIA formula corresponding to this unrolling. We jointly construct the unrolling and the corresponding LIA formula using VW, which is split into two mutually recursive functions VW_F and VW_V. The F variant computes a formula encoding the existence of a non-losing strategy for Verifier for the next n commands, where the next command is from src (played by Falsifier), while the V variant encodes when the next command is from tgt (played by Verifier). In both variants, l represents the control location of src and l_t represents the control location of tgt. These control locations dictate which transitions can be played by their respective players (i.e. only transitions corresponding to the commands available at the given control location). The V variant has an additional parameter b, which indicates the communication command that must be matched by Verifier (or None if Falsifier last played a silent command).

The VW procedures make use of some auxiliary functions, which we define here. F-pred_v(𝑣) is equal to F-pred_e(𝑣) if F-pred_e(𝑣) is observable and unmatched (no V-edge along the path from F-pred(𝑣) to 𝑣 is labeled with an observable command); otherwise it is None. The functions wp and pre denote weakest precondition and preimage predicate transformers, respectively:

\[
\begin{align*}
wp(𝑥 := e, 𝜓) & = 𝜓[𝑥 → e] \\
pre(𝑥 := e, 𝜓) & = 𝜓[𝑥 → e] \\
wp(\text{havoc } x. b, 𝜓) & = \forall k. b[𝑥 → k] ⇒ 𝜓[𝑥 → k] \\
pre(\text{havoc } x. b, 𝜓) & = \exists k. b[𝑥 → k] ∧ 𝜓[𝑥 → k] \\
wp([b], 𝜓) & = b ⇒ 𝜓 \\
pre([b], 𝜓) & = b ∧ 𝜓
\end{align*}
\]

For any silent command c and formula 𝜓, wp(c, 𝜓) is a formula satisfied by exactly those valuations that all c-successors satisfy 𝜓, while pre(c, 𝜓) is satisfied by exactly those valuations such that some c-successor satisfies 𝜓. VW_V and VW_F use pre and wp to encode the angelic interpretation of the target program and demonic interpretation of the source program. Finally, match encodes matching logic for observable commands. If Verifier wants to play send x chan(0) to match send y + 1 chan(z), then Verifier must prove that x is equal to y + 1 and z is equal to 0. This is the logic that match captures. Specifically, match takes three parameters (a, b, 𝜓), where a is an observable command (send/receive) of the target program, b is either an observable command of the source program or None, and 𝜓 is a formula. It computes a formula that captures those valuations under which a and b match, and upon execution result in a valuation that satisfies 𝜓:

\[
\text{match}(a, b, 𝜓) = \begin{cases}
(m = m' ∧ c = c' ∧ 𝜓) & \text{if } a = \text{send } m \text{ chan}(c), \\
(b = \text{send } m' \text{ chan}(c')) & \\
(c = c' ∧ \forall k. 𝜓[x → k, y → k]) & \text{if } a = \text{receive } x \text{ chan}(c), \\
b = \text{receive } y \text{ chan}(c')) & \\
\text{false} & \text{otherwise}
\end{cases}
\]

After constructing the winning formula VW(𝑣, n), it is passed to the SimSat algorithm from [Farzan and Kincaid 2016, 2017], which synthesizes a winning strategy for either the SAT player (Verifier) or the UNSAT player (Falsifier). Assuming that VW(v, n) is satisfiable (if VW(v, n) is unsatisfiable, the expansion algorithm backtracks), then SimSat produces a SAT strategy. For our purposes, we may think of the SAT strategy as a strategy game unwinding that is equipped with a partial map K that provides terms for the havoc commands in the target program (i.e., witnesses for the existential quantifiers in the winning formula). Figure 4 (C) shows the returned SAT strategy...
for the finite-horizon game in Figure 4 (B). To find suitable labels for \(\Phi \) and \(G \), we construct and solve a system of constrained horn clauses, Rules-of-\(v \). Any solution to these rules provides a valid labeling for \(\Phi \) and \(G \) to ensure that the unwinding is well-labeled. Figure 4 (E) shows the set of rules and their solution needed to construct \(\Phi \) and \(G \) for the expansion in Figure 4 (D).

For a vertex \(v \), define \(R(v) \) to be the set of vertices of \(L \) reachable from \(v \) using the edges in \(E \). We construct Rules-of-\(v \) as follows. For every vertex \(u \) in \(R(v) \), we allocate a relation symbol \(Q_u \) and for every edge \((u, w) \) starting at a \(V \)-node \(u \) in \(R(v) \) \& \(V \), we allocate a relation symbol \(Q_{u,w} \). \(Q_u \) represents a set of valuations from which Verifier’s strategy loses (starting at \(u \)), and similarly \(Q_{u,w} \) represents a set of valuations from which Verifier’s strategy loses (after taking the edge \((u, w) \)). To retrieve a labeling from a solution to Rules-of-\(v \), we set \(\Phi(u) \) to be the negation of the model of \(Q_u \), and \(G(u, w) \) to be the negation of the model of \(Q_{u,w} \). Rules-of-\(v \) are obtained from the contrapositive of the well-labeledness conditions for simulation unwindings (Definition 3.5).

For each vertex \(u \) in \(R(v) \),

1. If \(u \) is a \(F \)-node then for each \((u, v_i) \) \in \(E \) add the rule (Consecution)
 \[Q_u(X) \iff Q_{v_i}(X') \land guard(u, v_i)(X) \land act(X, X') \]

2. If \(u \) is a \(V \)-node, the rule says that Verifier loses from that node, if
 \[Q_u(X) \iff \bigwedge_{(u, v_i) \in E} Q_{u, v_i}(X) \]

 and for each \((u, v_i) \in E \) add the rule (Consecution)
 \[Q_{u,v_i}(X) \iff (Q_{v_i}(X') \land \neg legal(u, v_i)(X)) \land act(u, v_i)(X, X') \]

Intuitively, the local rule for an \(F \)-node says Verifier loses the strategy rooted at that node, if for any outgoing edge Falsifier plays according to the command labeling the edge and Verifier loses from the child’s sub-tree. For a \(V \)-node, the rule says that Verifier loses from that node, if Verifier loses for every outgoing edge. The rules for \(V \)-edges say that Verifier loses that edge if the command is infeasible or if Verifier loses the child’s subtree.

Given a freshly expanded sub-tree rooted at vertex \(v \), we can be sure that the system CHCs Rules-of-\(v \) is non-recursive, and since it is constructed from a winning strategy for Verifier for the finite-horizon game, it must be satisfiable. We may use the model to label the sub-tree (see relabel in Algorithm 2) and return success to Algorithm 1.

1Expansion does not require handling covering edges, but we consider them here so that we may re-use Rules-of in forced covering, which does.
Algorithm 3: Attempt to cover a vertex with an already expanded vertex

1 Procedure force-cover(v)
2 U ← if v ∈ F then F else V;
3 foreach u ∈ U ∩ X s.t. S(u) = S(v) and T(u) = T(v) do
4 if u ∈ V and F-pred_e(u) ≠ F-pred_e(v) then
5 continue
6 rules ← Rules-of(r) ∪ {Q(v)(X) ← Q(u)(X)};
7 if rules has some solution R then
8 relabel(r, R);
9 if v ∈ N then
10 if there exists measures m'_F for L_F and m'_V for L_V then
11 m_F ← m'_F;
12 m_V ← m'_V;
13 ⊲ ← ⊲ ∪ {(v, u)};
14 return true
15 else
16 return true
17 end if
18 end if
19 else
20 return false
21 end if

4.2 Covering

Forced covering, Algorithm 3, is inspired by McMillan [2006]’s strategy for synthesizing loop invariants in lazy abstraction with interpolants. It searches for any nodes controlled by the same player at the same location as the current node, v. If v is a V-node, we need to ensure that any candidate node u is trying to match the same command as v. If any candidate node u is found, the algorithm constructs a set of (possibly) recursive CHC rules—the same set of rules described for labeling fresh expansions—that will try to relabel the entire tree to ensure that the label of v implies the label of u (without uncovering any previously covered nodes). If a solution is found to this set of rules, the tree is relabeled. Either v was removed from the unwinding (it was annotated with false) or its label implies the label of u (now meeting the covering condition). We finish by trying to compute new measures m'_F and m'_V such that if the new covering edge is added then both measures will decrease on all corresponding edges—m'_F must decrease on every (non-covering) edge out-going from an F node and similarly for m'_V and edges out-going from V nodes. If we are successful, we update our measures and add the covering edge and are done. If v was removed we are also successful, and return true. Otherwise, we try the next candidate node or return false if no such candidate exists and Algorithm 1 will attempt to expand v instead.

5 CASE STUDIES

To illustrate the effectiveness of our simulation strategy synthesis approach, we implement our technique in a tool, SimVer. We apply SimVer to a variety of programs and distributed protocols. All experiments were conducted on a desktop running Ubuntu 18.04 LTS equipped with a 4 core Intel(R) Xeon(R) processor at 3.2GHz and 12GB of memory. Each experiment was allotted a maximum of half an hour.

We developed a suite of benchmarks using a simple programming language with deterministic and non-deterministic assignment (havoc), send and receive statements, if statements, while loops, sequential and parallel composition, and parametric parallel composition (parfor). We assume that processes may only communicate through sending and receiving messages along
shared channels (i.e., there is no shared memory). Except for \texttt{parfor} (discussed below), programs in this language can be simply translated to a control flow graph.

SimVer uses two partial order reduction (POR) techniques to improve upon Algorithm 1. The first POR technique is essentially standard: it reduces the size of the CFG produced for each program when taking the parallel composition of two processes. Processes may only communicate via \texttt{send} and \texttt{receive}, thus we only consider paths of the product CFG that are unique with respect to observability (i.e. we may re-order sequences of unobservable commands).

The second POR technique reduces the set of unwindings we need by only considering a class of \textit{Lazy} strategies, in which Verifier passes its turn whenever Falsifier plays a silent action (except when Falsifier’s vertex belongs to a designated \textit{cutset}). The cutset is a set of locations such that removing them from the CFG results in an acyclic graph. Although Verifier may always legally pass its turn in response to a silent action (even one emanating from the cutset), by allowing the possibility of a non-trivial Verifier response to a silent action in the cutset we may synthesize strategies that take advantage of equi-terminating unobservable loops between programs. We provide details for both POR techniques in Appendix B.2.

We handle programs with a parametric number of processes (includes \texttt{parfor} statements), by treating \texttt{parfor} statements as an “observable” command (analogously to \texttt{send} and \texttt{receive}). A \texttt{parfor} command is only matched by another \texttt{parfor} command. When a source \texttt{parfor} is matched with a target \texttt{parfor}, two verification conditions are induced: (1) both parfors must launch an equal number of processes and (2) the source parfor’s body must be simulated by the target parfor’s body. The second condition is solved by computing a complete and well-labeled unwinding for the new simulation problem. We further formalize \texttt{parfor} statements and the resulting modifications to strategy synthesis in order to handle parfors in Appendix B.1.

Our experimental evaluation aims to answer the following:

(1) Can SimVer prove simulation of real distributed systems?
(2) How do the POR techniques affect performance?
(3) How does the underlying CHC solver affect performance?

We developed a suite of benchmarks that is broken into three categories: simple parfor-free programs, token passing systems a model of distributed processes, and distributed protocols. SimVer is parameterized on three settings: (1) whether or not to use the CFG POR, (2) whether or not to use Lazy strategies, and (3) which underlying CHC solver to use. The two available CHC solvers are Z3’s solver \cite{Komuravelli2016} and a CHC solver based on the polyhedral abstract domain (ABS) using Apron \cite{Jeannet2009}.

Table 1. Parfor-free benchmarks. We show the winner of the game, the size of the src program and tgt program, and the runtime of SimVer and produced simulation strategy size.
Table 2. Token Passing benchmarks. We show the winner of the game, runtime of SimVer, and produced simulation strategy size. * denotes the faulty version.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>time</td>
<td>size</td>
<td>time</td>
<td>size</td>
<td>time</td>
<td>size</td>
<td>time</td>
<td>size</td>
<td></td>
</tr>
<tr>
<td>General, Ring</td>
<td>Verifier</td>
<td>MO - 289.7s</td>
<td>280</td>
<td>300.48s</td>
<td>503</td>
<td>13.62s</td>
<td>113</td>
<td>MO - MO</td>
<td>MO - TO</td>
</tr>
<tr>
<td>General', Ring</td>
<td>False</td>
<td>MO - MO</td>
<td>MO - MO</td>
<td>3.0s</td>
<td>MO - MO</td>
<td>MO - MO</td>
<td>MO - MO</td>
<td>33.94s</td>
<td>-</td>
</tr>
<tr>
<td>General, Lock</td>
<td>Verifier</td>
<td>MO - 27.11s</td>
<td>131</td>
<td>8.49s</td>
<td>100</td>
<td>5.53s</td>
<td>93</td>
<td>694.15s</td>
<td>157</td>
</tr>
<tr>
<td>General', Lock</td>
<td>False</td>
<td>MO - MO</td>
<td>106.03s</td>
<td>3.42s</td>
<td>MO - MO</td>
<td>MO - MO</td>
<td>MO - MO</td>
<td>112.98s</td>
<td>-</td>
</tr>
<tr>
<td>General, Ring Lock</td>
<td>Verifier</td>
<td>MO - 27.85s</td>
<td>134</td>
<td>8.47s</td>
<td>100</td>
<td>7.28s</td>
<td>107</td>
<td>1025.93s</td>
<td>171</td>
</tr>
<tr>
<td>General', Ring Lock</td>
<td>False</td>
<td>MO - MO</td>
<td>293.89s</td>
<td>7.2s</td>
<td>MO - MO</td>
<td>MO - MO</td>
<td>MO - MO</td>
<td>361.09s</td>
<td>-</td>
</tr>
<tr>
<td>Ring, Ring Lock</td>
<td>Verifier</td>
<td>MO - 28.23s</td>
<td>135</td>
<td>8.45s</td>
<td>100</td>
<td>7.6s</td>
<td>107</td>
<td>1033.02s</td>
<td>187</td>
</tr>
<tr>
<td>Lock, Ring Lock</td>
<td>Verifier</td>
<td>23.72s</td>
<td>130</td>
<td>15.86s</td>
<td>101</td>
<td>11.32s</td>
<td>124</td>
<td>4.1s</td>
<td>89</td>
</tr>
</tbody>
</table>

5.1 Token Passing Systems

Token passing systems are a formalism for modeling distributed protocols [Chandy and Lamport 1985]. Here we represent four similar token passing systems: General, Ring, Lock, and Ring Lock. All four programs have N nodes run in parallel that acquire and release some number of tokens. Each is represented by a non-deterministic choice for the number of processes (and tokens for General and Ring). The parent process spawns two children processes, one will create some number of tokens and close, while the other sub-process will execute a parfor running the N nodes of the

token passing system.

General: The General token system has M tokens, may be acquired and released by any node (any node may acquire up to all of the tokens). When a node releases a token, it does so by sending it to another node. When sending, a node may send to any of its neighbors (including itself). In the buggy version of General, when releasing a token, a node must send it to a neighbor that is not itself. This violates simulation when there is only 1 node in the system. Both the faulty and non-faulty variant contain 126 CFG nodes.

Ring: The Ring token systems also has M tokens, but the nodes form a ring topology. When a node releases a token, it must send the token to the next node in the ring. This system is simulated by General but not any of the other systems. The Ring token passing system contains 150 CFG nodes.

Lock: The Lock token system has a single token, it is designed to operate as a lock. Similar to General, the Lock system is allowed to send its token to any of the other nodes within the system. Like Ring, this system is simulated by General but none of the other systems. The Lock token passing system contains 58 CFG nodes.

Ring Lock: The Ring Lock token system has a single token, and the nodes form a ring topology. This protocol is simulated by all others (not including the faulty General system). The Ring Lock token passing system contains 70 CFG nodes.

5.2 Distributed Protocols

The final set of benchmarks contains several varieties of replicated state machine algorithms and a leader election protocol. For each, we implement two variants: *abstract* models all degrees of freedom in the protocol (i.e. when a choice of implementation is allowed, we use havoc expressions to abstract away the choice), and *concrete* selects a particular choice for each implementation decision. For each protocol, the desired goal is to show that *abstract* weakly simulates *concrete*.

Replicated State Machines: Two Phase Commit ([Lampson and Sturgis 1979] and [Gray 1978]), Two Phase Commit with Apportioned Queries (2PAQ [Mohan and Murphy 2017]), Chain Replication ([Van Renesse and Schneider 2004]), Chain Replication with Apportioned Queries (CRAQ [Terrace...
Leader Election: The Leader Election protocol chooses the leader by finding the node with the largest id within the system [Chang and Roberts 1979]. The protocol consists of N nodes in a ring topology, where each node is given an unique id. The protocol begins by having each node pass their id to their right neighbor. If a node receives an id larger than their own, then the node continues passing the id to the next node. Once a node receives its own id then it becomes the leader and may make some number of decisions to send to all of their neighbors. In the base protocol the number of decisions and the choice of value to send are both non-deterministic. We implement two other variants. Both perform the election process but only make a single decision. The second variant adds a random delay before every send command.

and Freedman 2009], and Parallel and Sequential Primary Backup ([Budhiraja et al. 1993]) are all forms of replicated state machine protocols. Each of these protocols have a designated leader, and N followers. The goal of these protocols is to have the state of the Leader be replicated on each of the followers. The primary differences between these protocols is either in the failure model or topology of the system. Two Phase Commit, 2PAQ, Sequential Backup, and Primary backup have a flat topology—there is one leader that has N children. Two Phase Commit and 2PAQ first have the leader node stage (prepare) any state update, ask each child if they could successfully stage the write, then commit the write if each child could perform the write, otherwise the write is aborted. In two phase commit, only the leader is able to handle read requests. In 2PAQ, any node may handle read requests. Both Sequential and Parallel backup relax the failure model of Two phase commit and 2PAQ, and are able to replicate with fewer messages between the leader and its followers. Parallel backup propagates writes to all children then receives acknowledgments from all of its children, while sequential backup handles each child in turn. Chain replication and CRAQ are formed in a linked list (or chain) topology. One end of the Linked list is the Head and handles every write request. The other end is the tail and handles write requests. When a write occurs, the head will propagate the write request down the chain until it reaches the tail. The tail will then either accept or reject the write and the result is propagated back up the chain to the head. CRAQ is the same protocol, except that any node in the system may respond to read requests.

For Two Phase Commit, 2PAQ, Chain Replication, and CRAQ we implement two concrete variants. The first variant implements a single-key key-value store on top of the protocol as our concrete system. The second variant is similar, but rather than simply reading and writing to the key, the second variant will compute the nth Fibonacci number and add that to the current value of the key. For parallel and sequential backup, the concrete system is a backup system with only one backup.

Table 3. Distributed protocol benchmarks. We show the winner, runtime of SimVer, and simulation strategy size.
5.3 Performance

In Tables 1, 2, and 3, we summarize the performance of SimVer. In Table 1 we drop configurations using only one of the PORs. The CFG POR only applies to programs with multiple processes—Choiceloop and Fibloop are sequential. The EvenOdd benchmarks fail when using only one of the two POR. In Table 3 we drop the Z3 columns that uses Lazy strategies as these SimVer configurations failed to solve any of the benchmarks.

In all experiments that do not fail (except “Craq (fib)”), we find that the Lazy strategy POR significantly improves runtime performance and reduces the size of the produced unwinding. In the “Craq (fib)” benchmark, forcing the use of a Lazy strategy resulted in poor alignment of the abstract and concrete variants that resulted in requiring a slightly larger strategy. We find the use of Lazy strategies especially important for benchmarks that Falsifier wins—Lazy strategies can result in exponentially smaller formulas during back-tracking.

In Table 2, we see that with neither reduction, only one benchmark was able to be solved within half an hour. With only one of the two reductions, most were solvable in under five minutes. However with both, SimVer was able to solve all of the token passing benchmarks in under 15 seconds.

In Table 3, we see that our implementation had a harder time finding simulation between the protocols and their implementations. Using both reductions and the “Abs” CHC solver, SimVer was able to solve all but three of the protocol benchmarks. As expected, we see SimVer performs better on the “kv” benchmarks as compared to the “fib”—there is a larger gap between the protocol and “fib” variant due to the loops used to compute Fibonacci numbers. Perhaps the hardest benchmarks are the parallel and sequential backup—as the benchmarks effectively require proving the two protocols are equivalent when there is only one backup. Examining SimVer’s performance on the leader election benchmarks revealed that SimVer made a poor initial choice of strategy that resulted in a lot of back-tracking later on.

In all the benchmarks, we find that the “ABS” SimVer configurations had better run-time performance than the “Z3” configurations, while the “Z3” configurations resulted in smaller strategies. The Z3 CHC solver tended to find more generalizable loop invariants, which often came at the cost of run-time performance or even with Z3 diverging due to the complex forced-covering rules. The “Abs” solver, was quick but produced less generalizable invariants or failed to find loop invariants during forced-covering causing the algorithm to continue expanding the node. Striking a balance between finding generalizable loop invariants and reasonable run-time performance is important. As SimVer is sensitive to the underlying CHC solver, improvements in CHC solving will correspondingly help SimVer during forced covering.

Our experiments show that simulation strategy synthesis can be used to prove and refute simulation between non-deterministic infinite state programs. There are only three benchmarks that were unsolved by all SimVer configurations. The use of both reductions is crucial in helping SimVer scale to more benchmarks. We note that SimVer performs best when the reason for a strategy’s correctness is relatively “local.”

6 RELATED WORK

Computing Simulations. There is a long line of literature on computing simulations for finite systems [Abdulla et al. 2008; Baier et al. 2004; Bulychev et al. 2007; Dovier et al. 2001; Etessami et al. 2005; Groote and Vaandrager 1990; Li 2009; Paige and Tarjan 1987], motivated primarily by the use of simulation (and bisimulation) relations as a state-space reduction technique in model checking [Escobar and Meseguer 2007; Fisler and Vardi 1999]. Techniques have also been developed for proving that an infinite-state system simulates a finite-state system [Chaki et al. 2004; Chutinan...
and Krogh 2001; Henzinger et al. 1995; Jančar et al. 2001; Jonsson and Pardo 1993]. The major point of contrast between our algorithm and this body of work is that SimVer is designed to prove (or refute) simulation between systems that are both infinite-state. Perhaps most similar to our work is Chaki et al. [2004], which gives an algorithm for proving that a finite-state protocol simulates an infinite-state system following the counter-example guided abstraction refinement (CEGAR) paradigm. For the particular case that the target program is finite-state, the difference between Chaki et al. [2004]’s method and ours is analogous to the difference between CEGAR [Clarke et al. 2000] and lazy abstraction with interpolants [McMillan 2006]: instead of finding a finite global abstraction that admits a winning strategy, we iteratively expand a partial strategy until it is complete.

Relational Logics. Relational logics (such as Relational Hoare Logic [Benton 2004]) are program logics that, like contextual simulations, relate the behaviors of two or more programs together [Barthe et al. 2009; Gäher et al. 2022; Godlin and Strichman 2008; Hur et al. 2014; Lucanu and Rusu 2015; Song et al. 2023; Yang 2007]. There has been a great deal of work on automated verification of relational properties. A prominent class of techniques use product programs to reduce relational verification to classical verification by combining two (or more) programs into one [Barthe et al. 2016; Churchill et al. 2019; Sharma et al. 2013].

The closest relational logics to contextual simulation are those in Benton [2004], Lucanu and Rusu [2015], Hur et al. [2014], [Song et al. 2023], and [Gäher et al. 2022]. For unobservable, straight-line, deterministic programs, contextual simulation can be seen as equivalent to proving both Benton [2004]’s relational Hoare logic judgment and relative termination of the two programs. While Lucanu and Rusu [2015] can automatically prove observational equivalence of two programs, the technique requires the user to define when two CFG locations are observably equivalent. This is analogous to checking whether a given relation is a simulation rather than synthesizing a simulation. Hur et al. [2014] and [Gäher et al. 2022] both prove observational equivalence (stuttering bisimulation) of ML-like programs in Coq. The program models consider an alphabet with a single observable action (a reduction step) rather than considering programs that communicate with some outside environment. [Song et al. 2023] is similar to [Hur et al. 2014] and [Gäher et al. 2022] but uses trace refinement rather than simulation. In light of methods for automating verification based on product programs, one may view SimVer as an on-the-fly construction of a product program, interpreting one program with demonic non-determinism and the other with angelic non-determinism (rather than both demonic).

Infinite-state games. Our method for proving contextual simulations is based on reducing the problem to solving a class of infinite-state games of infinite duration. Methods for solving such games include [Ball and Kupferman 2006; Beyene et al. 2014; De Alfaro et al. 2001; Farzan and Kincaid 2017]. Our method is closely related to Farzan and Kincaid [2017]’s technique for solving reachability games. The largest difference between SimVer and [Farzan and Kincaid 2017] is that Farzan and Kincaid [2017]’s reachability games require the two players to strictly alternate turns, while in weak simulation games, Verifier may take arbitrarily many steps to match the move of Falsifier. Moreover, SimVer exploits some additional structure that is present in weak simulation games, including the graph structure of programs (e.g., in the covering algorithm) and the POR techniques described in Section 5.

REFERENCES

Proving Weak Simulation via Strategy Synthesis

A SYNTACTIC PROGRAMS AND THEIR CFG

In this section we give the syntactic programs we use in Section 5 to express our benchmarks.

A.1 Message Passing Programs

We consider a simple language of multi-threaded message-passing integer programs. The syntax of statements is given below:

\[
\begin{align*}
\langle \text{stmt} \rangle &::= \text{skip} \mid \text{havoc} \langle \text{var} \rangle \mid \text{send} \langle \text{exp} \rangle \text{chan}() \mid \text{receive} \langle \text{var} \rangle \text{chan}() \mid \text{if} \langle \text{bexp} \rangle \text{then} \langle \text{stmt} \rangle \text{else} \langle \text{stmt} \rangle \\
&\quad \mid \text{while} \langle \text{bexp} \rangle \text{do} \langle \text{stmt} \rangle \text{done} \mid \langle \text{stmt} \rangle ; \langle \text{stmt} \rangle \\
\end{align*}
\]

We reuse the same language of expressions and Boolean expressions from Section 2. The language of syntactic programs includes any statement that does not include \(\text{halt}\), where \(\text{halt}\) denotes the halting program. Processes are created with the parallel composition operator \(\parallel\) (in Section B.1, we further extend the language with parfor, a parametric \(n\)-ary parallel repetition statement). Processes may communicate by passing messages (using send and receive) along shared channels, which are identified by integers; processes do not share memory. We treat \(\text{halt} \parallel \text{halt}\) as equal to \(\text{halt}\).

A.2 Control Flow Graphs

To give meaning to syntactic programs, we map each syntactic program \(p\) to a control flow graph, \(\text{CFG}(p)\). To simplify this compilation process, we assume that when two statements are parallely composed, they write to a disjoint set of variables and that each child process does not write to any variable that a parent process reads or writes. The compilation process from a syntactic program to a CFG loses the notion of processes, these assumptions ensure that the compilation process doesn’t inadvertently introduce memory sharing between processes by having clashing local variable names.

We represent the CFG of syntactic programs using a labeled binary relation \(\longrightarrow\) over statements. Figure 5 displays the rules defining \(\longrightarrow\). For any syntactic program \(p\), its control flow graph is \(\text{CFG}(p) = (\langle \text{stmt} \rangle, \longrightarrow, \text{stmt}, p, \text{halt})\). The semantics of a syntactic program is given by the semantics assigned to its CFG as defined in Section 2.

Fig. 5. Inference rules for program CFG relation
B EXTENSIONS AND ALGORITHMIC IMPROVEMENTS

In this section we describe extensions that enable our method to handle larger and more realistic programs: we enrich the language with a parallel repetition construct \texttt{parfor}, and formalize the two partial order reduction strategies (as discussed in Section 5) that reduce the search space for simulation proofs using the algorithm described in Section 4.

B.1 Parfor: n-ary Parallel Repetition

Many interesting programs and distributed systems use a parametric number of processes. To handle this paradigm, we introduce a parametric parallel composition operator, \texttt{parfor}. We detail the changes to the programming language, its semantics, and control flow graph. We additionally update our definition of simulation game unwinding and algorithms to handle the extended language.

The \((\texttt{parfor } \langle \texttt{id} \rangle. \langle \texttt{exp} \rangle \leq \langle \texttt{var} \rangle \leq \langle \texttt{exp} \rangle \texttt{ do } \langle \texttt{stmt} \rangle \texttt{ done})\) construct runs \(n\) copies of its body in parallel, one copy for each thread id in the range \([\texttt{el}, \texttt{eu}]\). We extend the grammar of programs to include \texttt{parfor} as follows:

\[
\langle \texttt{stmt} \rangle ::= \ldots | \texttt{parfor} \langle \texttt{var} \rangle. \langle \texttt{exp} \rangle \leq \langle \texttt{var} \rangle \leq \langle \texttt{exp} \rangle \texttt{ do } \langle \texttt{stmt} \rangle \texttt{ done}
\]

Unlike the syntactic programs in Section A, \texttt{parfor} is difficult to represent as a finite CFG. Specifically, unless the range \([\texttt{el}, \texttt{eu}]\) is statically known, the approach used to represent the other syntactic programs will yield an infinite size CFG. We can provide an operation semantics of \texttt{parfor} based on unrolling the \texttt{parfor} using the binary parallel composition operator analogous to the unrolling semantics of while using sequential composition. The first rule for \texttt{parfor} handles the case where the range is non-empty: it peels off the lowest valued identifier in the range and runs it in parallel with the remainder of the \texttt{parfor}. The second rule transitions to the empty program (final state) when the \texttt{parfor}'s range is empty.

![Fig. 6. Additional transition and CFG rules for \texttt{parfor}.](image)

We now update the definition of well-labeled unwinding to support \texttt{parfor}. We treat parfors as an observable command. While in Figure 6, we see that when a \texttt{parfor} statement unrolls it executes a \(\tau\) action, if the body of the \texttt{parfor} may execute a send or receive, then the \texttt{parfor} as a whole is observable. The way we handle this is by matching a \texttt{parfor} of the source program with a \texttt{parfor} of the target program, in the same manner as we did for sends and receives. This induces additional verification conditions and requirements on when a source \texttt{parfor} is matched by a target \texttt{parfor}. Note that this rule is incomplete—it is possible \textit{semantically} for a \texttt{parfor} program to be simulated...
Fig. 7. A parfor gadget to inline the terminating and non-terminating subgames.

by (or to simulate) a parfor free program. However, this strategy is suitable for our goal of proving per-node simulation.

We update legal with a new clause legal(u, v) = (es₁ > esr ∧ et₁ > et₀) ∨ (es₁ = et₁ ∧ esr = et₀) when
L(u, v) is parfor id₀. et₀ ≤ id₁ ≤ et₀ do t done and F-pred₁(u) is parfor id₁. es₁ ≤ id₁ ≤ es₁ do s done. act remains unchanged. This change to legal ensures that either both parfors do not execute or they both execute with an equal range of thread ids. The existing well-labeledness constraints remain unchanged; however, we add one more constraint subgame to the set of well-labeled constraints.

Subgame: Every V-edge ⟨u, v⟩ labeled with parfor idᵣ. etᵣ ≤ id₋ ≤ et₋ do t done where F-pred₋(u) is parfor id₋. es₋ ≤ id₋ ≤ es₋ do s done. There is a well-labeled unwinding for the game G({Φ(u)} t ≤ s {true}).

A labeled unwinding is complete only if it and every associated subgame’s labeled unwinding game is complete. Thus a well-labeled and complete game unwinding must have a well-labeled and complete unwinding associated with every V-edge labeled with a parfor proving simulation between the source and target parfor’s bodies.

To satisfy the modified definitions of well-labeledness and complete we must now compute a complete well-labeled unwinding for each induced sub-game. Rather than eagerly (at match time) or lazily (after finding a well-labeled and complete unwinding for the parent game) computing these induced unw windings—by recursively calling Algorithm 1 for each matched parfor—, we inline each subgame using a parfor gadget. This allows us to simultaneously compute the strategy for the root game and any induced subgames. Specifically, this enables us to jointly refine the parent and child strategies—if Verifier loses a subgame, the algorithm can (attempt to) improve the parent strategy so that the induced subgame is more favorable. We additionally allow reuse of work between similar induced sub-games—we allow covering a node by another if they share the same sub-game label even if the sub-games are induced by different Verifier edges. Inlining is accomplished as follows.

We augment simulation game trees with an additional field game that maps each node of L with its subgame, taking the form {·} s ≤ t {ψ} (note the precondition is omitted, since it is the same as the label of the subgame’s root). A node has the same game as its immediate ancestor, with the exception of the nodes introduced by the parfor gadget, which is introduced for each pair of matching parfors.

Figure 7 depicts the gadget used to inline induced subgames. We actually play two subgames for each parfor. One where we try to prove the post-condition false (meaning the matched parfors do not terminate) and the other with the post-condition true (meaning the subgames are allowed to terminate in any state). If we are able to find a strategy for the false post-condition, then we do not need to continue finding a strategy for the remainder of the parent game (as play never
returns back to the parent game). The edge from \(u \) to \(n_0 \) is the edge labeled with \(a \), Verifier’s parfor action. Because \(n_0 \in V \), Verifier controls which sub-game to play: the terminating game or the non-terminating game (\(g_1 \) and \(g_2 \) respectively). If Verifier chooses to play the non-terminating game, Verifier must prove that the parfors actually execute. In both the terminating and non-terminating games, we allow Verifier to assume that the ids are equal and are bounded by the given range. If Verifier plays the terminating game, then Verifier must also have a strategy for \(\nu \), which represents the remainder of the parent game after the parfor is played. Algorithm 1 remains unchanged other than initializing the game variable. In Algorithm 2, the only change is the addition of the parfor gadget in \(VW \) when Verifier plays a matching parfor. In Algorithm 3, we require that nodes are only covered by nodes labeled with the same subgame. Otherwise, the algorithms remain unchanged.

In Section 4, we maintained the invariant that the unwinding \(L \) is always well-labeled. In the updated algorithm to handle parfor, we maintain the invariant that the unwinding \(L \) is well-labeled modulo parfor gadgets. That is, if we remove each parfor gadget, we produce a set of well labeled unwindings—one for the parent game and each introduced sub-game. In Figure 8, we show how the parfor gadget in Figure 7 is transformed into three well-labeled unwindings (the parent game and both sub-game trees). We remove interior nodes \(n_0, n_1, \) and \(n_2 \). We add an edge from \(u \) to \(v \) (and a fresh node \(v' \)) labeled with the parfor action Verifier played. The edge to \(v \) represents when Verifier chose to play the terminating game, and \(v' \) the non-terminating game. Both are guarded by the parfor edge’s original guard \(G(u, n_0) \). Each is additionally guarded with Verifier’s choice to play that game (i.e. \(G(n_0, n_1) \) and \(G(n_0, n_2) \) respectively). The nodes \(g_1 \) and \(g_2 \) now become the root of their own simulation unwinding for the corresponding game. Thus, we have removed the parfor gadget and shown the existence of the unwindings satisfying the sub-game constraint. When Algorithm 1 terminates with \(L \), then every node of every subgame is either expanded or covered (by a node of the same game). Unlike the original version of the algorithm, if the modified algorithm terminates without finding a simulation strategy, the produced counter-example does not disprove simulation: it only disproves per-node simulation.

Theorem B.1. If the modified version of Algorithm 1 terminates with some unwinding \(L \) then \(\{P\} \text{ src} \preceq t \{Q\} \) the input contextual simulation is valid.

Proof Sketch. The produced unwinding is well-labeled and complete. As described above, we maintained the invariant that \(L \) is well-labeled modulo parfor gadgets. Above we gave the transformation from an unwinding containing parfor gadgets to a set of well-labeled unwindings for each sub-game. After terminating each node of every game was either expanded or covered. Thus each unwinding is well-labeled and complete. The proof proceeds by inducting on the depth of sub-games within \(L \). If there are no sub-games then Theorem 4.1 proves the conclusion. By
the inductive hypothesis, every contextual simulation labeling matched parfor edges are valid. Let g'_L be the strategy for Verifier as described in Section 3. We construct a new strategy g_L. Let s be a position ending in a Verifier place of the game $G(\{P\} \ src \leq tgt \ {Q})$. If Falsifier’s most recent action was not within a parfor, then g_L follows the strategy of g'_L. If Falsifier’s move was to unroll a parfor one more time then g_L will do the same. If Falsifier plays an action from the body of thread i from a parfor. Then Verifier will play a matching action for it’s thread i using the strategy for the induced subgame (note this strategy exists and is winning because the IH allows us to assume the subgame is winning). Thus we have exhibited g_L a winning strategy for $G(\{P\} \ src \leq tgt \ {Q})$. We conclude by using Theorem 3.1.

\[\square \]

B.2 Partial Order Reduction of Unobservable Actions

Partial order reductions allow reducing the state space that needs to be searched in model checking or state exploration algorithms [Peled 1998]. A partial order reduction is based around the idea of commutative actions. If two actions commute, then either order of execution is equivalent. We use two partial order reductions that reduce the state space that Algorithm 1 must explore. They can be used separately or in tandem. One modifies the CFG construction, POR-CFG. The other POR-Turn reduces the set of strategies we must consider for Verifier.

In weak simulations, it is impossible to observe silent actions. Since threads do not share memory, silent actions from two processes executing in parallel may be reordered. We apply this intuition to reduce the CFG constructed for two processes run in parallel. For two processes T_1 and T_2, the normal construction for $T_1 \parallel T_2$ is to take the Cartesian product of each process’s CFG. From the reduced CFGs of each process, we compute the reduced CFG of $T_1 \parallel T_2$ by first executing every unobservable action of T_1, then executing every unobservable action of T_2. When T_1 and T_2 both only have observable actions to execute, the construction expands each observable action and repeats the process. For loopy programs, we first compute a cutset for both processes’ CFG: a set of vertices such that removing them from the graph results in an acyclic graph. We say that an action is pseudo-observable if it emanates from the cutset or it is observable. By considering cut-points as pseudo-observable, we ensure that the reduced system is observationally equivalent (weak simulation equivalence) with the original system. Without considering cut-points, if one process executes a non-terminating unobservable loop, then the observable behaviors of the other process would no longer be a behavior of the reduced system.

The second partial order reduction, POR-Turn, reduces the set of strategies Algorithm 1 considers. In weak simulations, Verifier may delay its choice until forced to match an observable move. We call the set of strategies that delay Verifiers choice Lazy strategies. When Falsifier plays an unobservable action, Verifier immediately pass. This is always valid for Verifier, if $\sigma_t \Rightarrow \sigma'_t$ and $\sigma'_t \Rightarrow a \sigma''_t$ then clearly $\sigma_t \Rightarrow a \sigma''_t$. Similar to the POR-CFG, we begin by computing a cutset for each program’s CFG. A move of Falsifier is pseudo-observable if the move is observable or leads to a cutpoint. Whenever Falsifier plays a non pseudo-observable action, then Verifier will always chose to pass. When Falsifier plays a pseudo-observable action then Verifier plays their turn. Verifier’s turn lasts until it plays a pseudo-observable action of it’s own that matches Falsifier’s action (e.g. sends match sends, receives match receives, etc.). Verifier may still choose to pass if Falsifier’s move was unobservable.

Theorem B.2. For any contextual simulation, $\{P\} S \leq T \ {Q}$, if we apply either (or both) POR-CFG or POR-Turn to Algorithm 1 and Algorithm 1 terminates with a game tree T then $\{P\} S \leq T \ {Q}$ is valid. If it returned a counter strategy, then $\{P\} S \leq T \ {Q}$ is not valid.
Proof Sketch. The transition system induced by POR-CFG, is weakly simulation equivalent to
the original transition system—there is a weak simulation in both directions. By Theorem 4.1 we
know the algorithm is sound for the reduced game. We can combine the witnessing simulation
relation for the contextual simulation and compose it with the weak simulation from the reduced
transition system to the full transition system to get a simulation relation witnessing the conclusion.
If Falsifier wins the reduced game, then necessarily Falsifier wins the full game.

When the algorithm uses POR-Turn and terminates with a strategy tree T, the produced strategy
is still a strategy for the full game. Thus by Theorem 4.1 the conclusion holds. If Falsifier has a
winning strategy, then Falsifier beats Verifier when Verifier plays any lazy strategy. We show that
every strategy of Verifier may be reduced to an equivalent lazy strategy (one strategy is winning
iff the other wins). Given a verifier strategy g, we commute the corresponding lazy strategy l by
delaying g’s actions until Falsifier makes an observable turn at which point, l will play each of
the delayed actions. Since Falsifier beat every lazy strategy of Verifier, Falsifier can beat every
strategy of Verifier. Thus Falsifier must win any play conforming to its strategy. Thus the conclusion
holds.
C PROOFS

THEOREM 2.4. Let \(\varphi \) be any formula of the universal fragment of action CTL* without next-time operators (\(\forall ACTL^* - \{X_p, X_r\} \)). If program P is related to program Q by a divergence preserving weak simulation and Q satisfies \(\varphi \) then P satisfies \(\varphi \).

Proof of Theorem 2.4. We begin by first defining the formal definition of \(\forall ACTL^* - \{X_p, X_r\} \) and its satisfiability relation that we consider in our proof. Our definition closely follows from [Nicola and Vaandrager 1990].

Action Formulas. Let \(A \) be the set of Atomic action predicates. The set of action predicates is defined as the following grammar:

\[
F, G ::= a \in A | \top | \neg F | F \land G
\]

For an action, \(a \in \Sigma \) (see Section 2 for definition of \(\Sigma \)), and action formula, \(F \), we use \(a \models F \) to denote that \(a \) satisfies \(F \) and \(a \not\models F \) that \(a \) does not satisfy \(F \). The below rules inductively define when an action formula is satisfiable.

\[
\begin{align*}
\alpha &\models \top \quad \text{always} \\
\alpha &\models \neg F \quad \text{iff } \alpha \not\models F \\
\alpha &\models F \land G \quad \text{iff } \alpha \models F \text{ and } \alpha \models G
\end{align*}
\]

\(\forall ACTL^* - \{X_p, X_r\} \) Syntax. We define the universal fragment of action CTL* without next-time operators (\(\forall ACTL^* - \{X_p, X_r\} \)) using the following grammar:

\[
\varphi, \psi ::= \text{true} | \text{false} | \varphi \land \psi | \varphi \lor \psi \\
&\quad | \forall \varphi | \varphi \cup_G \psi | \varphi \cup F \psi | G \varphi
\]

Note: We may define the non-modal until operator \(U \) and the eventually operator \(F \) in terms of the other operators:

\[
\varphi U \psi \triangleq \varphi \oplus U \psi \\
F \varphi \triangleq \text{true} U \varphi
\]

Program Runs. Given a program \(P \) and a program state \(s \in S_P \) of \(P \), a path from \(s \) is a (possibly infinite) sequence of transitions, \(\pi = \langle s_0, a_0, s_0', \ldots, s_n, a_n, s_{n+1} \rangle \in \rightarrow^* \), beginning from \(s \) (i.e. \(s_0 = s \) and \(\forall i, s_i' = s_{i+1} \)). A path is maximal if it is either infinite or ends in a state with no out-going transitions.

A run from \(s \in S_P \) is a pair \(\rho = (s, \pi) \) where \(\pi \) is a path from \(S \). We use first(\(\rho \)) to denote \(s \), last(\(\rho \)) to denote \(\pi \). If \(\pi \) is finite, we use last(\(\rho \)) to denote the last state of \(\pi \). We say \(\rho \) is maximal iff \(\pi \) is maximal.

Given two runs, \(\rho \) and \(\theta \), such that last(\(\rho \)) = first(\(\theta \)), we use \(\rho \theta \) to represent concatenation (i.e. \(\rho \theta = \langle \text{first}(\rho), \text{path}(\rho(\rho(\rho(\text{path}(\theta)))))) \)).

Given two runs, \(\rho \) and \(\theta \), we use \(\rho < \theta \) and \(\rho \leq \theta \) to denote that \(\theta \) is a proper suffix, respectively a suffix, of \(\rho \). Formally, \(\rho < \theta \) iff first(\(\theta \)) = last(\(\rho \)) and \(\rho \leq \theta \) iff there is some \(\rho' \), \(\eta \), and \(\theta' \) such that \(\rho = \rho' \eta \) and \(\theta = \eta \theta' \).

Given a program state \(s \), we use \(\mu \text{runs}(s) \) to denote the set of maximal runs starting from \(s \).

\(\forall ACTL^* - \{X_p, X_r\} \) Satisfiability. Given a program a run, \(\rho \), of program P and a \(\forall ACTL^* - \{X_p, X_r\} \) formula \(\varphi \), we use \((\rho, P) \models \varphi \) (or simply \(\rho \models \varphi \)) to denote that the program state \(\rho \) satisfies the formula \(\varphi \). A program state \(s \in S_P \) of \(P \) satisfies \(\varphi \) when \((s, \varepsilon) \models \varphi \). We say \(P \) satisfies \(\varphi \) when every initial state of \(P \) satisfies (e.g. \(\forall s \in I_P . (s, \varepsilon) \models \varphi \)). We define the satisfiability of a \(\forall ACTL^* - \{X_p, X_r\} \) inductively as follows:
\[\begin{align*}
\rho \models \text{true} & \quad \text{always} \\
\rho \models \text{false} & \quad \text{never} \\
\rho \models \varphi \land \psi & \iff \rho \models \varphi \ \text{and} \ \rho \models \psi \\
\rho \models \varphi \lor \psi & \iff \rho \models \varphi \ \text{or} \ \rho \models \psi \\
\rho \models \forall \varphi & \iff \forall \rho' \in \mu \text{runs(first}(\rho)) \ . \ \rho' \models \varphi
\end{align*} \]

Now that we have formally defined the syntax and satisfiability of \(\forall \text{ACTL}^* \{-X_p, X_r\} \), we may now proceed with the proof that divergence preserving weak simulations preserve satisfiability of \(\forall \text{ACTL}^* \{-X_p, X_r\} \).

Proof: We begin by proving two lemmas.

Lemma C.1. Fix a program \(P \). Let \(\varphi \) be any \(\forall \text{ACTL}^* \{-X_p, X_r\} \) formula, \(\rho \) be any finite run of \(P \), and \(\theta \) be any finite and silent run such that \(\rho < \theta \). If \(\rho \models \varphi \) then \(\rho \theta \models \varphi \).

Proof. We proceed by induction on \(\rho \models \varphi \).

Case true: necessarily \(\rho \theta \models \text{true} \).

Case false: the hypothesis \(\rho \models \text{false} \) is impossible.

Case \(\varphi \land \psi \):

By assumption \(\rho \models \varphi \) and \(\rho \models \psi \). By the IH, \(\rho \theta \models \varphi \) and \(\rho \theta \models \psi \). Thus we can conclude \(\rho \theta \models \varphi \land \psi \).

Case \(\varphi \lor \psi \):

By assumption either \(\rho \models \varphi \) or \(\rho \models \psi \). By the IH, we either have \(\rho \theta \models \varphi \) or \(\rho \theta \models \psi \). Thus we can conclude \(\rho \theta \models \varphi \lor \psi \).

Case \(\forall \varphi \):

By assumption, for every maximal run \(\rho' \) from \(\text{first}(\rho) \) satisfies \(\varphi \). Necessarily \(\text{first}(\rho) = \text{first}(\rho \theta) \), thus we may conclude \(\rho \theta \models \forall \varphi \).

Case \(\varphi \land U G \psi \):

By assumption, we know there is some \(\rho' \) and \(\theta' \) such that (1) \(\rho = \rho' \theta' \), (2) \(\theta' \models \psi \), (3) There is some \(\pi, s, \alpha, s' \) such that \(\text{path}(\rho') = \pi \langle s, \alpha, s' \rangle \) and \(\alpha \models G \), and every observable action in \(\pi \) satisfies \(F \), and (4) \(\forall \eta \rho' \leq \eta < \theta' \Rightarrow \eta \models \varphi \).

Let \(\theta'' = \theta' \theta \). Clearly \(\rho \theta = \rho \theta' \theta'' \). By (2) and the IH \(\theta'' \models \psi \). Using these facts and (3) and (4), we may conclude \(\rho \theta \models \varphi \land U G \psi \).

Case \(\varphi \land U \psi \): This case proceeds similarly as the previous case.

Case \(\forall \varphi \): This case proceeds similarly as the previous case.
Lemma C.2. Fix a program P, $\forall \text{ACTL}^*-\{X_p, X_r\}$ formula, ρ be any finite run of P, and θ be any finite and silent run such that $\theta < \rho$. If $\theta \rho \models \varphi$ then $\rho \models \varphi$.

Proof. We proceed by induction on $\theta \rho \models \varphi$.

Case true: necessarily $\rho \models \varphi$.

Case false: the hypothesis $\theta \rho \models \varphi$ is impossible.

Case $\varphi \land \psi$:

By assumption $\theta \rho \models \varphi$ and $\theta \rho \models \psi$. By the IH, $\rho \models \varphi$ and $\rho \models \psi$. Thus we can conclude $\rho \models \varphi \land \psi$.

Case $\varphi \lor \psi$:

By assumption either $\theta \rho \models \varphi$ or $\theta \rho \models \psi$. By the IH, we either have $\rho \models \varphi$ or $\rho \models \psi$. Thus we can conclude $\rho \models \varphi \lor \psi$.

Case $\forall \varphi$:

Let ρ' be any maximal run from $\text{first}(\rho)$. $\theta \rho'$ must be a maximal run from $\text{first}(\theta \rho)$. By assumption we have $\theta \rho' \models \varphi$. Using the IH, we may then show $\rho' \models \varphi$. Thus we may conclude $\rho \models \forall \varphi$.

Case $\varphi \mathcal{F}_{UG} \psi$:

By assumption we know there is some transition in $\theta \rho$ that satisfies G. Necessarily, it must appear in ρ, otherwise, θ must not be silent. Let $\rho'' \theta'$ be this partition. Since θ is silent, ρ'' must be some $\theta \rho'$. We may equivalently partition ρ into $\rho' \theta'$. Using the IH we may then prove each of the remaining conditions to show $\rho \models \varphi \mathcal{F}_{UG} \psi$.

Case $\varphi \mathcal{F}_{U} \psi$: Either the split of $\theta \rho$ into ρ' and θ' occurs in θ or in ρ. In the first case, we can split ρ into ε and ρ and then need only prove $\rho \models \psi$. This may be accomplished using the IH and knowledge that θ' of which ρ is a suffix satisfied ψ. The second case proceeds similarly as the \mathcal{F}_{U} case.

Case $G \varphi$:

By assumption, every suffix of $\theta \rho$ satisfies φ. Clearly, every suffix of ρ must then satisfy φ. Thus we many conclude $\rho \models G \varphi$.

\[\square\]

Before proceeding with our main proof. Let P be a program that is divergence preserving weakly simulated by program Q. We define when a run of P is similar to a run of Q (according to simulation relation R). We say the run ρ_p is similar to the run ρ_Q, when ρ_Q is the sequence of transitions witnessing the simulation for each transition in ρ_p. If ρ_p is a maximal run, then so is ρ_Q, and if ρ_p ends in an infinite silent suffix, then ρ_Q’s corresponding suffix must be the sequence of transitions witnessing the divergence preserving property.

We now proceed with our main proof of Theorem 2.4. For which we prove the more general case:

Let P and Q be programs that are related by the divergence preserving weak simulation R. Let φ be any $\forall \text{ACTL}^*-\{X_p, X_r\}$ formula, and ρ_P and ρ_Q are runs of P and Q respectively. If $\rho_P \mathcal{R} \rho_Q$ and $\rho_Q \models \varphi$ then $\rho_P \models \varphi$.

We proceed by induction on $\rho_Q \models \varphi$.

Case true: necessarily $\rho_P \models \varphi$.

Case false: the hypothesis $\rho_Q \models \varphi$ is impossible.

Case $\varphi \land \psi$:

By assumption $\rho_Q \models \varphi$ and $\rho_Q \models \psi$. By the IH, $\rho_P \models \varphi$ and $\rho_P \models \psi$. Thus $\rho_P \models \varphi \land \psi$.

Case $\varphi \lor \psi$:

By assumption, either $\rho_Q \models \varphi$ or $\rho_Q \models \psi$. By the IH, either $\rho_P \models \varphi$ or $\rho_P \models \psi$. Thus $\rho_P \models \varphi \lor \psi$.

Case $\forall \varphi$:
Let ρ'_p be any maximal run from $\text{first}(\rho_p)$. We construct a new run ρ'_Q that is R-related to ρ'_p. For each transition of ρ'_p, we concatenate the transitions that witness the simulation property’s observational equivalence condition. If ρ'_p has an infinite silent suffix, then we match each transition of the suffix using the transitions witnessing the divergence preserving property for the suffix. By construction $\rho'_p R \rho'_Q$. Necessarily, ρ'_Q is also maximal. By assumption, $\rho'_Q \models \varphi$. By the IH, $\rho'_p \models \varphi$ and thus $\rho_p \models \forall \varphi$.

Case $\varphi \in U_G \psi$:

Clearly, ρ_p and ρ_Q must be observationally equivalent. Since we know there is some transition in ρ_Q that satisfies G, there must be a transition of ρ_P that similarly satisfies G. We partition ρ_P into ρ'_p, θ_p at this transition. We now partition ρ_Q into ρ'_Q, θ_Q such that ρ'_Q is R-related to ρ'_p, similarly for θ_Q and θ_P. And ρ is the sequence of transitions witnessing the observationally equivalent sequence of transitions to the transition in ρ_P that satisfies G. Since every transition of ρ_Q must either be silent or satisfy F, we may conclude that every transition of ρ'_p holds similarly. Let ρ' and θ be the partition of ρ that splits on the transition that satisfies G. For each $\rho'_p \leq \eta_P < \theta_P$, we can use the fact that there is some $\rho'_Q \leq \eta_Q \leq \theta_Q$ such that $\eta_P \eta_Q$ and $\eta_Q \models \varphi$. By the IH, it must be that $\eta_P \models \varphi$. We additionally know that $\rho' \models \varphi$. We use Lemma C.1 to show that $\theta \models \varphi$. Using the IH, we may conclude that the transition of ρ_P satisfying G must also satisfy φ. We then use Lemma C.2, the IH, and the assumption that $\theta' \theta_Q \models \psi$ to conclude that $\theta_P \models \psi$. Thus we may conclude that $\rho_P \models \varphi \in U_G \psi$.

Case $\varphi \in U \psi$:

This case proceeds similarly as the preceding case.

Case Gp:

Let ρ'_p be any suffix of ρ_P. We denote with ρ'_Q the suffix of ρ_Q such that $\rho'_P R \rho'_Q$. Since ρ'_Q is a suffix of ρ_Q we know that $\rho'_Q \models \varphi$. We use the IH to prove $\rho'_P \models \varphi$. Thus we may conclude $\rho_P \models G \varphi$.

Theorem 3.1. The contextual simulation $\{P\} \ src \lesssim \ tgt \{Q\}$ is valid if and only if Verifier has a winning strategy for $G(\{P\} \ src \lesssim \ tgt \{Q\})$.

Proof of Theorem 3.1.

By assumption, src and tgt are over disjoint variables say X and Y. Given a valuation $\lambda : X \cup Y \rightarrow \mathbb{Z}$, we use $\lambda|_X$ to denote the valuation equivalent to λ restricted to the variables in X and analogously for $\lambda|_Y$.

Case \Rightarrow:

Let R be the weak simulation relation witnessing $\models \{P\} \ src \lesssim \ tgt \{Q\}$.

We now construct Verifier’s strategy g_R. Let $s = s_0s_1...s_n$ be any position conforming to g_R. We begin by induction on n to show that if s conforms to g_R and Falsifier has not made an illegal move then if s_n is a Verifier move then Verifier has a legal response $g_R(s)$; otherwise, if $s_n = F \langle l_{src}, l_{tgt}, \lambda \rangle$ then $(l_{src} \models \lambda|_X) R (l_{tgt} \models \lambda|_Y)$ or $(l_{src} = out_{src}$ and $l_{tgt} = out_{tgt}$ and $\{Q\}_{\lambda}$ is true.

Case $n = 0$:

By the initialization rule, Falsifier must choose a Falsifier place $F \langle in_{src}, in_{tgt}, \lambda \rangle$ such that $\{P\}_{\lambda}$ is true. By definition of weak simulation, necessarily $(\lambda|_X \models in_{src}) R (\lambda|_Y \models in_{tgt})$.

Case $n = n' + 1$:

Let $i \leq n'$ be the greatest index such that $s_i = F \langle l_{src}, l_{tgt}, \lambda \rangle$ is a Falsifier place. By the inductive hypothesis, $\lambda|_X \models l_{src}$ is R-related to $\lambda|_Y \models l_{tgt}$. By assumption s_{i+1} is a legal move and for every $i + 1 < k \leq n$, s_k conforms to g_R. Since s_{i+1} is legal, it must be some $V \langle \alpha, l'_{src}, l_{tgt}, \lambda' \rangle$ such that $(\lambda \models l_{src}) \xrightarrow{\alpha}_{src} (\lambda' \models l'_{src})$ (or $l_{src} = l'_{src} = out_{src}$, $\alpha = \tau$ and $\lambda' = \lambda$).
Because S and T are over disjoint variables, clearly $(\lambda|_Y \triangleright l_{\text{src}}) \xrightarrow{\alpha}_{\text{src}} (\lambda'|_Y \triangleright l'_{\text{src}})$ and $\lambda|_Y = \lambda'|_Y$.

By the definition of weak simulation there must be some sequence of transitions that witness

$$(\lambda|_Y \triangleright l_{\text{tgt}}) \xrightarrow{\alpha}_{\text{tgt}} (\lambda_{\text{tgt}} \triangleright l'_{\text{tgt}})$$

where $\lambda'|_X \triangleright l_{\text{src}}$ is R-related to $\lambda_{\text{tgt}} \triangleright l'_{\text{tgt}}$ (or $l'_{\text{src}} = \text{out}_{\text{src}}$ and $l_{\text{tgt}} = \text{out}_{\text{tgt}}$ and $\lambda'|_X \cup \lambda_{\text{tgt}}$ satisfies Q).

W.l.o.g. assume we always pick the same sequence of transitions if multiple such transitions exist.

Let $(\lambda_0 \triangleright l_0) \xrightarrow{\beta_1}_{\text{tgt}} \cdots \xrightarrow{\beta_m}_{\text{tgt}} (\lambda_m \triangleright l_m)$ be this sequence, where $\lambda_0 = \lambda|_Y$, $l_0 = l_{\text{tgt}}$, $\lambda_m = \lambda_{\text{tgt}}$, and $l_m = l'_{\text{tgt}}$.

Let α_j be τ if for any $j' \leq j \beta_j$ is α, otherwise let α_j be β.

Note, by the definition of weak simulation β_j is either τ or α (if $\alpha \neq \tau$ then exactly one β_j is α). Thus, α_m must be τ.

For each $1 \leq j \leq m$, our strategy chooses s_{i+j} to be $V(\alpha_j, l'_s, l_j, \lambda'|_X \cup \lambda_j)$. Let $\tau_j = V(\alpha_j, l'_s, l_j, \lambda'|_X \cup \lambda_j)$.

For s_{i+m+1} our strategy chooses $F(l'_{\text{src}}, l'_{\text{tgt}}, \lambda'|_X \cup \lambda_{\text{tgt}})(\tau_j(s_0 \ldots s_{i+m+1}) = F(l'_{\text{src}}, l'_{\text{tgt}}, \lambda'|_X \cup \lambda_{\text{tgt}})$.

By our assumption, Falsifier has not made an illegal move and every move chosen by Verifier conforms to g_r. Thus every move s_0, ..., s_i must be legal (by assumption and the inductive hypothesis).

For each $i + 1 < k \leq i + m + 1$, s_0,...,s_k is a legal position. Each Verifier choice from $i + 2$ to $i + m + 1$ is legal.

Necessarily $n \leq i + m + 1$, otherwise i was not the greatest index of a Falsifier node in s_0,...,s_n. Clearly if $n < i + m + 1$, we may conclude that Verifier has a legal move (i.e. s_{n+1}). If $n = i + m + 1$, then necessarily $\lambda'|_X \triangleright l'_{\text{src}}$ is R-related to $\lambda_{\text{tgt}} \triangleright l_{\text{tgt}}$ or $l_s = \text{out}_{\text{src}}$ and $l_{\text{tgt}} = \text{out}_{\text{tgt}}$ and $s \models Q$ is true.

We have proven the Lemma. Let p be any play that conforms to g_R. By the above lemma, none of the three winning conditions for Falsifier are possible. Thus p is won by Verifier and g_R is a winning strategy.

Case \leftrightarrow:

Let g be Verifier’s winning strategy for the game $G(\{P\} \text{ src} \leq \text{tgt} \{Q\})$. For any play p that conforms to g, let $R_p = \{(\lambda|_X \triangleright l_{\text{src}}, \lambda|_Y \triangleright l_{\text{tgt}}) : p', F(l_{\text{src}}, l_{\text{tgt}}, \lambda) \text{ is a legal prefix of } p', F(l'_{\text{src}}, l'_{\text{tgt}}, \lambda') \}$ be the union of every R_p for every play p that conforms to g.

Thus every move s_0, ..., s_i must be legal (by assumption and the inductive hypothesis).

By the above lemma, none of the three winning conditions for Falsifier are possible. Thus p is won by Verifier and g_R is a winning strategy.

Theorem 3.6. If there is a well-labeled complete simulation game tree for $\{P\} \text{ src} \leq \text{tgt} \{Q\}$, then Verifier has a winning strategy for $G(\{P\} \text{ src} \leq \text{tgt} \{Q\})$.

Proof of Theorem 3.6.

Let $L = \langle F, V, E, r, L, S, T, \Phi, K, G, X, \triangleright, m \rangle$ be any complete well-labeled simulation game tree for $\{P\} \text{ src} \leq \text{tgt} \{Q\}$.

We formalize *Places* in Section 3 using F-$\triangleright_{\text{pred}}$ as defined in Section 4 and letter which takes the output of F-$\triangleright_{\text{pred}}$ (a send or receive command or None) and a valuation and computes a letter associated to the command (or τ for None).
We additionally prove that if the prefix p is not associated to any node ($m \notin \text{Places}(n)$ for any node n). Then let $g(p \cdot m)$ be $F\langle \ell_{src}, \ell_{tgt}, \lambda \rangle$.

We now finish defining g by the strategy defined by Places (as described in Section 3).

We now proceed to prove that g is a winning strategy for $G\langle \{P\} \rangle_{src} \subseteq tgt\langle Q \rangle$.

We prove by induction (over prefixes of p), that Verifier does not make the first illegal move.

We additionally prove that if the prefix $m_0 \ldots m_n$ is legal then m_n is associated to a node (or $m_n = V\langle \ell_{src}, \ell_{tgt}, \lambda \rangle$ and $F\langle \ell_{src}, \ell_{tgt}, \lambda \rangle$ is associated to a node). and the node associated with m_n is the successor of the node associated with m_{n-1}.

Case m_0:

The first move is made by Falsifier, thus Verifier has not yet made an illegal move. For m_0 to be legal it must take the form $F\langle in_{src}, in_{tgt}, \lambda \rangle$ where λ satisfies P. By the initial constraint, m_0 must be associated to r.

Case $m_0 \ldots m_n$:

By the inductive hypothesis, Verifier did not make the first illegal move of the prefix $m_0 \ldots m_n$. If $m_0 \ldots m_n$ is not legal, then Falsifier must have made the first illegal move. And we have proved the lemma.

Otherwise $m_0 \ldots m_n$ is legal.

Case $m_n = F\langle \ell_{src}, \ell_{tgt}, \lambda \rangle$:

m_{n+1} was chosen by Falsifier, thus Verifier has not yet made an illegal move. If m_{n+1} is legal then it must take the form $V\langle \alpha, \ell_{src}, \ell_{tgt}, \lambda' \rangle$ where $\lambda' = \alpha \circ \ell_{src} (\lambda' \circ \ell_{src})$. Since m_n is associated with some F-node u, by the adequacy and consecution constraints, there must be some successor of v such that if $v \in V$ then $m_{n+1} \in \text{Places}(v)$; otherwise, $\alpha = \tau$ and $F\langle \ell_{src}, \ell_{tgt}, \lambda' \rangle \in \text{Places}(v)$

Case $m_n = V\langle \alpha, \ell_{src}, \ell_{tgt}, \lambda \rangle$:

m_{n+1} must be $g(m_0 \ldots m_n)$. Either m_n is associated to some node u or it is not. If it is not, then by the inductive hypothesis $\alpha = \tau$ and $m_{n+1} = F\langle \ell_{src}, \ell_{tgt}, \lambda \rangle$. By the consecution rules,
must be associated to a node \(v \). (\(m_{n-1} \) must be associated to some node, and \(m_{n+1} \) is associated with the chosen successor based on \(m_n \)).

If \(m_n \) is associated to some node \(u \), then \(m_{n+1} \) must be \(g(m_0...m_n) \). As described above, by the consecution rules \(m_{n+1} \) must be a legal move. \(m_{n+1} \) was computed by selecting some successor node \(v \) of \(u \) such that \(G(u,v) \) is satisfied by \(\lambda \). Either \(m_{n+1} \) is associated with \(v \) (if \(v \in V \)) or it is not and the corresponding Verifier move is associated with \(v \). By this point we can be assured \(m_{n+1} \)'s letter to match must be \(\tau \), due to the observational matching constraint.

We have now proven that for any conforming play \(p \) Verifier has not made an illegal move. Thus Falsifier cannot win the play by forcing Verifier to make an illegal move. The second win condition of Falsifier is ruled out by the well-labeledness's final constraint. The third win condition of Falsifier is also ruled out by the well-foundedness constraints: for there to be an infinite sequence where Verifier always passes or always continues, there must be a non well-founded cycle of F-nodes or V-nodes respectively.

Thus \(g \) is a winning strategy for Verifier of \(G(\{P\} \overset{\ell_{src}}{\prec} tgt \{Q\}) \).

\[\square \]

Theorem 4.1. Algorithm 1 is sound. For any contextual simulation, if \(\text{Strategy-synthesis}(\{P\} \overset{\ell_{src}}{\prec} tgt \{Q\}) \) terminates with a simulation strategy, then \(\models \{P\} \overset{\ell_{src}}{\prec} tgt \{Q\} \). If \(\text{Strategy-synthesis} \) instead terminates with a simulation counter-strategy then \(\not\models \{P\} \overset{\ell_{src}}{\prec} tgt \{Q\} \).

Proof of Theorem 4.1. The algorithm maintains the invariant that \(L \) is well-labeled. If the algorithm terminates with a strategy \(L \) then we know the unwinding is complete and well-labeled. Thus, we may then use Theorems 3.6 and 3.1 to conclude that \(\models \{P\} \overset{\ell_{src}}{\prec} tgt \{Q\} \). Algorithm 1 terminates with a counter strategy, then Falsifier has a winning strategy, and so by Theorem 3.1 we may conclude that \(\not\models \{P\} \overset{\ell_{src}}{\prec} tgt \{Q\} \). \(\square \)