Adversarially-Trained Nonnegative Matrix Factorization

Vincent Y. F. Tan (NUS)

Adversarially-Trained NMF

Nonnegative Matrix Factorization (Lee and Seung, 1999)

Given a nonnegative data matrix $\mathbf{V} \in \mathbb{R}^{F \times N}_+$, approximate \mathbf{V} as

 $\mathbf{V} \approx \mathbf{W} \mathbf{H}$

where $\mathbf{W} \in \mathbb{R}^{F \times K}_+$ (basis) and $\mathbf{H} \in \mathbb{R}^{K \times N}_+$ (coefficient) matrices.

Nonnegative Matrix Factorization (Lee and Seung, 1999)

Given a nonnegative data matrix $\mathbf{V} \in \mathbb{R}^{F \times N}_+$, approximate \mathbf{V} as

 $\mathbf{V} \approx \mathbf{W} \mathbf{H}$

where $\mathbf{W} \in \mathbb{R}^{F \times K}_+$ (basis) and $\mathbf{H} \in \mathbb{R}^{K \times N}_+$ (coefficient) matrices.

Nonnegative Matrix Factorization (Lee and Seung, 1999)

Given a nonnegative data matrix $\mathbf{V} \in \mathbb{R}^{F \times N}_+$, approximate \mathbf{V} as

 $\mathbf{V} \approx \mathbf{W} \mathbf{H}$

where $\mathbf{W} \in \mathbb{R}^{F \times K}_+$ (basis) and $\mathbf{H} \in \mathbb{R}^{K \times N}_+$ (coefficient) matrices.

One typically solves

 $\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} D(\mathbf{V}\mid\mathbf{W}\mathbf{H}) \quad \text{e.g.} \quad D(\mathbf{V}\mid\mathbf{W}\mathbf{H}) = \left\|\mathbf{V}-\mathbf{W}\mathbf{H}\right\|_{\mathrm{F}}^{2},$

where $A \ge 0$ means that all the entries of A are nonnegative.

Vincent Y. F. Tan (NUS)

 Adversarial training (Goodfellow et al., 2015; Madry et al., 2018; Tramèr et al., 2018)

 Adversarial training (Goodfellow et al., 2015; Madry et al., 2018; Tramèr et al., 2018)

 Improve the predictive performance of NMF using adversarial training for matrix completion tasks.

 Adversarial training (Goodfellow et al., 2015; Madry et al., 2018; Tramèr et al., 2018)

- Improve the predictive performance of NMF using adversarial training for matrix completion tasks.
- Derive efficient algorithms for updating the adversary and (W, H).

 Adversarial training (Goodfellow et al., 2015; Madry et al., 2018; Tramèr et al., 2018)

- Improve the predictive performance of NMF using adversarial training for matrix completion tasks.
- Derive efficient algorithms for updating the adversary and (W, H).
- Demonstrate the superior predictive performance of adversarially-trained NMF or AT-NMF over other methods on matrix completion tasks for three benchmark datasets.

4 回 > < E > < E > E E のQの

Formulation of AT-NMF

Consider an adversary that adds an arbitrary matrix $\mathbf{R} \in \mathbb{R}^{F \times N}_+$ to V to maximize the divergence between V and WH, AT-NMF is formulated as

$$\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} \max_{\mathbf{R}\in\mathcal{R}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}$$

where the constraint set

$$\mathcal{R} = \left\{ \mathbf{R} : \|\mathbf{R}\|_{\mathrm{F}}^2 \leq \epsilon, \mathbf{V} + \mathbf{R} \geq \mathbf{0}
ight\}$$

Formulation of AT-NMF

Consider an adversary that adds an arbitrary matrix $\mathbf{R} \in \mathbb{R}^{F \times N}_+$ to V to maximize the divergence between V and WH, AT-NMF is formulated as

$$\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} \max_{\mathbf{R}\in\mathcal{R}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}$$

where the constraint set

$$\mathcal{R} = \left\{ \mathbf{R} : \|\mathbf{R}\|_{\mathrm{F}}^2 \leq \epsilon, \mathbf{V} + \mathbf{R} \geq \mathbf{0} \right\}$$

• $\epsilon > 0$ is a constant indicating the adversary's power.

Formulation of AT-NMF

Consider an adversary that adds an arbitrary matrix $\mathbf{R} \in \mathbb{R}^{F \times N}_+$ to V to maximize the divergence between V and WH, AT-NMF is formulated as

$$\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} \max_{\mathbf{R}\in\mathcal{R}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}$$

where the constraint set

$$\mathcal{R} = \left\{ \mathbf{R} : \|\mathbf{R}\|_{\mathrm{F}}^2 \leq \epsilon, \mathbf{V} + \mathbf{R} \geq \mathbf{0}
ight\}$$

- $\epsilon > 0$ is a constant indicating the adversary's power.
- To relax the problem, dualize the constraint $\|\mathbf{R}\|_{\mathrm{F}}^2 \leq \epsilon$ with Lagrange multiplier $\lambda > 0$, AT-NMF becomes

$$\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} \max_{\mathbf{R}:\mathbf{V}+\mathbf{R}\geq\mathbf{0}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2} - \lambda \|\mathbf{R}\|_{\mathrm{F}}^{2}.$$

Vincent Y. F. Tan (NUS)

Vincent Y. F. Tan (NUS)

-

★個 ▶ ★ 臣 ▶ ★ 臣 ▶

Let ÎV = WH, the inner maximization problem can be rewritten as a minimization problem as

$$\mathbf{R}^* = \underset{\mathbf{R}: \mathbf{V} + \mathbf{R} > \mathbf{0}}{\arg\min} - \|\mathbf{V} + \mathbf{R} - \hat{\mathbf{V}}\|_{\mathrm{F}}^2 + \lambda \|\mathbf{R}\|_{\mathrm{F}}^2$$

Let $\hat{\mathbf{V}} = \mathbf{W}\mathbf{H}$, the inner maximization problem can be rewritten as a minimization problem as

$$\mathbf{R}^* = \underset{\mathbf{R}: \mathbf{V} + \mathbf{R} \ge \mathbf{0}}{\operatorname{arg\,min}} \quad -\|\mathbf{V} + \mathbf{R} - \hat{\mathbf{V}}\|_{\mathrm{F}}^2 + \lambda \|\mathbf{R}\|_{\mathrm{F}}^2$$

Objective separates into FN independent terms

$$g(\mathbf{R}) = \sum_{f,n} \left[-(v_{fn} + r_{fn} - \hat{v}_{fn})^2 + \lambda r_{fn}^2 \right].$$

Let $\hat{\mathbf{V}} = \mathbf{W}\mathbf{H}$, the inner maximization problem can be rewritten as a minimization problem as

$$\mathbf{R}^* = \underset{\mathbf{R}: \mathbf{V} + \mathbf{R} \ge \mathbf{0}}{\operatorname{arg\,min}} \quad -\|\mathbf{V} + \mathbf{R} - \hat{\mathbf{V}}\|_{\mathrm{F}}^2 + \lambda \|\mathbf{R}\|_{\mathrm{F}}^2$$

Objective separates into FN independent terms

$$g(\mathbf{R}) = \sum_{f,n} \left[-(v_{fn} + r_{fn} - \hat{v}_{fn})^2 + \lambda r_{fn}^2 \right].$$

Suffices to minimize each term inside over r_{fn} . By re-arranging:

$$\min_{\mathbf{r}_{fn}: v_{fn} + r_{fn} \ge 0} (\lambda - 1) \mathbf{r}_{fn}^2 - 2\mathbf{r}_{fn} (v_{fn} - \hat{v}_{fn})$$

• Can be solved in closed-form. For $\lambda \in [0, 1]$, $r_{fn} = \infty$; for $\lambda > 1$,

$$\mathbf{R}^* = \max\left\{\frac{\mathbf{V} - \hat{\mathbf{V}}}{\lambda - 1}, -\mathbf{V}\right\}$$

Vincent Y. F. Tan (NUS)

Vincent Y. F. Tan (NUS)

3

▲ 圖 ▶ ▲ 臣 ▶ ▲ 臣

■ After update of **R** to **R**^{*},

$$\underset{\mathbf{W},\mathbf{H}\geq\mathbf{0}}{\operatorname{arg\,min}} \|\underbrace{\mathbf{V}+\mathbf{R}^{*}}_{=:\mathbf{U}}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}-\lambda\|\mathbf{R}\|_{\mathrm{F}}^{2}$$

fix $U := V + R^*$.

< ロ > < 団 > < 団 > < 団 > < 団 > < 団 > < 団 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

■ After update of **R** to **R**^{*},

$$\underset{\mathbf{W},\mathbf{H}\geq\mathbf{0}}{\operatorname{arg\,min}} \|\underbrace{\mathbf{V}+\mathbf{R}^{*}}_{=:\mathbf{U}}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}-\lambda\|\mathbf{R}\|_{\mathrm{F}}^{2}$$

fix $U := V + R^*$.

 Use majorization-minimization (MM) (Hunter and Lange, 2000) to update

$$\mathbf{H} \leftarrow \mathbf{H} \cdot \frac{\mathbf{W}^\top \mathbf{U}}{\mathbf{W}^\top \mathbf{W} \mathbf{H}} \quad \text{and} \quad \mathbf{W} \leftarrow \mathbf{W} \cdot \frac{\mathbf{U} \mathbf{H}^\top}{\mathbf{W} \mathbf{H} \mathbf{H}^\top}$$

Vincent Y. F. Tan (NUS)

A ∃ ► A ∃ ► ∃ E

■ After update of **R** to **R**^{*},

$$\underset{\mathbf{W},\mathbf{H}\geq\mathbf{0}}{\operatorname{arg\,min}} \|\underbrace{\mathbf{V}+\mathbf{R}^{*}}_{=:\mathbf{U}}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}-\lambda\|\mathbf{R}\|_{\mathrm{F}}^{2}$$

fix $U := V + R^*$.

 Use majorization-minimization (MM) (Hunter and Lange, 2000) to update

$$\mathbf{H} \leftarrow \mathbf{H} \cdot \frac{\mathbf{W}^\top \mathbf{U}}{\mathbf{W}^\top \mathbf{W} \mathbf{H}} \quad \text{and} \quad \mathbf{W} \leftarrow \mathbf{W} \cdot \frac{\mathbf{U} \mathbf{H}^\top}{\mathbf{W} \mathbf{H} \mathbf{H}^\top}$$

- \blacksquare Initialization of (\mathbf{W},\mathbf{H})
 - Sample each entry independently from Half-Normal distribution (with variance parameter $\gamma = 1$);
 - \blacksquare Run 5 standard MM steps on V to obtain W_{init} and $H_{\text{init}}.$

A = A = A = A = A = A

■ After update of **R** to **R**^{*},

$$\underset{\mathbf{W},\mathbf{H}\geq\mathbf{0}}{\operatorname{arg\,min}} \|\underbrace{\mathbf{V}+\mathbf{R}^{*}}_{=:\mathbf{U}}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}-\lambda\|\mathbf{R}\|_{\mathrm{F}}^{2}$$

fix $U := V + R^*$.

 Use majorization-minimization (MM) (Hunter and Lange, 2000) to update

$$\mathbf{H} \leftarrow \mathbf{H} \cdot \frac{\mathbf{W}^\top \mathbf{U}}{\mathbf{W}^\top \mathbf{W} \mathbf{H}} \quad \text{and} \quad \mathbf{W} \leftarrow \mathbf{W} \cdot \frac{\mathbf{U} \mathbf{H}^\top}{\mathbf{W} \mathbf{H} \mathbf{H}^\top}$$

- Initialization of (W, H)
 - Sample each entry independently from Half-Normal distribution (with variance parameter $\gamma = 1$);
 - \blacksquare Run 5 standard MM steps on V to obtain \mathbf{W}_{init} and $\mathbf{H}_{init}.$
- Termination (described in paper)

Vincent Y. F. Tan (NUS)

Adversarially-Trained NMF

- $\alpha \in \{0.1, 0.2, \cdots, 0.8, 0.9\}$ denotes the fraction of held-out entries.
- $\Gamma \subset \{1, \cdots, F\} \times \{1, \cdots, N\}$ is the set of held-out entries of **V**.
- \hat{v}_{fn} is the prediction of v_{fn} .

Synthetic Dataset: Setup

α ∈ {0.1, 0.2, · · · , 0.8, 0.9} denotes the fraction of held-out entries.
Γ ⊂ {1, · · · , F} × {1, · · · , N} is the set of held-out entries of V.
ŷ_{fn} is the prediction of v_{fn}.

				anu a	1	- MIND	•••
	****	?	rininin ir	?	?	?]
9	?	ninininini talahahahahahahahahahahahahahahahahahaha	?	?	skakakaka	?	•••
	?	?	?	skalask ažaž	deled eled	?	•••
and a	?	hahah ah	AnAnA ninir	?	?	*****	•••
:	:	:	:	:	:	÷	•.

Vincent Y. F. Tan (NUS)

Synthetic Dataset: Metric and Results

Our performance metric is the root mean-squared error (RMSE)

$$\mathsf{RMSE} := \sqrt{\frac{1}{|\Gamma|} \sum_{(f,n) \in \Gamma} \left(v_{fn} - \hat{v}_{fn} \right)^2}$$

Systhetic dataset of F = 100, N = 50, and K = 5.

Synthetic Dataset: Metric and Results

Our performance metric is the root mean-squared error (RMSE)

$$ext{RMSE} := \sqrt{rac{1}{|\Gamma|}\sum_{(f,n)\in\Gamma} \left(v_{fn} - \hat{v}_{fn}
ight)^2}$$

Systhetic dataset of F = 100, N = 50, and K = 5.

	RMSE	of S	ynthetic	dataset
--	------	------	----------	---------

α	NMF	ANMF	AT-NMF (2)	AT-NMF (3)	AT-NMF (5)
0.3	5.37 ± 0.02	6.78 ± 0.17	5.41 ± 0.12	5.11 ± 0.03	5.20 ± 0.02
0.4	5.62 ± 0.03	6.92 ± 0.17	5.54 ± 0.08	5.32 ± 0.09	5.42 ± 0.04
0.5	6.41 ± 0.01	7.44 ± 0.09	6.27 ± 0.11	6.05 ± 0.03	6.18 ± 0.02
0.6	6.74 ± 0.02	7.61 ± 0.09	6.47 ± 0.07	6.39 ± 0.03	6.53 ± 0.02
0.7	7.30 ± 0.01	7.99 ± 0.06	7.02 ± 0.04	6.94 ± 0.01	7.10 ± 0.02
0.8	7.87 ± 0.01	8.30 ± 0.06	7.69 ± 0.04	7.61 ± 0.03	7.71 ± 0.00
0.9	8.45 ± 0.01	8.58 ± 0.06	8.44 ± 0.02	8.34 ± 0.02	8.35 ± 0.02

CBCL Face Dataset: Parts Learned

• N = 2429 facial images with F = 361 pixels.

∃ ► < ∃</p>

CBCL Face Dataset: Parts Learned

• N = 2429 facial images with F = 361 pixels.

Parts learnt when $\alpha = 0.1$

∃ ► < ∃ ►</p>

CBCL Face Dataset: Image Restoration

Image Restoration by AT-NMF

- (a) (b) (c) (d) (e) (f)
- (a) Original Image V;
- (b) Masked training image V;
- (c) Adversary's added-on masked image \mathbf{R}^* ;

(d) AT-masked image $V + R^*$ [Features (eyes, nose, lower cheeks) become more distinctive];

(e) Restored image using AT-NMF with $\lambda = 2$;

(f) Restored image using NMF.

CBCL Face Dataset: Training Losses

Training losses when $\alpha = 0.5$

-

Hyperspectral Datasets

■ It includes the Moffet (Jet Propulsion Lab) and Madonna (Sheeren et al., 2011) datasets with F = 165 and F = 160 respectively and N = 2500.

∃ ► < ∃ ►</p>

Hyperspectral Datasets

- It includes the Moffet (Jet Propulsion Lab) and Madonna (Sheeren et al., 2011) datasets with F = 165 and F = 160 respectively and N = 2500.
 - Effect of λ on the RMSE

Vincent Y. F. Tan (NUS)

ICASSP 12/15

Formulation and algorithm for Adversarially-Trained NMF:

 $\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} \max_{\mathbf{R}\in\mathcal{R}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}$

where $\mathcal{R} = \{\mathbf{R} : \|\mathbf{R}\|_F^2 \le \epsilon, \mathbf{V} + \mathbf{R} \ge \mathbf{0}\}$ or $\min_{\mathbf{W}, \mathbf{H} \ge \mathbf{0}} \max_{\mathbf{R}: \mathbf{V} + \mathbf{R} \ge \mathbf{0}} \|\mathbf{V} + \mathbf{R} - \mathbf{W}\mathbf{H}\|_F^2 - \lambda \|\mathbf{R}\|_F^2.$

Vincent Y. F. Tan (NUS)

Formulation and algorithm for Adversarially-Trained NMF:

 $\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} \max_{\mathbf{R}\in\mathcal{R}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}$

where
$$\mathcal{R} = \{\mathbf{R} : \|\mathbf{R}\|_{\mathrm{F}}^2 \leq \epsilon, \mathbf{V} + \mathbf{R} \geq \mathbf{0}\}$$
 or

$$\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} \max_{\mathbf{R}:\mathbf{V}+\mathbf{R}\geq\mathbf{0}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2} - \lambda \|\mathbf{R}\|_{\mathrm{F}}^{2}.$$

 Other divergence measures beyond the Frobenius norm , e.g., β-divergence (Févotte et al., 2009).

Formulation and algorithm for Adversarially-Trained NMF:

 $\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} \max_{\mathbf{R}\in\mathcal{R}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}$

where
$$\mathcal{R} = \{\mathbf{R}: \|\mathbf{R}\|_{\mathrm{F}}^2 \leq \epsilon, \mathbf{V} + \mathbf{R} \geq \mathbf{0}\}$$
 or

$$\min_{\mathbf{W},\mathbf{H} \ge \mathbf{0}} \max_{\mathbf{R}:\mathbf{V}+\mathbf{R} \ge \mathbf{0}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2} - \lambda \|\mathbf{R}\|_{\mathrm{F}}^{2}.$$

 Other divergence measures beyond the Frobenius norm , e.g., β-divergence (Févotte et al., 2009).

■ Different bounded sets \mathcal{R} , e.g., $\{\mathbf{R} : \|\mathbf{R}\|_{p,q} \le \epsilon, \mathbf{V} + \mathbf{R} \ge \mathbf{0}\}$.

同下 イヨト イヨト ヨヨ つくつ

Formulation and algorithm for Adversarially-Trained NMF:

 $\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} \max_{\mathbf{R}\in\mathcal{R}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2}$

where
$$\mathcal{R} = \{\mathbf{R} : \|\mathbf{R}\|_F^2 \le \epsilon, \mathbf{V} + \mathbf{R} \ge \mathbf{0}\}$$
 or

$$\min_{\mathbf{W},\mathbf{H}\geq\mathbf{0}} \max_{\mathbf{R}:\mathbf{V}+\mathbf{R}\geq\mathbf{0}} \|\mathbf{V}+\mathbf{R}-\mathbf{W}\mathbf{H}\|_{\mathrm{F}}^{2} - \lambda \|\mathbf{R}\|_{\mathrm{F}}^{2}.$$

- Other divergence measures beyond the Frobenius norm , e.g., β-divergence (Févotte et al., 2009).
- Different bounded sets \mathcal{R} , e.g., $\{\mathbf{R} : \|\mathbf{R}\|_{p,q} \le \epsilon, \mathbf{V} + \mathbf{R} \ge \mathbf{0}\}$.
- Online NMF (Lefèvre et al., 2011; Mairal, 2015)?

<<p>
4 回 > < 三 > < 三 > 三 = < の < 0
</p>

References I

- C. Févotte, N. Bertin, and J.-L. Durrieu. Nonnegative matrix factorization with the Itakura-Saito divergence: With application to music analysis. *Neural computation*, 21(3):793–830, 2009.
- I. Goodfellow, J. Shlens, and C. Szegedy. Explaining and harnessing adversarial examples. In Proc. of the 3rd International Conference on Learning Representations, 2015. URL http://arxiv.org/abs/1412.6572.
- D. R. Hunter and K. Lange. Quantile regression via an MM algorithm. *Journal of Computational and Graphical Statistics*, 9(1):60–77, 2000.
- Jet Propulsion Lab. Aviris free data. California Inst. Technol., Pasadena, CA, 2006. [Online]. Available: http://aviris.jpl.nasa.gov/html/aviris.freedata.html.
- D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative matrix factorization. *Nature*, 401(6755):788–791, 1999.
- A. Lefèvre, F. Bach, and C. Févotte. Online algorithms for nonnegative matrix factorization with the Itakura-Saito divergence. In *Proc. IEEE Workshop on Applications of Signal Processing* to Audio and Acoustics (WASPAA), Mohonk, NY, Oct. 2011. URL https: //www.irit.fr/~Cedric.Fevotte/publications/proceedings/waspaal1.pdf.
- A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu. Towards deep learning models resistant to adversarial attacks. In *Proc. of the 6th International Conference on Learning Representations*, 2018.
- J. Mairal. Incremental majorization-minimization optimization with application to large-scale machine learning. *SIAM Journal on Optimization*, 25(2):829–855, 2015.

References II

- D. Sheeren, M. Fauvel, S. Ladet, A. Jacquin, G. Bertoni, and A. Gibon. Mapping ash tree colonization in an agricultural mountain landscape: Investigating the potential of hyperspectral imagery. In *Proc. IEEE Int. Conf. Geosci. Remote Sens. (IGARSS), Vancouver, Canada*, pages 3672–3675, July 2011.
- F. Tramèr, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. McDaniel. Ensemble adversarial training: Attacks and defenses. In *Proc. of the 6th International Conference on Learning Representations*, 2018.