
1 Join Algorithms

For all of the algorithm discussions here, consider two relations R and S, where |R| ≤ |S|. |M| is the size of
primary memory.

1.1 Sort-Merge

1. Generate sorted runs of the tuples in R and S. These runs are (on average) twice as long as can fit in
memory at once (2 ∗ |M|).

2. Sort these runs using n-way merges, with n as large as possible (to decrease the number of required
merging phases and IO time). Ideally, only two phases are required; this is possible when |M| ≥

√
|S|.

One buffer page is required for each run.

3. Generate output tuples as the R and S tuples fall into sorted order.

1.2 (Classic) Hash Join

When calculating the sizes of any table, a fudge factor F is used to represent hash table space overhead.

1. Create a hash table based on the smaller relation R, hashed by the join attribute.

2. For each tuple in S, hash the join attribute and look up the result in the hash table. Create an output
tuple if a match is found.

Of course, this works well if the hash table for R can fit into primary memory. When this is not the case:

1. Use a (different) hash function to partition both R and S into disjoint sets R1,R2, · · · ,Rn and S1,S2, · · · ,Sn.
Note, this is an equal number of sets that are not equally sized (it should be expected that the average
Ri is smaller than the average Si, since |R| ≤ |S|.

2. Perform the hash join for each of these disjoint sets Ri Z Si.

3. Concatenate the resulting sub-tables.

1.3 Simple Hash Join

Identical to Classic Hash Join if R fits into memory.
Otherwise, essentially perform Classic Hash Join by dealing with each partition Hi of R and S (as

determined by the hash function) in turn, with bucket overflow going to disk.

1. Create a hash table of the tuples of R that fall into Hi, writing overflow onto disk.

2. Probe table and generate output tuples.

3. Increment i and repeat.

The main disadvantage is that R and S are both scanned many times.

1.4 GRACE Join

This is a two-phase algorithm, which starts off by partitioning R into approximately equal sized buckets
that each fit into memory.

1

1.4.1 Phase 1

1. Choose a hash function h that will partition R as described above.

2. Scan R and use h to place tuples into output buffers.

3. Scan S and use the same h to place its tuples into output buffers.

1.4.2 Phase 2

This section is repeated for each i from zero to the number of partitions of R. A different hash function is
used for this section, h′.

1. Build a hash table in memory for Ri. (Overflow discussed later)

2. Using h′, probe the hash table for each tuple of Si, writing output tuples as necessary.

1.4.3 Dealing with Overflow

There are several available strategies:

• Re-partition with yet another hash function during phase 2, as needed.

• Over-partition in phase 1, merging these small partitions on the fly as space permits.

• Use statistics collected on the data to estimate a good hash function up front.

1.4.4 Notes

Always scans R and S twice (but never more than twice as in Simple). This is a loss if most of R can fit in
memory.

1.5 Hybrid Hash Join

This is very similar to GRACE, except the first hash table (for R0) is kept in memory during phase 1 and
probed while S is being partitioned. This way, R0 and S0 never need to be written to disk.

1.6 Algorithm Comparisons (Sort Merge versus Hash Join)

Hash join is typically a very good choice if one of the relations being joined fits entirely in memory.
Otherwise, Sort merge basically always wins if:

• The relations are already sorted.

• There are many duplicates or the data is catastrophically non-uniform. Sort merge can also just be
used on a subset of bad partitions, if necessary, and if the rest would benefit from hash join.

• Output needs to be in sorted order.

1.7 Other Optimizations

• Bloom Filters
Build a Bloom Filter based on the join attributes in R, and use that to augment the hash table. The
filter allows you to pre-reject tuples in S, since it will trivially tell if there is definitely no match in R.

2

• Semi-Join (X)
Let the π(R) be the projection of the joining attribute of R, and let the semi-join be denoted S X R =
S Z π(R). The semi-join optimization is, then:

(S X R) Z R

This is equivalent to R Z S, but can save significant IO time if R has many attributes that are not being
joined on, but are required for the final result.

This procedure essentially uses the semi-join to filter S without carrying around tuple baggage from
R.

2 System R Optimizations

These optimizations largely center around query planning and join ordering to minimize IO costs. This
is quantified in a “Selectivity Factor” assigned to each operation in the query. The process also takes into
account “interesting orders”, where the result of some operation might yield an order that would be useful
later (either for another join or as in a sorted order that was requested in the query for the final result set).

Some notation for this section:

• |R| is the number of pages in R.

• ||R|| is the cardinality of R.

2.1 Optimizer Inputs

• Search Space

• Cost Estimation (statistics, histograms - equiwidth, equidepth)

• Enumeration Algorithm

2.1.1 Statistics

Statistics Tracked:

• Cardinality of relation R.

• Number of pages holding tuples of R.

• Fraction of pages in the segment holding tuples of R.

• Number of distinct keys in index I of R.

• Number of pages in index I of R.

These statistics are updated periodically, and are not always accurate. Their primary use is to assign
selectivity factors to operations. When no statistics are available, arbitrary selectivity factors are assigned
(with the intuition being that only a small relation would have no statistics).

One compact representation of key distributions over tables is the histogram. These can be either equi-
width (each bucket covers the same amount of key space) or equi-depth (where each bucket contains the
same number of keys, but covers a variable amount of key space). Equi-depth histograms are more useful
in dealing with significantly skewed data. These do not provide any sort of joint distribution information
by themselves.

3

2.2 Interesting Orders

An order is interesting if it is induced by the query itself (by ORDER BY or GROUP BY clauses), or if it
would beneficially feed into a later stage (such as providing tuples in a sorted order for a sort merge join).

Cost calculations must take into account the final interesting order (or any intermediate sorting costs)
for branches of the optimization tree that do not have a cheap interesting order available.

2.3 Join Optimization Algorithm

The System R optimizer simply uses bottom-up dynamic programming to construct a search tree through
the optimization space. The final query plan chosen is the cheapest (calculated by traversing the tree from
the leaves to the root).

First (step zero), find the cheapest access path for each relation on any given interesting order. Keep
the cheapest for each interesting order, along with the cheapest uninteresting order (if it is cheaper than the
interesting orders).

1. For each join Zi, compute the cost for choosing each access path.

2. Retain the cheapest plans for each interesting order, along with the cheapest plan that does not produce
an interesting order (unless the cheapest plan that results in an uninteresting order is more expensive
than an interesting order). If a particular interesting order is required for the result of Zi, factor in the
cost to sort for plans that do not provide this interesting order.

3. Create a new set of relations to be joined, Z′i .

4. Go to 1 unless there are no joins left.

The algorithm first finds all best ways to join all pairs of relations, {Z}2. It then finds all best ways to join
all sets of three relations (by extending the joins of size two with one more joined relation), and so on until
all relations have been joined. When the iteration is over, a tree of query plans is in place and the cheapest
can be selected.

At each node in the tree, estimated result set cardinalities are maintained. These are only estimates, and
errors thus propagate up the tree. These estimates feed into the next round of cost estimations. Errors can
be mitigated by re-optimizing the search tree on-the-fly as the query progresses.

2.3.1 Join Order Heuristic

System R uses this heuristic to trim the search space when building the optimization tree: only consider
join orders which have join predicates relating the inner relation to the other relations already participating
in the join (where possible).

This essentially means that Cartesian products are pushed to the end of the computation.

2.3.2 Optimization Paths not Considered

• Bushy Joins
These require fully materializing at least one intermediate result (which means IO), so they are not
considered by System R.

An example of when a bushy join could be a major win would be in a star topology with four small
satellite tables and a huge central table where there are Cartesian joins between the small tables and
equijoins against the huge table. Computing the full cross product of all of the small tables and only
traversing the huge table once could be a massive IO win.

• Cartesian Joins
System R does not consider these because they are typically undesirable, and would expand the search
space considerably.

4

A full Cartesian join is typically bad, but can be a win in certain query patterns. One example is a
star join, where a huge central relation is joined to several (highly selective) smaller relations. Joining
each small relation to the large relation in series would require several scans of the huge relation.
Performing the Cartesian join among the smaller relations, however, produces one (somewhat larger
than the original small relations) relation that can be joined against the huge relation in one pass,
saving lots of IO overhead.

2.4 Nested Queries

Sub-queries that do not capture any context of their enclosing query need only be evaluated once (since
their environment does not change). Both single values and sub-lists can be optimized in this manner.

Queries that do capture some aspect of their enclosing environment are referred to as correlated queries.
In theory, correlated queries must be re-evaluated for every time they are encountered. Some of these
re-evaluations can be avoided by sorting on the captured field, and saving the result of the evaluation until
the field changes (and a re-evaluation is unavoidable).

2.4.1 Preserving Duplicates and NULLs

If a sub-query has an aggregation, duplicates and NULLs in the outer query can be preserved by using a
left outer join.

2.5 Other Optimizations

These are a few other optimizations covered in Chaudhuri98.

2.5.1 Join/Group By Interaction

It can be profitable to push Group By operations earlier, especially if they eliminate a large number of
records (which no longer need to be joined, possibly making one relation fit into memory). Group By can
also be very cheap if an appropriate index is available.

2.6 Optimization Architectures

Besides the simple bottom-up tree building approach of System R, several other optimization strategies are
also common.

• Algebraic query rewriting. These are based entirely on rules engines that apply algebraic transforma-
tions when they are profitable.

This style allows rules to be added to the engine without a complete rewrite, and can optimize things
besides joins.

3 Buffer Management

Database people consider traditional memory management techniques unsuitable for database workloads,
so they cooked up several more context aware alternatives for their memory managers.

In all cases, a Load Controller process allows queries into the system conditionally, depending on
available resources (queries that will take more resources than are available will wait until resources free
up). This does not make any inherent starvation guarantees. If the Load Controller makes a bad estimate
and a query starts to take too many resources, the controller can suspend that query.

5

3.1 Domain Separation Algorithms

This was an earlier approach that used separate buffer pools for related workloads. As a motivating example,
the internal nodes of a B-tree are much more likely to be accessed than any particular leaf or data node, so
leave one pool for internal nodes, with leaves and data in another.

This does work to an extent, but it provides only a static view of the importance of any given page; this
is a problem since some pages become more or less important in various contexts. Additionally, it allows
queries to interfere with one another (say, index pages from one query causing index pages from another
query to be evicted).

3.2 “New” Algorithm

This algorithm seemingly introduced per-relation buffer pools. The intuition involved was that the im-
portance of a given page is not an inherent property, but more of a property of the relation to which it
belongs.

The idea is to maintain a linked (priority) list of buffer pools, one per relation plus a global free pool at
the head of the list. When a page is needed (in response to a page fault), the list is searched from the top
(global) to the bottom until a free page is found; the page is placed in the pool of the relation that requested
it.

GlobalFree // Rel10/MRU // Rel3/MRU // · · · // MostImportantRelation

Obviously, the order chosen for relations (itself chosen statically) is of critical importance, with less
important relations (closer to the global pool) losing pages first when memory is low. The list is only
traversed if all pages in the currently examined relation are in use, so relations at the head of the list get
their pages kicked out frequently.

Additionally, performing the required linear search can be very expensive.

3.3 Hot Set Algorithm

In this model, each query gets its own buffer pool, sized according to the Hot Set model. Each of these buffer
pools is managed according to LRU. Queries are allowed into the system if their hot sets do not exceed the
remaining buffer capacity.

Hot sets are identified by looping behavior in queries. This model tends to over-allocate memory (to
ensure that there is no contention among queries for data structures).

3.4 DBMIN

This algorithm is based on the Query Locality Set Model (QSLM). This model decomposes database op-
erations into a small set of categories that each have their own caching and allocation behavior. These
categories are used to allocate buffers on a per-file instance basis; essentially, each query gets its own set of
per-file buffers (but these can be shared for efficiency).

3.4.1 QLSM

Name Buffers Required Policy
Straight Sequential 1 -

Clustered Sequential Max Cluster Size (estimate based on statistics) LRU or MRU
Looping Sequential All MRU

Independent Random 1 or b (from Yao’s Formula) -
Clustered Random Same as Clustered Sequential -

Straight Hierarchical 1 -

6

4 Locking

The primary contribution of the locking paper was finer-grained locks, especially regarding the intent locks.
The existing locks are Shared (Read) and Exclusive (Write). New locks are Intent to Share (IS), Intent to
Write (IX), and Shared with Intent to Lock Exclusively (SIX).

4.1 Access Modes

Acquiring an S or X lock on a node implicitly locks all of the children of that node. IX, IS, and SIX locks do
not lock anything on their own, only declare intent to do so later; they basically operate by denying other
forms of intent lock (or stronger incompatible locks).

• Descendants of nodes locked in IS mode can only be locked in either IS or S modes.

• Descendants of nodes locked in IX mode can be locked in any mode.

• Descendants of nodes locked in SIX mode can be locked in IX, X, or SIX modes.

4.1.1 Compatibility

NL IS IX S SIX X
NL Yes Yes Yes Yes Yes Yes
IS Yes Yes Yes Yes Yes No
IX Yes Yes Yes No No No
S Yes Yes No Yes No No

SIX Yes Yes No No No No
X Yes No No No No No
The partial ordering among locks:

X

��
SIX

~~||
||

||
||

!!D
DD

DD
DD

D

S

 B
BB

BB
BB

B IX

}}zz
zz

zz
zz

IS

��
NL

The S and IX locks are not really comparable.

4.2 Degrees of Consistency

Locks Recoverable Dirty Reads Repeatable Reads SQL Isolation
Degree 3 Long X, Long S Yes No Yes Serializable or Repeatable Reads
Degree 2 Long X, Short S Yes No No Read Committed
Degree 1 Long X Yes Yes No Read Uncommitted
Degree 0 Short X No Yes No None

Table Notes:

• Dirty Reads: W2 → R1

7

• Repeatable Reads: R1 →W2 → R1

• Serializable guarantees no phantoms

• Degree 0 isn’t really much of a transaction

4.3 Physical Granularity

Instead of trying to guess at query planning time at what level to lock (tuples, pages, files, tables, etc), the
lock manager can simply notice when a transaction is locking too many rows and upgrade locks.

4.4 The Locking Protocol

Reads must lock at least one path from the “root” resource (the database). This path is along a DAG.
Writes must lock all paths from the root to the records they are modifying.
Locks are acquired root to leaf, and released leaf to root.

• To Acquire S or IS Locks:
All ancestors must be locked IX or IS.

• To Acquire X, SIX, or IX Locks:
All ancestors must be locked IX or SIX.

4.5 Phantoms: Serializable versus Repeatable Reads

Phantom records are a product of locking resources at the physical layer, rather than the logical. A simple
example of the problem follows:

1. T1 locks the pages required for its query in S mode.

2. T2 adds some tuples that would affect T1, but they are added into a new page (of which T1 was not
aware, since it had not yet been allocated).

3. T1 does not see these new records, and it does not have the consistency guarantee that it would like.

Resolving this type of conflict requires higher level locks, either on a range in an index, if one exists,
or through predicate locks. Predicate locks would make any transaction attempting to acquire a lock that
violates the predicate wait.

4.6 B-Tree Locking

While the lock ordering on database resources must be well-ordered and strictly two-phase, locking on
B-Trees is somewhat more relaxed.

One major reason for this is that B-Trees are not directly exposed to the user, and offer equivalent
functionality, even in different structural configurations (assuming B-Tree invariants are maintained with
proper latching).

One B-Tree invariant that is often ignored for performance reasons is the load factor; when a node
drops below 50 percent utilization, no coalescing is performed. In most database workloads, the database
continually grows (with local shrinkage that is later filled in).

4.7 Lock Coupling

Lock coupling minimizes the number of locks held at any given time, and is enabled by the observation
that, if a node is safe, none of its parents will need to be modified for the current operation. A node is safe if
there is room to insert a new node without causing a split; this is very frequently the case.

8

4.7.1 Read Lock Coupling

As usual, the case where a transaction is only reading data is simpler. In this case, the process can “spider”
down the tree, acquiring a lock on a node, descending to the relevant child, acquiring that lock, and releasing
the parent lock.

This trivially frees higher nodes for other processes.

4.7.2 Write Lock Coupling

Writing processes need to pay attention to node safety. If a node is safe, the operation can give up all locks
on parents of that node.

A more optimistic variant of this scheme is to descend all the way to the leaf node that needs to be
modified, and acquire locks upwards until a safe node is reached.

4.8 (R)ead with (I)ntention to (W)write Locks

These locks are like SIX locks in the granularity paper; acquiring this type of lock on a node announces that
you will be reading this node, and possibly writing some children of this node. This allows other read locks
to be placed on a node without interference. RIW locks are not, however, compatible with each other.

When writing is required, the RIW lock can be “upgraded” (closer to the write location) into a real write
lock, and behaves as normal thereafter.

4.9 Sibling Link Trees

The optimization shown in the B-Tree locking paper (Lehman and Yao) allows B-Tree operations to require
at most three locks (and two for the vast majority of the time). Their main insight is that the actual shape of
the B-Tree and location of data is irrelevant, as long as the lookup procedure can, at any time, find what it
is looking for (if it is in the tree).

There is only one underlying problem: when a piece of data is being inserted and a node needs to be
split, a search must block until the reorganization is finished (this involves copying half of the data out of
one of the pages, and bookkeeping) or it will (potentially) miss an element that was in the process of being
moved.

The solution is two-fold, and requires minimal additions to the tree: use a High Key and Sibling Links.

4.9.1 High Key

The high key is a bookkeeping key added to the end of every internal B-Tree node; it is basically a cache of
the highest key in the right-most sub-tree of the current node.

The use of this key is outlined later.

4.9.2 Sibling Links

These links are between B-Tree nodes on the same level; their primary use is to connect the two parts of a
node that is in the process of being split. When a node is split, the parent of the left node is correct, but the
right node is not yet known to its parent, and a typical search would miss it. With a slight modification to
the search protocol, this sibling link allows the search to find these “orphan” nodes before they are fully
consistent.

4.9.3 Usage

The search algorithm is modified as follows: if the target item is not found on a page, try to follow the
sibling pointer if and only if the high key is greater than the key we are searching for. This means that the
node was split and what we want is probably on the next page (or somewhere along the page chain).

This allows the parent node to be updated (relatively) lazily. Lock coupling (or one of its variants) can
be used to walk these potentially long sibling chains.

9

The worst case locking scenario is that three nodes are locked: the data node being modified, its parent
(which is in the process of being split), and one more node along the chain. The second lock can be dropped
relatively quickly (after the lock down the chain in the meta-node is acquired).

5 Oracle Concurrency Control

Timestamp based (called the System Change Number - essentially a Lamport clock). Not quite as strong as
Repeatable Reads, but stronger than Read Committed.

Oracle uses no read locks, so Readers can never block Writers.
The SCNs impose an ordering on transactions, and transaction integrity is preserved by essentially

snapshotting any data before it is changed, working only on a local copy.

5.1 Locking

All Oracle locks are at the tuple level; as locks reside directly on data pages, the overhead is not large.

5.2 Rollback Segments

Older versions of data are stored rollback segments, which are tagged with the SCN that created them. If
the live version of a piece of data has an SCN greater than that of a transaction that needs it, the reading
transaction instead consults the relevant rollback segment to find the older version of the data.

Readers, then, always read the rollback segment (or live data) with the largest SCN that is less than their
own.

5.3 Simple Writes

• Start

• Get SCN (atomically)

• X-lock required rows

– Write a rollback segment

– Update locked rows

– Flush redo logs

• Committed

The sub-list can be viewed as the sequence required to write a single row.

6 Optimistic Concurrency Control

Main idea: in workloads where conflicts are rare, locking is a huge overhead that is nearly never necessary.
Instead, attempt to act (in an isolated way), and check for conflicts after the fact (but before committing).

These methods are deadlock free (since there are no locks), but care must be taken to prevent starvation.

6.1 Transaction Phases

All transactions are divided into three stages:

• Read

• Validate

10

• Write (not mandatory)

The Read phase does not necessarily only involve reading, but any writes performed during the Read
phase are performed on local copies of data. Validation ensures that any changes during the Read phase
will not violate the integrity of the database (the transaction will be restarted if Validation fails).

The Read and Write phases are straightforward. During the Read phase, data can be read as needed;
if any object needs to be written to, a local copy is made which can be modified (and is not visible to any
other transaction). During the Write phase, these local copies are made globally accessible (under a lock).
The Read phase constructs both Read and Write sets, which are used later in the validation phase.

6.2 Validation

All of the complexity of Optimistic CC is in the Validation phase; the proposed methods use serial equiva-
lence as the criteria to determine transaction validity1.

In order to determine if such a serial equivalence exists, each transaction is assigned a transaction id at the
end of its Read phase. Any one of the following conditions is sufficient to prove that a pair of transactions
Ti and T j are serializable:

1. Ti completes its Write phase before T j starts its Read phase (the trivial condition).

2. WriteSet(Ti) ∩ ReadSet(T j) = ∅ and Ti completes its Write phase before T j begins its Write phase.

3. WriteSet(Ti) ∩ ReadSet(T j) = ∅, WriteSet(Ti) ∩WriteSet(T j) = ∅, and Ti completes its Read phase before
T j.

When transaction ids are assigned at the end of the read phase, ti < t j (where ti is the transaction id
of Ti) is automatically satisfied. Additionally, if transaction ids were assigned at the beginning of the read
phase, fast transactions that start after slow transactions would need to wait for the slow transactions to
finish before they could be validated, killing concurrency.

6.2.1 Read/Write Sets

The read and write sets generated during the Read phase of each transaction need to be maintained as long
as there exists some transaction that began before the sets were created. This means that the read and write
sets of fast transactions, which started after some long-running transaction T, are maintained until T is done
with them in its Validation phase.

The space for storing this history, however, is finite. A long transaction could cause this space to fill
up, and it would no longer be possible to validate it (or process more transactions). In this case, the long
running transaction must be killed (since it cannot be validated). It can try again as a new transaction; if it
persistently fails, though, it would face starvation.

If a long running transaction is starving, the simple solution is to simply allow it to run to completion
under a critical section if some failure threshold is passed. This could re-use the lock around the validation
phase.

6.2.2 Serial Validation

The serial validation scheme is simple and validates only using conditions (1) and (2), discussed above.
Acquire Lock

• Get Transaction ID (and increment the global counter source)

• Validate either (1) or (2)

• If Valid, Write
1This is a fairly simple notion with a fancy name. In order for a set of transactions T1,T2, · · · ,Tn to have serial equivalence, there

needs only be some serial ordering of transactions such that State f inal = Tn ◦ · · · ◦ T2 ◦ T1 = Stateinitial

11

Release Lock
Note, the entire validation (and the write) is performed in a critical section.
As an optimization, the transaction ID can simply be read (and not claimed) before the critical section.

Then, transaction IDs up to that ID can be validated outside of the critical section. If the validation fails, the
transaction in the validation phase can be restarted without ever having to enter the critical section. This
process can be repeated as many times as desired before entering the critical section and performing the
final comparisons (against transactions that completed since the last round of pre-validation).

Note that if a transaction only reads data, it does not need to enter the critical section at all after it
performs one pre-validation.

6.2.3 Parallel Validation

The parallel validation validates against all three possible criteria, and works on a finer grain. The method
here also uses the optimization discussed above.
Acquire Lock

• Read Transaction ID (do not increment)

• Add self to the Active Transaction Set

Release Lock

• Check (1) and (2) for each transaction from the Start Transaction ID (recorded before the Read phase)
to the End Transaction ID (read as the first step of validation)

• Check (3) for each transaction in the Active Set

• If Valid, Write

Acquire Lock

• Increment Transaction ID source

• Remove self from the Active Set.

Release Lock
The checks against conditions (1) and (2) are identical to the serial validation method, and can be repeated

up to new tentative transaction IDs outside of the critical section.
Failures can cascade from transactions in the active set that invalidate one transaction, but are themselves

invalidated later (meaning the original invalidated transaction would have been fine).

12

