
Markov Chain Learning on File Access Patterns

with Noisy Data

Tushar Khot
Computer Sciences Department

University of Wisconsin, Madison, WI
tushar@cs.wisc.edu

Abstract

File access patterns for application startup are fixed and predictable.
More precisely, they would obey the Markovian property of each fu-
ture access depending only on the current access. In this project, we
attempt to learn the Markov chain transition probabilities, where each
file access is a state in the chain. But since multiple applications may
run at the same time, the file access chains for one process would have
noise from the other processes. We attempt to filter out noise with
different estimated threshold values and show the trade-offs with each
value.

1 Introduction

Each application has a fixed set of files that it needs for execution. More-
over, since these applications have a predetermined sequential execution for
startup, we could assume that the file access patterns would be predictable.
Since the code is executed sequentially, we can assume that each file access
would be followed by the same file on every run i.e. the file access patterns
would have the Markov property of each future file access being determined
only by the current file being accessed. To give an example, consider the
following application startup code

open(A);
...
read(A);
...
open(B);
...
read(B);
...
open(C);

1



...
read(C);

File A would always be accessed just before File B is accessed, followed by
an access to File C. Given enough training data, and using normal Markov
chain learning techniques, we should be able to learn the chain A→B→C

But the operating system doesn’t have only one application or process
running at one time. As a result, the sequence of file accesses obtained from
the operating system would contain accesses generated by other applications
too. Hence the training data would have noise that should be filtered.

Generally, noise filtering is not a concern as the idea of training data
is to filter noise from the pattern. But if you consider an application like
Firefox, it will have interleaved file accesses made by the OS to render the
GUI window. Also this noise would be generated when the window is about
to be rendered i.e. around the time the last few files are being accessed.
As a result, the last few files would always have noise and the actual page
accesses can never be learnt. E.g. Assume A B C D E is the chain of file
accesses and the training data is of the form
A X B Y C D Z E
A B X C Y D Z E
A Z B Y C D X E
A Y B Z C X D E
A X B X C W D E
The interleaved noise would prevent any kind of sequence learn-
ing/prediction on this data.

We are also assuming that the interleaved accesses are noise instead
of another Markov process. This is primarily because our goal is to learn
patterns and speed up times for only this particular application. Ignoring
all other application’s file accesses as noise, comparatively simplifies the
problem.

Section 2 gives some basic introduction to Markov chains and the various
terminologies used in this paper. Section 3 talks about the initial approach
taken to solve this problem i.e. ignoring noise and assuming the data models
an M-th order Markov chains. Section 4 shows the results obtained for
various orders of the Markov Chains for various applications. Section 5
gives details about the second approach of solving the learning problem
with noisy data. Section 6 gives the results obtained with this approach.

2 Markov Chains

A Markov chain is a sequence of random variables X1, X2, X3, ... with the
Markov property, namely that, given the present state, the future and past
states are independent. Formally,

2



Pr(Xn+1 = x|Xn = xn, . . . , X1 = x1) =
Pr(Xn+1 = x|Xn = xn)

Time-homogeneous Markov chains (or, Markov chains with time-
homogeneous transition probabilities) are processes where

Pr(Xn+1 = x|Xn = y) =
Pr(Xn = x|Xn−1 = y)

for all n.
A Markov chain of order m (or a Markov chain with memory m) where

m is finite, is where

Pr(Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, . . . , X1 = x1) =
Pr(Xn = xn|Xn−1 = xn−1, Xn−2 = xn−2, . . . , Xn−m = xn−m)

for all n.
Learning Markov chains is another variant of sequence learning. Se-

quence learning[3] can be sub-divided into

1. Sequence prediction attempts to predict elements of a sequence on the
basis of the preceding elements.

2. Sequence generation attempts to generate elements of a sequence one
by one in their natural order.

3. Sequence recognition attempts to determine if a sequence is legitimate
according to some criteria.

4. Sequential decision making involves selecting a sequence of actions to
accomplish a goal, to follow a trajectory, or to maximize or minimize a
reinforcement or cost) function that is normally the (discounted) sum
of reinforcements (costs) during the course of actions.

Hence, the problem we are trying to solve is sequence prediction of a
time-homogeneous Markov chain of unknown order.

3 Preliminary Approach

We assume that all the data was generated by a single Markov process
of unknown order, M. For each chain, we generate the counts of each file

3



accessed after every chain of length M. The Maximum Likelihood Estimate
for each transition is given by

Pθ(Xi|Sm) =
Count(SmXi)∑n
k=1Count(SmXk)

(1)

where, Sm = X1, X2, ..., Xm i.e. Any sequence of length m
X1, X2, ..., Xn = All possible states following Sm
To take care of zero probabilities, we assume uniform pseudo counts of

1
#states from every possible chain to every possible state.

We compute the log-likelihood of the data using the following formula

logP (D|θ) =
∑
Di∈D

∑Ni
k=m+1

log(Pθ(Xk|Xk−m, Xk−m+1, . . . , Xk−1))

where Ni is the size of the chain Di,
D is the training data with the set of all chains, Di.

3.1 Implementation

Each chain of file accesses, for each application were stored in sepa-
rate files that were passed as inputs to the program. These files were
read(ChainPopulator class) and stored as vectors of file ids(MarkovChains
class). For each sequence of M file accesses, the count of each file being
accessed after it, was summed for all the chains(a map of M-length ids → [
next file id → count] stored in Sampler class). To get the maximum likeli-
hood estimate for X to follow a chain S, was obtained by calculating (using
BasicMCInference.Infer)

1
#states + CountforS → X

1 +
∑
∀Y CountforS → Y

(2)

where 1
#states is the pseudo count for each transition. Summed over all the

states, the pseudo count equals one, and is added to the denominator.
Log likelihood of data D was estimated using the probabilities ob-

tained in equation 2. For each chain in the data, we sum up the log
probability/likelihood of the given file being accessed following a given se-
quence.(BasicMCInference.Likelihood)

File access patterns were obtained by instrumenting the linux kernel to
generate the file identifier(inode number) every time a file was read. These
logs were collected and repeated accesses to a file were considered as one
access to the file. Repeated accesses are ignored, as we want to predict
which will be the next file accessed and not how long or how many times
will a given file be accessed.

These logs were generated from the point an application is started till
the point the application window appears. These logs were generated for
applications such as Firefox, Open Office, Gnome Terminal and Gimp.

4



Figure 1: Data Likelihood

4 Results

Figure 1 shows the graph of the log likelihood of the data vs the order
of the Markov chain assumed for prediction. For all the applications, the
likelihood increased till the order reached around 4 or 5, after which point
it starts dropping.

Figure 2 also shows the log likelihood vs order graph but the likelihood
here is computed using the average of the log likelihoods for each round
of the 10-fold cross-validation. Here on the other hand, likelihood peaks
at order of 2 or 3. As we increase the order for k-fold cross-validation, we
sometimes come across new states in the test set that we have never seen
before. But when we train and predict on the same data set, this never
happens.

5 Noisy Data Inference

For handling noise in the data, we assume that the data may contain maxi-
mum noise - noise length i.e. there would be a valid next file access within
the next noise length accesses. We also assume that the data is actually
generated by a Markov process of order 1. As a result, we only consider
pairs of states(i.e. files accessed) at a maximum distance of noise length
to be possible valid portions of the chain. The intuition here is that noise
wouldn’t have any strong correlation with any particular state. As a result,
all the pairs that have one of the file accesses generated by the noisy process
would have low counts. We use a threshold of noise threshold to filter out
all pairs with count less than the threshold. All the states that completely
disappear from the data are the noisy states. The counts for each transi-

5



Figure 2: Data Likelihood with 10-fold cross-validation

tion are now recomputed, ignoring the noisy states. The same Maximum
Likelihood Estimate and Log Likelihood equations are used for learning and
prediction based on these counts.

5.1 Implementation

The implementation remains unchanged from the previous experiment ex-
cept the MarkovChainInference interface. Previously, the MarkovChainIn-
ference was implemented by the class BasicMCInference. Here, we change
the class implementation to NoisyMCInference without changing any other
logic.

NoisyMCInference uses the following pseudo-code for learning.

1. Maintain count for each file accessed within noise length of a given
file using Sampler.

2. Remove pairs from the Sampler, if the count is below noise threshold

3. Remove a file id, if there are no possible out-edges/transitions from
that file(because of the previous step). Add this file id to noise set.

4. Remove the files in the noise set from the chains.

5. Use the previous approach(Section 3) for inference and log likelihood
on these new chains.

6 Results

For the same set of applications, log likelihoods are computed for various
values of noise length and noise threshold .

6



Figures 3 to 6 show the plot of log likelihood for various values of
noise threshold . The four figures show the graph for the noise length values
of 1, 5, 15 and 20.

Figure 3: Data Likelihood with noise
length=1

Figure 4: Data Likelihood with noise
length=5

Figure 5: Data Likelihood with noise
length=15

Figure 6: Data Likelihood with noise
length=25

As we can see, each application peaks at various threshold values and
then almost stabilizes. The threshold at which the likelihood value jumps
up doesn’t change for the various values of noise length. Although as we
increase the noise length, we generate more file access pairs. As a result, if
there are any repeated alternating accesses to a file after a noisy state, it
would increase the number of pairs for that noisy state and the alternating
file. So we may get fewer states in the noise set, and hence the spikes are

7



dulled for higher noise length values.
But increasing the threshold, would also increase the number of file ac-

cesses marked as noisy. Figure 7 to 10 shows how the number of file accesses
marked as noise change with increase in noise threshold. The four figures
here too show the graph for the noise length values of 1, 5, 15 and 20.

Figure 7: Noise Set Size with noise
length=1

Figure 8: Noise Set Size with noise
length=5

Figure 9: Noise Set Size with noise
length=15

Figure 10: Noise Set Size with noise
length=25

As you can see from the graph that the spikes in the noise set graph
are independent of the noise length. Also the spike in the noise set size is
correlated with the spikes in the likelihood graphs.

Ideally we would want high likelihood, with smallest possible noise set.
Depending on the user requirements, a fitness function can be developed

8



that penalizes increase in the noise set size and decrease in log likelihood of
the data. Lets assume, we are building an application that prefetches the
next set of files to be accessed. If the user has sufficient amount of memory,
we may increase the penalty for noise set size. As memory is not a big
constraint, we don’t mind prefetching incorrectly(low likelihood is fine) but
would really like to prefetch as much as possible(small noise set). Whereas
if we have limited memory, we can use the converse approach.

We can even combine other techniques such as re-inforcement learning to
optimize the fitness function. E.g. actions such as “prefetching” would have
a reward based on the fact whether the file actually gets accessed. Similarly,
if the file access is marked as noise, we can have a reward based on the fact
whether it doesn’t gets accessed .

7 Related Work

Niels et al.[1] extract interleaved HMM’s from a single chain of states. For
our purpose, we assume that the interleaved data may not be from a Markov
process and hence can’t be detected using this method.

Le Cam et al.[2] use fuzzy pairwise Markov chains for removing noise
from their image data. The noise though however here is a continuous
function and actually gets applied on the data at each point. We on the
other hand, have discrete noise values that are inserted between two valid
values.

8 Conclusion

Based on our experiments, we can conclude that file access patterns obey the
Markovian property. Filtering out noise from the data, actually improves
the log likelihood of the data(Precision). But this comes at the cost of losing
some states from the Markov chain(Recall). Further work could be done to
determine the best way to balance the precision and recall for these file
access patterns.

References

[1] Niels Landwehr Modeling interleaved hidden processes In Proceedings
of the 25th international conference on Machine learning, 2008.

[2] S. Le Cam, F. Salzenstein, Ch. Collet Fuzzy pairwise Markov chain to
segment correlated noisy data In Signal Processing, Volume 88 , Issue
10 , 2008.

9



[3] Ron Sun and C. Lee Giles Sequence Learning: From
Recognition and Prediction to Sequential Decision Making
http://www.cecs.missouri.edu/ rsun/sun.expert01.pdf

10


	Introduction
	Markov Chains
	Preliminary Approach
	Implementation

	Results
	Noisy Data Inference
	Implementation

	Results
	Related Work
	Conclusion

