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Abstract

Prefetching and caching of files are the main means by
which operating systems strive to strike a match between
the high access times of disks and the fast speeds of to-
day’s processors. However, current implementations of
prefetching algorithms are rather rigid and do not ex-
ploit many crucial pieces of information available to them.
These include the file-type information, read rates and the
load on the file-cache. Through this paper, we describe
our efforts and results at developing and deploying a file-
type aware enhanced prefetching algorithm for the linux

kernel.

1 Introduction

In recent years, processing power of computers have
seen exponential increases. On the other hand, when
disk capacities have also increased substantially, the
data access rates for the disks have improved rather
slowly and steadily. This has resulted in a huge chasm
between processing speeds and disk speeds, making
disk accesses one of the slowest steps in execution of
programs.

Now, like with most problems in the Operating sys-
tem domain, this disparity in speed too has been an-

alyzed and anatomized by many researchers. The

primary cause of the slowness of disk accesses is the
seek latency involved in moving the disk head over to
the data which needs to be read. Thus to amortize
this latency, a large number of blocks are prefetched
in a batch in advance from the disk. Likewise, in-
memory caching of disk pages is used for reducing
the actual disk reads in cases where the data had
been read already.

However, as we realized from our study of the re-
lated work in the field of prefetching and caching,
most algorithms do not use the file-type information
for fine tuning the prefetching policy. Like wise, the
impact of pressure on the file cache is also another
hint that can be exploited by the operating system
while formulating the prefetch policy.

Thus through this project, we modified the linux
prefetching algorithm to take into account the type of
the file being read, the rate at which it is being read
and the cache-pressure. The rate at which the file is
read suggests the extent of prefetching whereas the
cache-pressure bounds the same. These two factors
can therefore be converged to give an ideal prefetch
window at any point in time. Likewise, the file-type
information can be used to account for peculiarities in
access patterns and provide hints for the prefetching

algorithm.



2 Related Work

With rapidly increasing processing speeds that have
not quite been matched by rising disk speeds,
prefetching and caching gain dominance as mecha-
nisms to mitigate the lag and allow higher utilization
of the processor even with I/O bound tasks.

Cao et. al [I] compares two prefetching strategies,
aggressive and conservative, and conclude that an ag-
gressive strategy comes closer to the offline-computed
optimal strategy than the conservative one. However,
we believe that this is overly generalized. In our
perspective, the comparison of aggressive vs. con-
servative must be done at a file-type granularity.
For e.g.. a multimedia audio file will not need ex-
tremely aggressive access since the read need not take
place faster than the rate at which the file is being
played. Likewise, an archive file which most likely is
accessed in a piecewise sequential manner can again
be prefetched somewhat conservatively.

Shih et al. [6] propose to use cache hit histories
to determine the sequentiality of access and perform
prefetching accordingly. However, the inferences thus
drawn are not persistent. And storing them on a per-
file basis may not be a scalable approach. However,
file-types offer a convenient axis against which infer-
ences about access patterns can be aggregated and
stored.

With concurrent I/O by different applications
brought into the equation, Li et al. [2] propose a
strategy where prefetch depth is determined by the
amount of data that can be read in the average time
gap between an I/0O switch. However, this approach
is not without problems. For e.g.. with a multimedia
file and a Pdf file contending for prefetch from disk,
an equal share is not the best solution.. The multi-

media file needs to get priority as it is the one that

would suffer more because of delays. This is again
a situation where prioritizing based on file-type can
possibly yield a solution.

Butt et al. [7] stress on the importance of study-
ing prefetching algorithms and cache management al-
gorithms in conjunction. These two are closely re-
lated and therefore an optimization in one without
regard to its impact on the other can actually re-
We therefore

look at cache management strategies that can com-

sult in deterioration of performance.

plement the prefetching enhancements at the file-type
granularity. Eviction policy is an ideal candidate for
improvisation with knowledge of file-type.

A fairly obvious idea is to allow applications to
inform the file system about it’s prefetching policy.
Griffioen [3] uses application specified hints to better
tune the prefetching policy. Patterson et al. [4] ex-
tends this idea to cover both prefetching and caching
policies. To relieve the programmer of the respon-
sibility of giving hints correctly, Chang et al. [5]
instrument the application binary to analyze access
patterns and generate hints automatically. The prob-
lem with hints is that most of the time applications
do not themselves know future access patterns, and
static analysis of application may not yield the right
patterns.

Another approach which has been tried is to build
application specific optimizations for complex access
patterns. Mitra et al. [8] developed specialized appli-
cation level prefetch prediction for multimedia pro-
grams. They achieve this by generating a prefetch
thread which prefetches entirely at the application
level. But this would involve major changes to appli-
cations. The same effect can be obtained in exploit-
ing similarity in access patterns across applications
dealing with the same file-type.

Kim et al. [I0] streamline cache management and



prefetch policies for multimedia servers. They use
system load to determine prefetch depth and cache
policies. Their goal is not necessarily to optimize
overall performance, but to guarantee quality of ser-
vice to each client. System load alone is not a good
basis for prefetch decisions, especially where files of
diverse content types are involved.

File prefetching can be done at both inter-file and
intra-file level. Griffioen [12] studied the performance
of automatic prefetching which remembers file access
patterns and aggressively loads files related to this
file. Preload [I1] operates as a daemon which looks at
file accesses, and uses a predictive probabilistic model
to preload files likely to be accessed next. While these
techniques work fine for inter-file dependencies, they
cannot directly be applied for intra-file block accesses.

A large body of work has been concentrated on an-
alyzing the access patterns of a file and predicting the
prefetch depth. Fido [I3] uses a dynamic learning al-
gorithm to determine which class the access belongs
to, in the specific context of databases. Such ap-
proaches suffer from having only local histories, which
On the other

hand, maintaining per-file access histories across ses-

are forgotten after the session ends.

sions involves too much of an overhead. File-type
based policies form a nice compromise between local
and persistent histories.

Phunchongharn et al. [9] used file type information
to optimize various strategies such as disk allocation,
redundancy, and caching strategies. But their work

doesn’t cover prefetching strategies.

3 Motivation

We believe that the access pattern for a certain

type of file generally remains the same across dif-

np3 nusic read pattern
1433 T T T T

“nﬁ3.grabh" +

1208

1888

888

688

block read

488

208

B 1 1 1 1 1 1 1
] 98 168 158 288 258 368 358

Tine {1e9 ticks)

488

Figure 1: Access pattern for an MP3 music file.
ferent files of that type. This observation can be
put to use in determining ideal prefetch depths for
We ex-
pect prefetching driven by such a file-type determined

different frequently encountered file-types.

depth to outperform contemporary implementations
of prefetching which are rather static. Similarly with
caching, the access pattern as suggested by the file-
type can hint at the likelihood of the block being
accessed again. A cache replacement policy driven
by this can make sure that we do not cache blocks

that are unlikely to be needed.

3.1 Access Patterns

Figure[l|shows the access pattern for MP3 files. This
is a typical example of purely sequential access. The
metadata for the MP3 file is stored at the end of file,
which is why we see that.

The access pattern for AVI is similar.

Figure [2] shows the access pattern for a PDF file

using Adobe reader. The access pattern is overall se-
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Figure 2: Accesses for pdf using Acrobat reader. Figure 4: Access for pdf using Document Viewer.
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Figure 3: Access pattern for a tar.bz2 archive. Figure 5: Access pattern for a powerpoint presen-
tation.

quential but cut into chunks which are read repeat- ] )

. . . . . possibly due to accesses to font data, which would
edly. This evidently gives us an opportunity to adjust o . ]

. . . confuse the existing prefetching algorithm.
prefetch window size close to the chunk size. There -  sh ik " for th
igure 4] shows the access pattern for the same
are also interleaved accesses to the end of the file, & ) P )
PDF file using the Gnome Document Viewer. Apart



from the prolonged initial processing and an in-
creased number of reads to the head and tail of the
file throughout the duration, the access patterns are
similar in their chunked nature. This builds upon
our case for file-type based patterns in file accesses
which lend themselves suitable to expoitation by a
prefetching algorithm.

Figure[3|shows the access pattern for a compressed
archive(tar.bz2). The access pattern for uncompress-
This

represents the case where the existing prefetching al-

ing the whole archive was purely sequential.

gorithm works well.

Figure [5|shows the access pattern for a Powerpoint
presentation(PPT). The access patterns are similar
to PDF, but the chunk sizes show a greater variance.
This represents a case where rapid dynamic adapta-

tion of prefetch window is required.

3.2 Existing Implementation

We analyzed the existing implementation of the
prefetching algorithm in the linux kernel. The algo-
rithm, as we mentioned, does not account for many of
the possible factors, and therefore is quite simplistic.

Any file read starts off with a prefetch window size
of 2 pages. If the kernel finds that the file is being
read sequentially, this window is doubled every time
until either the reads deviate from the sequential pat-
tern or the hard limit of 32 on the prefetch window
size is reached. At any point, if the sequential read
pattern stops and moves to a random pattern, the
algorithm falls back to its initial state.

Quite evidently, one can see the insufficiencies with
this approach. First off, particularly with files like
pdf, and ppt, where the read pattern is piecewise se-
quential, every jump causes the prefetching window

to go back to the original value. Likewise, the hard

static limit of 32 on the prefetch window size can
be rather limiting on file types like video files which
could benefit in terms of reduced jitter by having a
large prefetch window. Also, the prefetch algorithm
is currently implemented independent of free space
availability in the file-cache, thereby keeping open
the possibility that pages that were prefetched get

evicted before they are actually used.

4 Methodology

This section describes the methodology we followed
in devising our enhancements to the prefetching al-
gorithms. There are three parameters we identify
about each file that is being read. The first is the
rate at which the file is being read. This gives a mea-
sure of the value of prefetching a particular block into
memory. The second is the effect of cache-pressure.
Through this we estimate the duration for which a
block lives in the cache. And finally we use file-type
specific aspects of the read pattern to optimize the
prefetching algorithm, to the specific file that is be-

ing accessed.

4.1 Effect of read-rate

The rate at which a file is being read gives an idea
of the rate at which the application processes the file
data, and therefore the estimated time at which the
next disk request is likely to happen. Of course, there
are variations in read rate across different sections of
the same file. To accommodate these variations we
determine long and short term averages of the read

rates and compute our predicted rate from these.



4.2 Effect of cache-pressure

With many reads happening simultaneously, it may
happen that some of the data that we prefetched
may get evicted from the cache before it is actually
used. This kind of a wasteful prefetching is a result
of thrashing in the file-cache. Under such circum-
stances, it would be advisable for the prefetching al-
gorithm to backoff and prefetch less. Towards this
direction, we compute long and short term average
lifetime of a page in the file-cache. We then use that
to predict the expected cache-lifetime of the pages we

prefetch.

4.3 Prefetch window calculation

Once we have the estimated read rate of the file and
the expected cache lifetime of each prefetched page,
we can compute the estimate of the ideal prefetch
window based on these factors. We then make use
of this estimate to increase / decrease the prefetch

window for the next readahead.

4.4 Filetype specific policies

In addition to the above two concerns, we note that
different file-types have peculiarities of their own in
their access patterns. While simple examples would
be files like mp3 and avi which are read sequentially
at a relatively constant rate; files like pdf etc tend
to have a piecewise sequential read pattern where a
chunk of the file is read in and then read over and
over a few times before moving to the next chunk of
the file. Also, there are peculiarities like for eg: the
first and last few pages of a pdf file are repeatedly
read throughout the entire application, which may
confuse the existing prefetch algorithm. We decided

that such peculiarities of access patterns can be used

to provide hints to the prefetching algorithm, but are

best handled on a case by case basis.

5 Implementation

We implemented the enhanced prefetching algorithm
on the linux kernel 2.6.27.5. We employed RDTSC
time-stamps within the prefetching and file-caching
code to determine the read rate of files and the cache-
lifetime of pages. Likewise we modified the open
system-call handler to keep track of the file-type of
the file for use in the prefetching code. Each of these
aspects of implementation are detailed below.

Since our code-changes are above the VFS layer,
the behavior is expected to be independent of the

filesystem format.

5.1 Measuring read-rates

To determine the read rates, we instrumented the
generic file read handler to insert time-stamps and
keep track of the previous block read and the time
at which it was read. With this information, instan-
taneous read rates are computed for each block and
averaged over a short as well as long interval to com-
pute the short-term and long-term read rates. The
larger of these two values is then used as the current
read-rate for the file.

Figure [6] depicts the read rate computation. The
instantaneous, short and long term time lag be-
tween reads as obtained from playing an avi video

is graphed in the figure.

5.2 Measuring cache-pressure

Keeping track of cache pressure was the aspect of our

implementation which we faced most difficulty with.
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Figure 6: The instantaneous, short and long term read rates of an avi file.

This primarily was due to the fact that the linux ker-
nel cache replacement policy is an approximate LRU
and not a proper LRU. Thus the page evicted from
the cache is only probabilistically guaranteed to be
the oldest, making it possible for newer pages to be
evicted from the cache with non-zero probability.
However, we still were able to obtain an approxi-
mation for the lifetime of a page in the cache by using
time-stamps to determine the duration between the
last access and eviction times of pages being evicted
from the cache. We average this per-page value on
a short term and a long term basis to compute two
cache-lifetime estimates. We then use the lower of
the two to adapt faster to rise in cache pressure while
ramp up sluggishly when cache pressure reduces.

For the limiting cases where the system has so far

not seen any page eviction or the system was left idle
for long or the last page eviction happened consider-
ably long ago, we default to a pre-determined static

value for the cache lifetime.

5.3 Updating read-ahead window

Finally we use the read rate and cache lifetime
computed above to compute the ideal prefetch win-
dow for the next prefetch. We start reading with
an initial prefetch window size, and double on
each iteration until the prefetch window reaches
EXP_ GROWTH_LIMIT. Thereafter, we increase the
window size linearly by GROWTH_FACTOR. This
increasing phase is done subject to the condition

that the current prefetch window lies below the ideal



prefetch window size computed for this iteration. We
have also placed an absolute upper bound of WIN-
DOW_LIMIT on the size of the prefetch window as a
worst case throttle.

If the current prefetch window size however is
found to lie above the ideal for any iteration, we im-
mediately pull the current window size down to the
ideal value to cut back on cache pressure.

In the above process, we make use of the type of
the file to adjust the algorithm to discount anomalous
behavior expected in the file type (like last few pages

read repeatedly in pdf files, as mentioned above).

6 Evaluation

We evaluated the modified prefetching algorithm on
an ext3 partition on an Intel Core2Duo 2 GHz. pro-
cessor. We used a 160GB SATA disk @ 5400 RPM

for all the evaluation runs.

6.1 Workload

Measuring and evaluating our file-type based correc-
tions for sequentiality in the prefetching algorithm
proved to be difficult. Although we perceived the
the delay in loading pdf files to have reduced, we do
not have a reliably reproducable benchmark to cite
as proof of our improvements.

For testing the impact of our algorithm under var-
ious read rates and cache pressure, we adopted the
following strategy. We created processes that read a
file from the disk at various read rates. With these,
we measured the block read latency incurred in the
kernel for each read request furnished by the appli-
cation. In order to simulate cache pressure, we con-
strained the linux installation to a limited amount

of RAM when performing our experiments and made
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Figure 7: Plot of how our prefetch window size

follows the ideal.

sure that the file sizes we used exceeded the amount
of free memory available in the system. The system
memory used for runs with cache pressure was 256
MB and the same for runs without cache pressure
was 2048 MB.

6.2 Results

Figure [7] plots the ideal prefetch window size com-
puted and how the actual window size used by our
algorithm closely follows the same. When the window
size is below the EXP_.GROWTH_LIMIT (64 here)
the increase is exponential. Thereafter the window
size increases linearly until it matches the ideal win-
dow size. However, in the event that the computed
ideal window size falls (due to extraneous factors)
we cut back on the actual window size to the same
lower ideal window size to quickly respond to cache-
pressure.

Figure [§] shows the average time taken to service
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Figure 8: Cumulative average latency for increas-
ing read rates, without cache pressure.

requests with increasing read rates on a single file.
A program reads 4K bytes of data at a time from
a file sequentially with the time lag between two re-
quests dropping form 10000 to 20 microseconds over
a period of 3500 reads. Initially both the algorithm
have similar approaches and try to ramp up their read
ahead window size. The existing algorithm stops af-
ter 32 pages, whereas we continue to increase our
window size to WINDOW_LIMIT (512 here). But
because of the way the LRU cache eviction works
in linux, it kicks out some pages from our prefetched
window causing intermediate spikes and hence we see
an overall performance deterioation. We believe that
fixing the LRU eviction algorithm will help us attain
a more consistently better performance over the ex-
isting prefetching algorithm.

Figure[J)is similar to figure[§|but with the read hap-
pening at a constant rate. Since there are not com-

peting reads to the disk, the disk head rarely moves
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Figure 9: Cumulative average latency for constant
rate reads in the absense of cache pressure.
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Figure 10: Comparison of read latencies for inter-
leaved reads in the absensce of cache pressure.

and hence the existing algorithm performs slightly
better than our approach.

Figure [10] shows the interleaved read performance
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Figure 11: Comparison of read latencies with ex-
isting algorithm and our modified algorithm un-
der cache pressure.

in the absence of cache pressure where our approach
performs better on average because we prefetch more
pages in one go and have overall reduced seek over-
heads. We got similar patterns on multiple runs and
presume the spikes in the graph are caused by cache
kicking out prefetched pages (which are always in the
inactive list).

Figure depicts the read latencies when a sin-
gle file is being read at a constant rate with cache
presssure arising out of constrained memory limits.
In this case we visibly outperform the existing linux
prefetching algorithm by a factor of 16%.

Figure [12] depicts the read latencies when multiple
files are being read in an interleaved fashion under
a constrained cache. In this situation too, our algo-
rithm outperforms the existing linux algorithm as we

expected.
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Figure 12: Comparison of interleaved read laten-
cies with existing algorithm and our modified al-
gorithm under cache pressure.

7 Conclusion

In conclusion, we find that adapting the prefetching
algorithm to accommodate parameters like file-type,
read rates and cache pressure improves the perfor-
mance of file access under normal load patterns.
However, on a lightly loaded system, this strategy
may turn out to be less beneficial because of the ap-
proximate implementation of the LRU cache eviction
policy in linux. Yet, we believe that the tradeoff in-
volved is reasonable since it essentially sums down to
a slight increase in read latency under lighter loads
as a price for an improvement in read latency under

heavier system loads.

8 Future Work

As we mention earlier, one of the roadblocks we faced

with our implementation is the approximate nature



of the linux LRU cache replacement algorithm. We’re
working on figuring out ways to circumvent this and
to introduce priorities for pages in the cache. With
such a facility for eg., pages of an mp3 file which have
already been read once can be evicted from the cache
in preference to pages from a pdf file.

We also plan to analyze read patterns for more
file types and come up with an initial static read
ahead window and ramp up size for them. Also
currently our long term and short term averages
are measured over somewhat arbitrary windows
sizes. These may benefit from an empirical de-
termination of the window over which the aver-
ages are best computed. Likewise the constants
EXP_GROWTH_LIMIT, GROWTH_FACTOR, and
WINDOW _LIMIT could also benefit through emper-

ical determination and refinement.
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