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ABSTRACT
Unlicensed, secondary users of TV whitespaces today rely
on spectrum occupancy databases to determine what spec-
trum they can use for their communication needs. In this pa-
per, we first show that such spectrum databases (that depend
solely on propagation models as per guidelines of the FCC in
the USA) can be quite inaccurate leading to under-utilization
of spectrum. Next, we propose that these spectrum databases
can be significantly augmented using opportunistic measure-
ments when possible. Instead of incorporating primary de-
tection functions in each secondary device, we propose to
use vehicle-mounted spectrum sensors that collect and re-
port measurements from the road, which can serve as useful
“anchor points” to enhance existing propagation models.

We have currently deployed a version of our system on
a single public transit bus traveling across Madison, WI, in
the USA. Based on measurements collected at over 1 million
locations across a 100 square-km area, we find commercial
databases tend to over-predict the coverage of certain TV
broadcasts, unnecessarily blocking the usage of whitespace
spectrum over large area (up to 42% measured locations).
We further propose a model-fitting approach that refines ex-
isting propagation models with measurements, reclaiming a
substantial amount of wasted area (up to 33% measured lo-
cations).

Categories and Subject Descriptors
C.4 [Performance of Systems]: Design studies, Measure-
ment techniques

General Terms
Algorithms, Design, Measurement, Performance
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1. INTRODUCTION
Through recent rulings, various spectrum regulatory agen-

cies across the world have opened up a wide swath of spec-
trum (512 MHz - 698 MHz), commonly referred to as TV
whitespaces, for unlicensed use. As demand for mobile and
wireless connectivity continues to grow, such spectrum is
going to be particularly attractive to address continued spec-
trum crunch.

One of the fundamental issues in utilizing TV whitespace
spectrum is to correctly determine vacant and good channels
for unlicensed use. In the USA, a FCC-approved mecha-
nism for determining whitespace spectrum is based on spec-
trum occupancy databases that rely on propagation models
to predict the signal strength of nearby primary transmit-
ters. Being based solely on a propagation model, such an
approach is likely to have errors, e.g., available whitespaces
are marked as occupied leading to wasted opportunities for
communications. The focus of this paper is two-fold: (i) to
study potential inaccuracies of existing spectrum databases
that depend solely on the mandated propagation models; and
(ii) to define an intuitive approach to improve the accuracy
of these databases by utilizing local measurements to com-
plement the propagation models. In particular, we describe
the preliminary design and implementation of a whitespace
measurement system, called V-Scope, which opportunisti-
cally collects local whitespace measurements using public
transport vehicles and allows for improved accuracy of spec-
trum databases.

Whitespace determination approaches and limitations:
In a whitespace network, the unlicensed, secondary devices
(TVBDs) are required to only operate in channels in absence
of primary incumbents. As per FCC’s ruling [2], there exist
three types of primary incumbents, i.e., digital TV, analog
TV and wireless microphones. TVBDs are expected to use
one of the following two approaches to detecting primary ac-
tivity. The first and the preferred way is to query a spectrum
occupancy database with the geo-location of a TVBD. The

1



database leverages well-known propagation models (such as
R6602 [2]) to predict the coverage contour of TV broad-
casts. To take account the transmission range of TVBDs, the
database adds some additional distance to the coverage con-
tour to obtain the so-called protection contour. A channel is
concluded as whitespaces if the TVBD’s location is outside
the protection contour and vice versa. To protect wireless
microphones, the database reserves two dedicated channels
for their exclusive usage, and reserves a fixed (2km) pro-
tection contour around each microphone operating in other
channels. The second approach is to have TVBDs to con-
duct local spectrum sensing. The FCC imposes a very strin-
gent sensing requirement, i.e., to detect primary signals at
-114dBm. This is to avoid the hidden terminal scenario and
fading-induced inaccuracy.

We note neither approach is sufficient for building an ef-
ficient whitespace network. The spectrum database has in-
evitable inaccuracy. This is because its underlying model is
tuned to average propagation conditions, and unable to cap-
ture the environment-induced variation, e.g., shadowing and
multipath fading of specific contours, objects, and topolo-
gies. Our measurement shows this variation can be as high
as 25dBm for two locations separated by merely 10 meters.
The local sensing approach, while pragmatic, requires del-
icate hardware for detecting weak primary signals, which
can largely increase the cost of each TVBD. In this paper
we explore a third alternative — an opportunistic whites-
pace measurement infrastructure that distributively provides
local measurements to augment the existing spectrum occu-
pancy databases generated from propagation models. This
would still eliminate the need for expensive spectrum sens-
ing hardware and their overheads in the end TVBD devices,
while organically bringing some of the advantages of spec-
trum sensing. We show that such an approach can help better
identify whitespace spectrum, while adhering to the spirit of
the FCC rulings.

The V-Scope approach: Collecting spectrum measure-
ments from arbitrary and disparate locations over a large
area seems to be a fairly challenging and laborious task. In
this paper, we explore the use of public transit buses oper-
ating in Madison, WI, USA to carry whitespace spectrum
sensors and collect measurements opportunistically as they
travel 1. Clearly, such an approach has costs and overheads
in deploying and managing whitespace sensors mounted on
vehicles. However, the advantage of this approach is that
it can be opportunistic — each “mobile” sensor can add a
proportional volume of useful measurements. In addition,
these measurements are likely to remain useful for some
time in estimating the power of primary signals. Perhaps
this measurement infrastructure is most useful in dense, ur-
ban areas where greater accuracy of determining whitespace

1Of course, public transit buses are just one of many possibilities
for vehicles that can carry spectrum sensors; other potential exam-
ples are mail delivery trucks, taxicabs, and many other third party
services that scour different city roads.

Figure 1: System architecture of V-Scope.

spectrum can make more spectrum “available” and can be
particularly beneficial to users. In such scenarios, spectrum
database providers can contract with public vehicle opera-
tors (or any 3rd party vehicle operator) to collect wide-area
measurements with a few high-end spectrum analyzers, and
in turn recoup these costs by adding them into existing fees
to use such databases. In this paper, we do not explore the
economic aspects of such opportunistic spectrum sensing, as
it would really depend on the deemed value of the extra ac-
curacy in determining whitespace spectrum. Instead, we fo-
cus on some of the technical issues in collecting whitespace
measurements from (public transit) vehicles, and leveraging
them to enhance existing spectrum occupancy information
available from databases.

Key contributions: We have designed and deployed V-
Scope on a single public transit bus in Madison, WI. Since
our bus operator tends to rotate their buses through multi-
ple routes in the course of each day, we have been able to
collect spectrum measurements at more than one million lo-
cations over a 100 sq. km. area in and around our city over
a two week period. In designing V-Scope, we have devel-
oped two specific techniques to address specific challenges:
(i) a zoom-in pilot tracking algorithm for accurately mea-
suring the power of TV signals up to -120dBm, and (ii) a
model refinement procedure for augmenting existing propa-
gation models (used by spectrum databases) with these lo-
cal measurements, in which the spatial distribution of these
measurements is non-uniform as the vehicle mobility is out-
side our control.

We show that current commercial spectrum databases that
are based solely on propagation models waste whitespace
spectrum over wide area (up to 42% measured locations). By
combining V-Scope with even a simple propagation model
(such as the free space model), we can significantly improve
the accuracy of existing spectrum databases (that use the
more sophisticated R6602 model), reclaiming a substantial
amount of wasted area (up to 33% measured locations).
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2. V-SCOPE DESIGN
In this section, we first give an overview of the V-Scope

architecture, and then present the two key components in V-
Scope.
Overview: Figure 1 shows the overall architecture of V-
Scope. It consists of a central server and multiple clients.
Each client is running on a different vehicle and collects
spectrum measurements during the drive. The measurement
results are uploaded to the server using some wireless net-
works, e.g., cellular or WiFi networks. The server uses these
measurements to construct region-specific propagation mod-
els that are tailored to local propagation environment. The
refined model can be used by a database to predict primary
signals in the vicinity of measured locations. The database
may still use the global model (R6602) as fallback when no
measurements are available.

V-Scope leverages two key techniques to refine a given
propagation model. It first uses a pilot tracking algorithm
to accurately detect and measure the power of a TV signal.
Using these power estimates as ”anchor points”, V-Scope fits
the parameters of a propagation model for each local region.
We next explain these two steps in detail.
Zoom-in pilot tracking algorithm for accurately measur-
ing the power of TV signals: Measuring the power of a
TV signal can be very challenging because the noise gener-
ated by a spectrum analyzer is likely to overwhelm a weak
TV signal. For example, our high-end spectrum analyzer
(WSA4000 [10]) generates noise at -91dBm over a 6MHz
TV channel, which is 23dB higher than the required sensing
threshold (-114dBm). This harsh SNR condition prevents us
from directly measuring the aggregate power of a TV chan-
nel. We note alternative approaches of using amplification
hardware in front of a spectrum analyzer; however, this can
cause strong primary signals to easily saturate the spectrum
analyzer, thus reducing measurement accuracy in locations
with strong TV reception.

V-Scope performs indirect power measurement by first de-
tecting the pilot of a TV signal, then using this pilot to derive
its total power. A pilot is a group of preambles appended at
the beginning of each TV packet to assist decoding. They
create a predominant peak in the frequency domain that is at
a fixed location and more robust to noise than other spectral
components. Unfortunately, even the pilot of a weak TV sig-
nal can be overwhelmed by noise. Figure 2(a) demonstrates
this case with a digital TV signal at -114dBm. To reduce
noise, V-Scope leverage a zoom-in technique by configur-
ing the spectrum analyzer to capture at very narrow bands
(488KHz) at the beginning of a TV channel. This can effec-
tively reduce the noise floor, while producing a clear peak
as shown in Figure 2(b). Since this peak is well distinguish-
able at the detection threshold, V-Scope uses it as an unique
feature for detecting TV signals.

We benchmark the accuracy of the pilot-based detection
algorithm in Table 1. The spectrum data was collected from
30 UHF channels at multiple locations. We use a high-end

(a) (b)

Figure 2: Different spectrum captures of a digital TV signal
at -114dBm. (a) Full-channel capture; (b) Zoom-in capture
at the first 488KHz band.

Detected Digital Analog MIC
Groundtruth

Digital 94.9 0.7 4.4
Analog 0.5 97.4 2.1

MIC 1.2 0.7 98.1

Table 1: Accuracy of primary detection algorithms.

TV receiver to establish the ground-truth. The identified TV
signals (6 in total) were further attenuated for constructing
spectrum traces at a wide range of power (-40dB to -114dB).
We apply a standard cross-validation procedure by randomly
choosing 90% data to detect the remaining 10%. We observe
very low error rates (<5%) in detecting both analog and dig-
ital TV signals.

Merely knowing the presence of a TV signal is not suffi-
cient for estimating its power. V-Scope leverages predeter-
mined power relationships between a TV signal and its pi-
lot to address this problem. According to TV standards [1],
there is a fixed power offset between a TV signal and its
pilot. For example, the pilot of a digital TV is required
to be 11.3dB below the total power. We verify this power
relationship using the data set mentioned above. Figure 3
shows that this relationship indeed holds for a DTV signal
at a wide range of power, albeit with some variation (10 –
15dB). Thus, V-Scope can compute the total power of a TV
signal by adding a constant offset η to its pilot power. Since
the -114dBm detection threshold has taken account fading-
induced inaccuracy [2], we choose η to be 20dB, adding an
additional 5dB margin to provide extra safety in detecting
primary users.

Putting it all together, our final algorithm starts by captur-
ing spectrum fragments around the frequency of TV pilots.
A potential pilot is extracted by first searching for the maxi-
mum FFT bin and then including all the continuous FFT bins
around the max bin, if their power is higher than a threshold.
From the obtained FFT bins, several features (e.g., power,
center frequency and bandwidth) are extracted and fed to a
decision tree based classifier for TV detection. Based on the
type of the detected TV signal, a specific power offset η is
added to the pilot power for calculating its total power.
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Figure 6: Illustration of region-specific models fitted by V-
Scope.

Model refinement procedure for augmenting databases
with local measurements: Using the estimated power of
primary signals, V-Scope refines the parameters of a given
propagation model to better predict the power of primary
signals. It is based on a standard model-fitting procedure
that takes the propagation model and measurements to con-
struct a set of linear equations Yi = αXi+ε, whereXi is the
distance of a measured location to the base station, Yi is the
measured power, and α, ε are tunable parameters of a model.
It finds best parameter values by using the least-squares lin-
ear regression, with the objective of minimizing the squared
sum of prediction errors (

∑
i(Yi−αXi−ε)2). V-Scope have

two improvement upon this approach – (i) fitting one set of
parameters for each local area (i.e., region-specific) to bet-
ter track local environment, and (ii) performing a weighted
regression to remove the fitting bias caused by non-uniform
distribution of measurements.

In V-Scope, we derive a region-specific model by fitting
one set of parameters for each local region as shown in Fig-
ure 6. The motivation is that different regions are likely to
have different propagation characteristics, especially in an
urban environment. This can hardly be captured by a global
propagation model, which uses a same set of parameters for
predicting a wide area. To demonstrate this, we use linear re-
gression to fit a different set of parameters (i.e., α, ε) of the
free-space model using all the measurements in each 100m
road segment. We then include the fitted parameters into the
model to predict TV signals at all the measured locations in

each segment. We compare this region-specific model with a
global model using a single set of parameters fitted with all
the measurements. Figure 4 shows that the region-specific
model can achieve a median error of 1.4dBm and 75 quar-
tile error of 2.6dBm, which are 3× and 2.9× lower than that
of the global model. Thus, we fit one local model for each
region to improve prediction accuracy.

In constructing local models, we note non-evenly spaced
measurements collected on vehicles significantly degrade the
performance of linear regression. Since a public vehicle
drives at a varying speed and stops quite often, V-Scope col-
lects measurements at non-uniform density. This causes lin-
ear regression to produce a biased model that favors densely
measured area, while having large errors at sparsely mea-
sured area. The underlying reason is that linear regression
tries to minimize the squared sum of fitting error; the loca-
tions with fewer measurements contribute less to the error
sum, thus being under-fitted. Figure 5 shows the perfor-
mance of a local model fitted with non-uniform measure-
ments. We use 30 measurements (Training) to fit this model,
and 29 of them are collocated at a bus stop. The model fitted
by linear regression has up to 36dB error in predicting path
loss compared to other groundtruth measurements (Testing).

The key intuition of our solution is to treat the measured
locations, rather than measurements, fair in fitting a propaga-
tion model. V-Scope achieves this by using a weighted least-
squares regression. It calculates a weight for each measure-
ment based on its distance to other measurements. Formally,
the regression algorithm aims to minimize the weighted sum
of squares in fitting error: WSS =

∑
iWi(Yi − αXi − ε)

with Wi =
∑

j dist(i, j). This makes sparse measurements
to carry larger weights, thus ensuring the sparsely measured
area to be fitted equally well. Figure 5 shows the weighted
regression has reduced the prediction error by 36dB com-
pared to the linear regression.

To recapitulate, our model fitting procedure first bins mea-
surements into road segments. For each segment, it com-
putes a weight for each measurement based on its distance
to other measurements in the same segment. It then applies
these measurements and their weights to the weighted least-
squares regression to construct the region-specific model.
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Figure 8: Error distribution of the
database-only approach in channel
45.
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3. IMPLEMENTATION
Hardware platform: We use a portable spectrum analyzer-
WSA4000 [10] to collect spectrum measurements. It has
a wide frequency range between 100KHz to 10GHz, and a
capturing bandwidth from 488KHz to 100MHz. We con-
figure the device to operate with the smallest bandwidth of
488KHz and the maximum FFT size of 32768, thus limit-
ing the noise floor to be -147dBm per FFT bin. This allows
us to reliably measure a TV pilot up to -140dBm, which is
corresponding to a TV signal at -120dBm (Section 2).
Deployment: Our current deployment consists of one desk-
top server and one laptop-based client. The client is de-
ployed on a metro bus traveling in and around Madison, WI.
A laptop is used to control all the measurement procedures
at the client. It instructs the spectrum analyzer to perform
narrow-band captures in all 30 UHF channels. Using the
collected spectrum samples (FFTs), the laptop detects pri-
mary signals and measure their power at very low latency
(<500ms per channel). In the meanwhile, it obtains the mea-
surement location from a GPS module, uploading the GPS
readings and the detection results over a cellular gateway
to the server. The server is situated in our university labora-
tory, with a well-provisioned Ethernet connection. It uses the
GPS readings to query a commercial database (Spectrum-
Bridge [9]), comparing the database’s prediction with mea-
surements. We have implemented the measurement proce-
dure and the model fitting algorithm in 2000 lines of Python,
along with a database query utility in 650 lines of C++.

4. EVALUATION
In this section, we evaluate the performance of a commer-

cial database and V-Scope in identifying TV whitespaces.
The dataset used in evaluation is collected during a two-
week period, including measurements at more than 1 million
distinct locations over a 100 square-km area in and around
Madison, WI. We highlight our findings that the database has
high inaccuracy in predicting certain TV broadcasts, unnec-
essarily preventing the whitespace usage at up to 42% mea-
sured locations. V-Scope can reclaim a substantial amount
of spectrum wastage (up to 33% measured locations).

Accuracy of commercial spectrum databases: We start
by evaluating the accuracy of a commercial database (Spec-
trumBridge [9]) in predicting TV broadcasts. There are to-
tally 7 active TV channels in our measured area. We define
two types of prediction errors, i.e., false positive and false
negative. A false positive is a location where the database
mis-predicts an occupied channel as whitespaces. The op-
posite is a false negative. We apply the -114dBm sensing
threshold to our measurements to determine actual channel
availability. We find very low (<0.4%) false positive rates in
all the channels, which is similar to a prior report [4]. Thus,
the current database can faithfully protect TV broadcasts.

However, Figure 7 shows non-negligible false negative
rates in half of these channels. The worse channel (45) has
42% area unnecessarily blocked from unlicensed usage. We
take a deeper look at the prediction errors in this worst chan-
nel based on measurements collected in a single day. Fig-
ure 8 shows the locations with channel 45 measured to be
vacant, along with those mis-predicted as occupied by the
database. We note most prediction errors are at the north-
east side of the measured area, which is closer to the TV
tower. Thus, we think these errors are likely caused by over-
predicting the coverage of this TV broadcast.
Accuracy of region-specific model fitted by V-Scope: We
compare our region-specific model with those fitted by three
alternative approaches in predicting TV broadcasts. All the
models are fitted from the free-space model. Global-Fit is a
single model fitted for the entire measured area. Local-Fit is
local models fitted by linear regression instead of weighted
regression. Optimum is local models fitted by the same ap-
proach as V-Scope, but using all the measurements, thus in-
dicating a performance upper-bound. Except for Optimum,
all the models are fitted with a small fraction of measure-
ments, and then used to predict other measured locations.

Figure 9 shows the 99th quartile error of different fitted
models in predicting the power of TV signals. We first ob-
serve that Global-Fit has highest prediction error and achieves
little improvement with more training data collected from
smaller road segments. This is expected as the global can
hardly be tailored to local propagation environments. We
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then note a 19%-40% improvement achieved by Local-Fit
over Global-Fit because Local-Fit tunes a local model to
each road segment. V-Scope outperforms Local-Fit by 8-
13% owing to the use of the weighted regression. Further-
more, V-Scope achieves very close performance to that of
Optimum (6-9% higher error). We believe the overall results
are promising as 99% of errors in V-Scope are below 8dB.
Reclaimed area for whitespace usage by V-Scope: We use
the V-Scope models fitted to 100m road segments to predict
whitespaces. A channel is concluded as whitespaces if the
predicted power is below the sensing threshold (-114dBm).
Figure 7 shows the false negatives of V-Scope in all the ac-
tive TV channels. We note that V-Scope can reclaim spec-
trum wastage at up to 33% measured locations (channel 45).
We observe marginal improvement of using a segment size
below 100m because most of the prediction errors are due to
small-scale fading and temporal variation of signal strengths,
which can hardly be captured by a propagation model. Fi-
nally, we report that V-Scope achieves a lower false positive
rates (up to 0.27%) compared to the commercial database.

5. DISCUSSION AND FUTURE WORK
Predicting coverage of mobile transmitters: We intend
to extend our model-fitting approach to predict the signal
strength of wireless microphones and TVBDs. Our current
algorithm requires precise information about the power and
the location of a transmitter. But such information is not
available for mobile transmitters in the current database due
to scalability reasons. One possibility is to use measure-
ments collected at different locations to derive this informa-
tion, which we leave as future work.
Exploring sophisticated propagation models: V-Scope cur-
rently uses the free-space path loss model to construct local
models. It is unclear whether more sophisticated models,
e.g., Longley-Rice, are better for constructing local models
and in what prediction range they are better. A major down-
side of these models is the computational overhead incurred
by fitting more parameters. It is necessary to understand the
trade-off between the accuracy and the computational com-
plexity here.
Addressing temporal variations and measurement vol-
ume: One of the challenges in collecting opportunistic mea-
surements is ensuring reliability of each individual measure-
ment as the environmental conditions change with time. Care
needs to be taken to ensure that only statistically significant
measurements are used to augment existing databases, and
stale measurements are appropriately invalidated. Finally,
the volume of measurements to be collected and reported is
a system overhead and needs to be traded against desired
accuracy and robustness.

6. RELATED WORK
Spectrum occupancy database: Senseless [4] demonstrates
the first effort in building a database-driven network over
TV whitespaces. The proposed database uses a variant of

the Longley-Rice (L-R) model augmented with terrain data,
and is shown to incur low loss of whitespace spectrum. In
the same year, the FCC mandates commercial databases to
use an alternative, widely-used model (R6602 [2]). V-Scope
finds non-negligible spectrum wastage in this database-only
approach, possibly due to shadowing and fading in an ur-
ban environment. Recently, a database design (WISER [11])
that purely relies on measurements from sensors placed at
strategic indoor locations is proposed for identifying indoor
whitespaces. Combining the merits of Senseless and WISER,
V-Scope uses opportunistic measurements collected on pub-
lic vehicles to refine a propagation model, which is in turn
used to better predict whitespaces in outdoor scenarios.
Propagation model enhancement: Some recent work [6–
8] aims to improve propagation models with a few measure-
ments. Caleb et.al [6] derive an adaptive path loss model
for a 2.5GHz WiMax network by using least-square regres-
sion on measurements. A geostatistical approach has been
proposed in [7], which interpolates measurements that are
systematically sampled for constructing radio environment
maps. Finally, authors in [8] predict the coverage of a WiFi
mesh network by collecting measurements in different cov-
erage sectors. Most of these approaches require measure-
ment locations to be carefully chosen, which can hardly be
guaranteed in vehicular sensing. V-Scope leverages weighted
regression based on measurement sparsity to remove fitting
bias caused by the non-uniform distribution of measurements.
Spectrum sensing: Energy detection is the most straight-
forward algorithm for primary detection. However, it fails to
detect a primary signal below a certain SNR threshold [3].
Subsequent work [3,5] uses feature based detection by track-
ing the pilot of a TV signal. Built upon this idea, V-Scope
uses a zoom-in technique to enhance the pilot detection, and
derive the power of a TV signal from the extracted pilot.

7. CONCLUSION
In conclusion, we present the design of a vehicular sens-

ing framework called V-Scope. V-Scope leverages public
vehicles for collecting wide-area spectrum measurements in
TV whitespaces. It uses these measurements for construct-
ing region-specific propagation models, which are shown to
be effective in augmenting the prediction of a commercial
spectrum database. We believe this concept of opportunistic
wardriving can have broader applications in dynamic spec-
trum access beyond TV whitespaces.
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