Lecture 19:  BSTs

lookup(k)

1.      if the tree is empty, return false

2.    if given key is at the root, return true

3.    if the given key is less than the value in the root,

return lookup on the left subtree

4.    if the given key is greater than the value in the root,

return lookup on the right subtree

 

want a recursive method with two parameters:  key & root

        thus, use an auxiliary method

 

public Boolean lookup(Comparable k) {

  return lookup(root,k);  // lookup is overloaded

}

 

private static Boolean lookup(Bnode n, Comparable k) {

  if (n == null) return false;   // base case

  if (n.key.equals(k)) return true; // base case

  if (k.compareTo(n.key) < 0) return lookup(n.left, k);

  else return lookup(n.right, k);

}

Simulate together:

 

                                                                lookup(3)

                                                                lookup(4)

6

 

3

 

4

 

155

 

2

 
                                                                lookup(9)

 

sound effects:

        empty (null):  bird;      look left:  slide up

        value found:  bell;       look right: slide down

Runtime efficiency for lookup

·       always follows a path from the root down

·       worst case:  goes all the way to a leaf

thus, worst case time is proportional to height of the tree

how is the height related to N = # keys in the tree?

·       depends on the shape of the tree

o      best case:  tree is balanced

all non-leaf nodes have 2 children

all leaves are at depth = height = O(log N)

o      worst case:  tree is linear

all non-leaf nodes have just one child

height is O(N)

Summary

·       worst case time for lookup:  O(h),   h = height of tree

·       worst of the worst:  height is O(N), N = # nodes in tree

·       for approx. balanced tree:  h ~ log N

Note:  log N is much better than N for large N

                     N:      32    64    128     1024     1,000,000

                log N:       5      6      7          10           20

insert(k)

·       a new value is always inserted as a leaf

·       must choose position to respect BST ordering

algorithm:

1.      if BST is empty, make the new value be at the root

2.    else,

·       find node that will be the parent of the new node

(using "binary search")

parent either has key ³ new key & null left pointer

          or key < new key & null right pointer

·       create new node and make it the appropriate child of the parent

insert(k)

1.      if BST is empty, make the new value be at the root

2.    else,

·       find node that will be the parent of the new node

(using "binary search")

·       create new node and make it the appropriate child of the parent

public void insert( Comparable k ) throws DupException{

  if (root == null) root = new Bnode(key, null, null);

  else insert(root, key);

}

 

private static void insert( Bnode T, Comparable k)

  throws DuplicateException{

  // precondition:  T != null

  if (k.equals(T.key)) throw new DuplicateException();

  if (k.compareTo(T.key)<0) {  // k < T.key

    if(T.left == null) T.left = new Bnode(k,null,null);

    else insert(T.left, k);  // T.left is not null

  }

  else { //k > T.key

    // do the same thing with the right subtree

  }

}

simulate with:   initial name  & 4 further names

        BST t = new BST();

    t.insert(“Mary”);

 

root

 

t

 

“Mary”

 

left         key       right

 
  

 

        (four students come up and insert their names)

 

Note:  for random values, tree stays approximately balanced

Runtime efficiency for insert:

·       similar to lookup

follow a path from root to leaf,  O(h)

worst case:  O(N)

approximately balanced tree:  O(log N)

 

You try: 

draw the BSTs produced by the following sequences of inserts

1.         5  3  7  6  2  1

2.       1  2  3  4  5  6  7

3.       4  3  5  2  6  1  7

Solutions:

 1.    5  3  7  6  2  14        

                                         5

                                    3               7

                            2         4    6

                       1

 

2.    1  2  3  4  5  6  7

                                       1

                                              2

                                                     3

                                                           4

                                                                 5

                                                                       6

                                                                            7

3.    4  3  5  2  6  1  7

                                       4

                               3               5

           2                               6

     1                                           7

BSTs:  delete(k)

·       find the node n to be deleted

·       different actions depending on how many children n has

case 1:  n has no children  (n is a leaf) – set ptr to n to null

    e.g., delete(3) on following tree:

root

 
 

 

 

 

left    key   right

 
 

 

 

 

 

 

 

 


case 2:  n has one child

- replace pointer to n with pointer to c

e.g., delete (15) on the above tree

 

case 3:  n has two children – e.g., delete(10)

·       can't replace ptr to n with pointer to both of n's kids

·       instead,  replace key in n

with a value from a node further down in tree

     which value?

  either the largest value in the left subtree

  or the smallest value in the right subtree

then, recursively delete that node from the subtree

 

simulate:

find the largest value in the left subtree of 10

        start at root of left subtree, go right, right, right…

replace the key to be deleted with that value

delete the value from the left subtree

 

You try:

·       find a partner

·       build a BST: 

alternate telling partner a word to insert (10 times)

·       destroy the BST: 

alternate telling partner what word to delete

 

time for delete(k):

·       find the node to be deleted: 

follow a path from root to that node

·       if has 2 children, find largest key in L subtree

continue down path toward a leaf

·       recursively delete k

follow same path as in finding largest key

thus, in the worst case,

a path from root to a leaf is followed twice

i.e., worst-case time is O(h), where h is height of tree

Summary

·       use BSTs to store Comparable keys (and assoc. data)

·       lookup, insert, delete are easy to implement

·       all operations have worst case time O(h)

o      worst case h = N,  where N = number of nodes

o      average case h = log(N)

·       log(N) is much better than N,

so on average, the operations are very efficient

(will see this on programming assignment 4)