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Abstract 
 
Fork/join stations are commonly used to model the synchronization constraints in queuing 
models of computer networks, fabrication/assembly systems and material control strategies for 
manufacturing systems. This paper presents an exact analysis of a fork/join station in a closed 
queuing network with inputs from servers with two-phase Coxian service distributions, which 
models a wide range of variability in the input processes. The underlying queue length and 
departure processes are analyzed to determine performance measures such as throughput, 
distributions of the queue length and inter-departure times from the fork/join station. The results 
show that, for certain parameter settings, variability in the arrival processes has a significant 
impact on system performance. The model is also used to study the sensitivity of performance 
measures such as throughput, mean queue lengths, and variability of inter-departure times for a 
wide range of input parameters and network populations.  
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1 Introduction 
 
Fork/join stations are used to model synchronization constraints between entities in a queuing 
network. The fork/join station of interest in this paper consists of a server with zero service times 
and two input buffers. As soon as there is one entity in each buffer, an entity from each of the 
buffers is removed and joined together. The joined entity exits the fork/join station 
instantaneously. Subsequent to its departure, the joined entity forks back into the component 
entities, which then get routed to other parts of the network. Fork/join stations find many 
applications in queuing models of manufacturing and computer systems. In queuing models of 
fabrication/assembly systems, the assembly station is typically modeled using a fork/join station 
(Harrison, 1973; Latouche, 1981; Hopp and Simon, 1989; Rao and Suri, 1994, 2000). Recently 
fork/join stations have also been used to model the synchronization constraints in models of 
material control strategies for multi-stage manufacturing systems (Di Mascolo et al., 1996; 
Krishnamurthy et al., 2001). In computer systems analysis, queuing networks with fork/join 
stations have been studied in the context of parallel processing, database concurrency control, 
and communication protocols (Baccelli et al., 1989; Varki, 1999; Prabhakar et al., 2000).  
 
To develop efficient methods for analyzing these networks, several researchers have analyzed 
different aspects of the performance of fork/join stations in isolation. The typical inputs for such 
an analysis are the capacity of each input buffer and a description of the inter-arrival times of the 
entities to each input buffer. Performance measures of interest include synchronization delays, 
queue length distributions at the different input buffers, and station throughput. For the sake of 
analytical tractability, a majority of these efforts assume that the inter-arrival times of the inputs 
to the fork/join station have an exponential distribution (Harrison, 1973; Bhat, 1986; Lipper and 
Sengupta, 1986; Hopp and Simon, 1989; Som et al., 1994; Takahashi et al., 1996; Varki, 1999). 
Although these results are useful, in many of the applications cited above the inter-arrival times 
have a distribution more different from the exponential. Recent studies by Takahashi et al. 
(2000), and Takahashi and Takahashi (2000) use matrix analytical methods to analyze fork/join 
stations where the inter-arrival times have phase type distributions. However, they assume that 
the arrivals are from infinite populations, i.e. the arrivals are an uninterrupted process and an 
arriving entity that finds the input buffer full is lost. Additionally, the computational complexity 
arising from the use of matrix analytical approaches seems to be a high price to pay for analyzing 
fork/join stations with inputs having inter-arrival times that have a distribution more general than 
the exponential. 
 
When the fork/join station is part of a closed queuing network, (such as in models of multi-stage 
kanban systems or closed multi-level fabrication/assembly systems) then once the queue length 
of an input buffer equals the size of the population that can arrive to the buffer, the arrival 
process shuts down temporarily. In this paper, we propose an approach for analyzing such 
fork/join stations for a fairly general class of inputs, with reduced computational complexity. 
More specifically, we study the performance of a fork/join station in a closed queuing network 
with inputs from servers with two-phase Coxian service distributions. The choice of two-phase 
Coxian distribution allows us to model input processes with a wide range of mean (0,∞) and 
squared coefficient of variation, SCV [0.5,∞). We analyze the queue length process as a 
continuous time Markov chain to estimate the throughput and queue length distributions. Next 
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we analyze the departure process as a semi-Markov process and derive expressions for the 
distribution of the inter-departure times after deriving the state transition probabilities for the 
embedded Markov chain.  
 
The remainder of this paper is organized as follows. Section 2 defines our model of the fork/join 
station, lists the specific inputs and outputs, and describes our analysis approach. Section 3 
provides a summary of the literature to date on the analysis of fork/join stations. Section 4 
describes our analysis of the queue length process while Section 5 describes our analysis of the 
departure process from the fork/join station. Section 6 provides some numerical results and 
Section 7 presents our conclusions.  
  
2 System Description and Overview of Analysis 
 
2.1 System Description 
 
We describe our model of the fork/join station and explain how it could be used to represent the 
synchronization behavior in particular manufacturing and computer systems. The model is 
illustrated in Figure 1.  As shown in the figure the fork/join station has two input buffers B1 and 
B2. If an entity arriving in buffer B1 (B2) finds input buffer B2  (B1) empty, it waits for the 
corresponding entity to arrive in input buffer B2  (B1). As soon as there is at least one entity in 
each buffer, one entity is removed from each buffer. The removed entities join together, and 
immediately depart from the fork/join station. As a result the content of each input buffer is 
reduced by one. Subsequent to departure from the fork/join station, the joined entity forks back 
into two entities that are routed to separate stations with single servers. The service times at these 
servers have two-phase Coxian distributions. At these servers, each entity queues for service, and 
upon completion of service the entity revisits the fork/join station. There is a finite population of 
size Ki for the entity of type i. Consequently, the number of entities in input buffer Bi and at the 
corresponding Coxian server always sum up to Ki, i=1,2, and the arrival process to buffer Bi shuts 
down when there are Ki units in buffer Bi. 
 
Fork/join stations with such characteristics are found in models of multi-stage kanban systems, 
closed multi-level fabrication/assembly systems, and communication systems. We provide 
examples for each case.  
 

1. First, the fork/join station described above can represent a synchronization station before 
an assembly operation in a fabrication/assembly system (Rao and Suri, 1994, 2000). In 
this case Ki could correspond to the fixed number of automated guided vehicles (AGVs) 
transporting components of type i from the fabrication sub-network to the assembly 
station. Entities in buffers B1 and B2 correspond to the fabricated parts that are to be 
assembled. The join operation corresponds to the kitting operation, while the fork 
operation corresponds to the release of free AGVs to carry the parts required for 
assembly. These AGVs would go back to the fabrication sub-networks to be restocked 
with parts. The arrival of reloaded AGVs from the fabrication sub-networks could be 
modeled using a server with service times having a suitable two-phase Coxian 
distribution. 
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2. As a second example, the fork/join station model could represent the synchronization 
constraint in a kanban control system. In modern manufacturing, kanban systems are a 
popular form of material control (Di Mascolo et al., 1996; Liberopoulos and Dallery, 
2000). Here the fork/join station could model the synchronization constraint between an 
upstream and downstream stage in a multi-stage kanban system. Each entity in buffer B1 
would correspond to a part with an upstream kanban attached to it, while each entity in 
buffer B2 would correspond to a free kanban returning from the downstream stage, and K1 

and K2 would be the number of kanbans in the respective stage. During the join operation 
a part and upstream kanban are joined with a downstream kanban and during the fork 
operation, the upstream kanban is sent back, while the part and downstream kanban are 
sent to the next manufacturing stage. The manufacturing process in each stage could be 
modeled using a server with service times having a suitable two-phase Coxian 
distribution. 

  

Figure 1. Fork/join station in a closed network having servers with two-phase Coxian 
service distributions 
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3. Finally, this fork/join station model can also be applied to represent the synchronization 

behavior of parallel programs contending for shared resources in a parallel or distributed 
computer system. For example, see Heidelberger and Trivedi (1983). 

 
2.2 Inputs and Outputs 
 
We assume that the two-phase Coxian distribution at server i is defined by three parameters, 

21, ii µµ  and ip , with cumulative distribution function   
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2.3 Overview of Our Analysis 
 
For a fork/join station characterized as above, our goal is to compute the throughput Dχ , the 

mean queue lengths 1L  and 2L at the input buffers B1 and B2 and the marginal distribution 

)(tGD of the inter-departure times from the fork/join station. Correspondingly, our analysis of the 
fork/join station consists of two parts: (1) the analysis of the queue length process and (2) the 
analysis of the departure process. We briefly summarize the analysis approach in the following 
paragraphs. 
 
Analysis of the queue length process: To analyze the queue length process, we first define the 
state space for the queue length process and then analyze the queue length process as a 
continuous time Markov process. We solve the continuous time Markov chain to obtain the 
steady state probability distributions of the queue lengths at buffers B1 and B2, respectively. From 
these we obtain different performance measures such as throughput and the mean queue lengths. 
The details are described in Section 4. 
 
Analysis of the departure process: We note that the output process is a Markov renewal process 
(Disney and Kiessler, 1987). In analyzing this Markov renewal process, we make use of the 
special structure of the Markov process embedded at departure instants to obtain the transition 
probability matrix and stationary probabilities of the Markov chain embedded at departure 
instants. Using the stationary probabilities, we obtain the marginal distribution of inter-departure 
times from the fork/join station. The details are given in Section 5. 
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3 Review of Previous Work 
 
Fork/join stations with two or more inputs have been used to model synchronization constraints 
in queuing models of computer and manufacturing systems. Harrison (1973) analyzed a fork/join 
station with renewal input streams and showed that when there are no capacity limits for the 
input buffers, the fork/join station is unstable. However, if the buffers are bounded, then the 
fork/join station is stable. Bhat (1986) analyzed a fork/join station with bounded buffers and 
Poisson inputs and derived expressions for the queue length distributions at the input buffers. 
Kashyap (1965) studied a kitting process with input queues of components. The kitting process 
was modeled as a double-ended queue and expressions for the waiting time distributions were 
derived for the case of Poisson inputs. Som et al. (1994) and Takahashi et al. (1996) studied the 
departure process from a fork/join station with finite buffers and exponentially distributed inter-
arrival times to these buffers. They derived expressions for the marginal distribution of the inter-
departure times. Varki (1999) assumes a finite customer population in the fork/join queuing 
network but restricts all service times to be exponentially distributed. 
 
In many applications the inter-arrival times have a distribution different from the exponential. 
Recent studies by Takahashi et al. (2000), and Takahashi and Takahashi (2000) use matrix 
analytical methods to analyze fork/join stations where the distribution of inter-arrival times is of 
a phase type. However, they assume that the arrivals are from infinite populations, i.e. the 
arrivals are an uninterrupted process and an arriving entity that finds the input buffer full is lost. 
When the fork/join station is a part of a closed queuing network, then once the contents in the 
input buffer reach a certain level, the arrival process shuts down temporarily.  
 
In this paper, we analyze the performance of a fork/join station in a closed queuing network with 
inputs from servers with two-phase Coxian service distributions. The choice of two-phase 
Coxian distributions allows us to model a wide range of input processes, namely, input processes 
with mean inter-arrival times ranging over ( )∞,0  and with squared coefficient of variation (SCV) 
in the range of ),5.0[ ∞ . This range covers the values typically expected of traffic processes in 
many practical systems (Kamath et al., 1988; Buzacott and Shanthikumar, 1993).  
  
4 Analysis of the Queue Length Process 
 
In this section, we analyze the queue length process as a continuous time Markov process. Table 
1 summarizes the notation used in the analysis and in the rest of the paper.  
 
Let )(1 tN and )(2 tN  denote the number of units in buffers B1 and B2 respectively at time t. From 
the operational characteristics of the fork/join station we note that it is not possible for both the 
buffers B1 and B2 to be non-empty for any finite time. Departures occur instantaneously from the 
fork/join station whenever both buffers are non-empty. Therefore, the number of units in both 
buffers at time t can be described uniquely using the one-dimensional random variable 

)()()( 21 tNtNtN −= . )(tN  takes on values 12 ,...,1,0,1,... KK −− . For instance, 2)( KtN −=  

implies that the buffer B1 is empty and the buffer B2 has 2K  units. If both input buffers are 
empty, )(tN =0. 
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Table 1. Notation used for our analysis 

 
Symbol Description 

21, jj µµ  and jp  Parameters of the two-phase Coxian distribution for the arrival  
process at buffer Bj, j=1,2 

Kj Size of the finite population from which arrivals occur to  
input buffer Bj, j=1,2 

jλ  Rate of arrivals to buffer Bj, when it is not shut down,  j=1,2 
2
jc  SCV of inter-arrival times at buffer Bj, when it is not shut  

down,  j=1,2 
)(tN j  Number of units in buffer Bj at time t, j=1,2 

)(tJ j  Phase of pending arrival to buffer Bj time t, j=1,2 

( ) ( ) ( )( )tJtJtN 21 ,,  State of the fork/join station at time t, )()()( 21 tNtNtN −=  

jL  Average queue length at buffer Bj, j=1,2 

Dχ  Throughput of the fork/join station 

 
To describe the state of the system at any time t, we need to consider both-the number of units in 
each input buffer, as well as the phases of the pending arrivals. Then at time t, each buffer can be 
in one of three distinct states as defined below:  

)(1 tJ  [ )(2 tJ ]   = 1  if the pending arrival to buffer B1 [B2] is in phase 1 

   = 2  if the pending arrival to buffer B1 [B2] is in phase 2 

   = 0  if the buffer B1 [B2] is full i.e. has 1K [ 2K ] units and  

the arrival process to the buffer has shut down.  (3) 
 
With these definitions, the state of the system is completely characterized by 
( )21,, JJN = ( ) ( ) ( )( ){ }0,,, 21 ≥ttJtJtN .  Clearly, ( )21,, JJN  is a continuous time Markov chain 

that describes the stochastic behavior of the system. The state space of state of ( )21,, JJN  is 
given by   

 
1,...,1,0,1,...1:),,{ ( 1221 −−+−== KKnjjnSQ ; 2,11 =j ; }2,12 =j    

         )}2,0,(),1,0,(),0,2,(),0,1,{ ( 1122 KKKK −−∪     (4) 
 
Note that the Markov chain has 4(K1+K2) states. The state transition rates for the continuous time 
Markov chain representing the queue length process are illustrated in Figure 2. These transition 
rates are easily derived from the parameters of the two-phase Coxian distribution for the arrival 
processes, 21, jj µµ  and jp , j=1,2. For example, if n < K1, transitions from the state  (n-1, 1, 2) 
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to the state (n, 1, 2) occur when the arrival process for buffer B1, completes stage 1 (at the rate 
µ11) and stage 2 of the arrival process is not selected giving a total rate of µ11(1-p1). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4.1 Transition Equations 
 
For each QSjjn ∈),,( 21 , let ),,( 21 jjnPQ denote the steady state probability that the continuous 

time Markov chain ( )21,, JJN  is in this state. These steady state probabilities can be computed 
by solving the corresponding state transition equations, as follows. Corresponding to whether 
one of the arrival processes to the buffers has shut down (SD) or both the arrival processes are 
not shut down (NSD) we partition the state space SQ into SD

QS  and NSD
QS  where 

 

n,2,1 

n,1,1 

n,2,2 

n,1,2 

n-1,2,1 

n-1,1,1 

n-1,2,2 

n-1,1,2 

Figure 2. State transitions diagram when –K2 +2 ≤ n ≤ K1 -2 
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1,...,1,0,1,...1:),,{ ( 1221 −−+−== KKnjjnSNSD

Q ; 2,11 =j ; }2,12 =j and  

)}2,0,(),1,0,(),0,2,(),0,1,{ ( 1122 KKKKSSD
Q −−= NSD

QQ SS −=        (5) 

 
Then considering the partition of NSD

QS , we have that in steady state, for each NSD
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For )1,0,( 1K  and SD
QSK ∈)2,0,( 1 we have: 
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For )0,1,( 2K−  and SD
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Additionally we have the following: 
 

1),,(
),,(

21

21

=�
∈ QSjjn
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Solving the system of equations 6-9 above, for each QSjjn ∈),,( 21 , we obtain expressions for 

the steady state probabilities ),,( 21 jjnPQ .  

 
4.2 Average Queue Length and Throughput  
 
Given the steady state probabilities of the queue length process, the average queue lengths 1L and 

2L at the buffers B1 and B2 are obtained using equations 10 and 11 below. 
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Thus we have obtained the probability distribution of the queue length process as well as the 
mean queue lengths at both the input buffers. The throughput Dχ  of the fork/join station is 
computed from the steady state probabilities of the queue length process as follows: 
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In section 6 we will provide some numerical results of our queue length analysis. First, we 
complete our analysis of the departure process of the fork/join station. 
 
5 Analysis of the Departure Process 
 
As noted in Section 2.3, the departure process of the fork/join station is a Markov renewal 
process (Disney and Kiessler, 1987). To analyze this process, we first identify the states in the 
Markov chain embedded at departure instants. Next, we recognize that this embedded Markov 
process has a special structure and use this information to identify the possible sample paths 
between successive departures. By deriving the conditional probability distributions for each 
sample path, we obtain the transition probability matrix DP , of the Markov chain embedded at 
the departure instants. We solve the Markov chain to obtain the stationary probability vector ∏ . 
Using ∏  and the distributions of the inter-arrival times at the two buffers, we obtain )(tGD , the 
steady state marginal distribution of inter-departure times from the fork/join station. The analysis 
is summarized in Figure 3. 
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5.1 The Semi-Markov Departure Process 
 
A departure occurs (simultaneously from both the buffers) whenever at least one unit is available 
in each input buffer, B1 and B2. The sequence of states of the fork/join station at the departure 
instants and the corresponding sequence of departure times describe a pair of related random 
processes ),( DX . The random process { }NmD m ∈= :τ , where N is the set of all nonnegative 

integers, is a sequence of real valued random variables mτ , where mτ  is the time of the mth 

departure.  Note that, each departure time for the fork/join station coincides with either an arrival 
time in buffer B1 or an arrival time in buffer B2. Associated with the random process D  is the 
incremental process { }NmTT m ∈= :  where for m > 0, mT  is the time between consecutive 

departures m and m-1, i.e., 1−−= mmmT ττ , and 00 =T . The states of the random process 

{ }NmXX m ∈= :  is vector valued and consists of the triple ( )mmm JJN 21 ,,  where ( )+= mm NN τ , 

( )+= mm JJ τ11  and ( )+= mm JJ τ22 . +
mτ denotes the time instant just after a departure at mτ , ( )+

mN τ  

denotes the number of units at the fork/join station, and ( )+
mJ τ1  and ( )+

mJ τ2  respectively denote 

the phases of the pending arrivals to input buffers B1 and  B2 just after the mth departure. 
 
We derive the distribution of the inter-departure times by analyzing the pair of random processes 

),( TX . 1+mT  depends on the present state mX  and the next state 1+mX . However, given these 

states, 1+mT is independent of the previous states 10 ,..., −mXX  and mTT ,...,0 . That is, the following 

relation holds 
 

( )mmmm TTXXTXP ,...,,,...,|, 0011 ++ = ( )mmm XTXP |, 11 ++  for all Nm∈                   (13) 

 
and the output process( )TX ,  is a Markov renewal process. The state space of the output process 

( )TX ,  is RSD × , where ( )∞= ,0R , and   
 

Figure 3. Analysis of the departure process at the fork/join station  
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=DS ( ){ }∪+− 1,1,12K ( ){ }∪<<+− 01),2,1,(,1,1, 2 nKnn                      

( ){ }∪)1,2,0(),2,1,0(,1,1,0 ( ){ }∪−<< 10),1,2,(,1,1, 1Knnn ( ){ }1,1,11 −K                               (14)  
 
In Figure 4 the set of feasible states in DS  are shown in gray. It can be easily verified that for 

each state in DS all exit transitions lead to states in DS .  
 

To define these feasible states more precisely, we note that QD SS ⊂  and define DQDQ SSS −=− .  

States in DQS −  are shown in dotted boxes in Figure 4. These states are not in DS for the following 

reasons. First, it is obvious that neither of the buffer arrival processes is shut down immediately 
after a departure from the fork/join station, i.e., DQ

SD
Q SS −⊂ . For NSD

Qm SX ∈  we reason in the 

following manner. If 12 +−= KNm , buffer B2 is full and its arrival process is shut down prior to 

the departure instant implying that ( ) ( ) ( ){ } DQSKKK −⊂+−+−+− 2,2,1,1,2,1,2,1,1 222 . Similarly, 

for 11 −= KNm , the arrival process to buffer B1 is shut down prior to the departure instant 

implying that ( ) ( ) ( ){ } DQSKKK −⊂−−− 2,2,1,1,2,1,2,1,1 111 . Furthermore, for 012 <<+− mNK , 

the departure time mτ  coincides with an arrival time in buffer B1 and hence 

( ){ } DQmm SNN −⊂)2,2,(,1,2, . Similarly for 10 1 −<< KNm , the departure time mτ  coincides with 

an arrival time in buffer B2 and hence ( ){ } DQmm SNN −⊂)2,2,(,2,1, . Finally, when 0=mN , we 

have ( ){ } DQS −⊂2,2,0 . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
From Figure 4 and equation 14, it is easy to see that DS  has ( ) 32 21 −+ KK  states.  Since the 

output process( )TX ,  is a Markov renewal process it is completely characterized by its semi-
Markov kernel Q, where: 
 

-K2+1,1,2 -K2+2,1,2 K1-2, 1,2 K1-1, 1,2 
 

K1, 0,2 

-K2, 1,0 -K2+1,1,1 -K2+2,1,1 K1-2, 1,1 K1-1, 1,1 K1, 0,1 
 

-K2, 2,0 -K2+1,2,1 -K2+2,2,1 K1-2, 2,1 K1-1, 2,1 
 

-K2+1,2,2 -K2+2,2,2 K1-2, 2,2 K1-1, 2,2 
 

0,1,2 

0,1,1 

0,2,1 

0,2,2 

-1,1,2 

-1,1,1 

-1,2,1 

-1,2,2 

1,1,2 

1,1,1 

1,2,1 

1,2,2 

Figure 4. Identifying the states of the Markov chain embedded at departure instants 

mX  

mX

Implies that Qm SX ∈  and Dm SX ∈   

Implies that Qm SX ∈  but DQm SX −∈   



 13
),,( 1 tXXQ mm + = ( )mmm XtTXP |, 11 ≤++               (15) 

 
For convenience the elements of the semi-Markov kernel can be expressed in the Laplace 
transform domain as 
 

 ( ) { }),,(,, 11
* dtXXQLdsXXQ mmmm ++ =                   (16) 

 
Section 5.2 below describes how to compute the values of ( )dsXXQ mm ,, 1

*
+ . Using 

( )dsXXQ mm ,, 1
*

+  several characteristics of the output process ( )TX ,  can be obtained (Disney 

and Kiessler, 1987). For example, the state transition matrix DP  of the underlying Markov 

chain X embedded at times Nmm ∈,τ  is obained by setting 0=s in equation 16 above, i.e.: 

 
( )1, +mmD XXP  = ( ) ( )( )mmmmmmmm JJNXJJNXP 21121111 ,,|,, == ++++  

= ( ) 01
* |,, =+ smm dsXXQ               (17) 

 
Let { }Dkk SXX ∈Π=Π :)( , where ( )kXΠ is the steady state probability that the fork/join 

station is in state kX  at a departure instant. The stationary probability vector Π of the underlying 

Markov chain is obtained as follows: 
 

DPΠ=Π                (18) 
 

( )�
∈

=Π
DSk

kX 1               (19) 

 
The system of equations 18 and 19 are solved to obtain Π . Section 5.3 describes how to 
compute )(tGD , the cumulative distribution function of the inter-departure times using Π . 
 
The computation of DP and hence Π  is the next step in estimating the cumulative distribution 

function )(tGD of the inter-departure times. In the next section, we construct DP  using the semi-

Markov kernel Q of the output process (X, T) and use DP  to determine Π . 
 
5.2 Construction of Semi-Markov Kernel Q and State Transition Probability Matrix DP  

  
To construct DP , we note that between two successive departure states mX  and 1+mX , the 

fork/join station visits a finite sequence of intermediate states ,...2,1, =kZk where Qk SZ ∈ . Each 

such sequence corresponds to sample paths leading the fork/join station from departure state mX  

at time mτ  to state 1+mX  at time 1+mτ . Let ( )1, +mm XXSS  be the set containing all such sequences 

of intermediate states, and ( )1, +mm XXSS  denote the number of sequences for the pair 

( )1, +mm XX . Let ( ) ( )11 ,, ++ ∈ mmmmj XXSSXXSS  be the j th sequence in this set. Then 
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( )1, +mmj XXSS  can be written as the ordered sequence ( ))(1)(10 ,,...,, jljl ZZZZ −  where )( jl  is 

the length of the sequence ( )1, +mmj XXSS , mXZ ≡0 , 1)( +≡ mjl XZ  and 1)(,...,2,1, −= jlkZk  

correspond to the intermediate states. Additionally, for a given sample path that contains the 
sequence of states, let )(1)(10 ... jljl tttt ≤≤≤≤ −  be the times when the fork/join station transitions 

to states )(1)(10 ,,...,, jljl ZZZZ −  respectively. Note mt τ≡0  and 1)( +≡ mjlt τ .  Figure 5 illustrates 

sample paths for each of three different sequences in ( )1, +mm XXSS , as well as the sequence of 

intermediate transitions in a sample path for ( )11 , +mm XXSS . 

 
Since the sequences of intermediate states ( )1, +mmj XXSS  are mutually exclusive and equally 

likely, we have 
 

( )dsXXQ mm ,, 1
*

+  = ( )� ∏
+

= =
− ��

�

�
��
�

�),(

1

)(

1
1

*
,

1

,,
mm XXSS

j

jl

k
kkkj dsZZQ           (20) 

 

( )1, +mmD XXP   = ( )� ∏
+

= =
=− ��
�

�
��
�

�),(

1

)(

1
01

*
,

1

|,,
mm XXSS

j

jl

k
skkkj dsZZQ            (21) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In order to compute ( )1, +mmD XXP  using equation 21 above, we need to identify all the 

sequences ),(),( 11 ++ ∈ mmmmj XXSSXXSS  and then compute ( ) 01
*
, |,, =− skkkj dsZZQ  for each k > 

0, and each ),(),( 11 ++ ∈∈ mmmmjk XXSSXXSSZ . This may appear to be a cumbersome task. 

However, because arrivals to buffers 1B  and 2B  are composed of exponential phases, the semi-

Markov kernel Q and hence, the transition matrix DP  has a special structure. In other words, 

Dm SX ∈ Dm SX ∈+1

( )12 , +mm XXSS

( )13 , +mm XXSS

Figure 5. Possible sample paths between departures 

Z1∈SQ ( )11 , +mm XXSS

mt τ=0  1t  2t  13 += mt τ  

Z2∈SQ 

Xm+1=Z3=Zl(1) Xm+1=Z0 
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depending upon the values of N , 1J  and 2J  of states mX , and 1+mX  the non-zero portion of 

DP  can be partitioned into 14 regions. We exploit this special structure to identify the set of 

sequences ),( 1+mm XXSS  for each pair ( )1, +mm XX  and also to compute ( ) 01
*
, |,, =− skkkj dsZZQ  for 

each ),( 1+∈ mmjk XXSSZ . Figure 6 illustrates these regions (labeled 1 through 14) in DP  using 

the example of a fork/join station with two input streams and with K1=K2=5.  
 
Regions 1-11 correspond to transitions between states mX  and 1+mX  in which one of the buffers 

(B1 or B2) is non-empty at time instants mτ and 1+mτ . Regions 12-14 correspond to the states 

when both the buffers B1 and B2 were empty at time instants mτ and 1+mτ . Transitions between 

states in a region share similarity in the structure of the possible sample paths. We exploit this 
similarity while deriving expressions for ( )1, +mmD XXP . The Appendix lists the formal 

definitions as well as the expressions for ( )1, +mmD XXP  for each pair ( )1, +mm XX . Here, we 

illustrate the procedure for deriving these expressions using Region 11 as an example. 
 

Xm+1  
( )1, +mmD XXP  

-4,1,1 -3,1,2 -3,1,1 -2,1,2 -2,1,1 -1,1,2 -1,1,1 0,1,2 0,1,1 0,2,1 1,1,1 1,2,1 2,1,1 2,2,1 3,1,1 3,2,1 4,1,1 

-4,1,1 5 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

-3,1,2 8 6 4 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

-3,1,1 5 7 1 3 1 0 0 0 0 0 0 0 0 0 0 0 0 

-2,1,2 8 6 4 2 4 2 0 0 0 0 0 0 0 0 0 0 0 

-2,1,1 5 7 1 3 1 3 1 0 0 0 0 0 0 0 0 0 0 

-1,1,2 8 6 4 2 4 2 4 2 0 0 0 0 0 0 0 0 0 

-1,1,1 5 7 1 3 1 3 1 3 1 0 0 0 0 0 0 0 0 

0,1,2 8 6 4 2 4 2 4 13 13 13 9 11 9 11 9 11 10 

0,1,1 5 7 1 3 1 3 1 14 14 14 1 3 1 3 1 7 5 

0,2,1 10 11 9 11 9 11 9 12 12 12 4 2 4 2 4 6 8 

1,1,1 0 0 0 0 0 0 0 0 1 3 1 3 1 3 1 7 5 

1,2,1 0 0 0 0 0 0 0 0 0 2 4 2 4 2 4 6 8 

2,1,1 0 0 0 0 0 0 0 0 0 0 1 3 1 3 1 7 5 

2,2,1 0 0 0 0 0 0 0 0 0 0 0 2 4 2 4 6 8 

3,1,1 0 0 0 0 0 0 0 0 0 0 0 0 1 3 1 7 5 

3,2,1 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 6 8 

 
 
 
 
 
 
 
 

Xm 

4,1,1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 7 5 

 
Figure 6. Regions in the semi-Markov kernel Q and state transition matrix PD 

 
 
In Region 11 we have two sub-regions: 
 
  )2,1,0(=mX , 1+mX = )1,2,( 1+mN  for 20 11 −≤< + KNm  and  

  )1,2,0(=mX , 1+mX = )2,1,( 1+mN  for 20 21 +−≥> + KNm  
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Consider ( )1, +mmD XXP  for the first sub-region where )2,1,0(=mX and 1+mX = )1,2,( 1+mN  for 

20 11 −≤< + KNm . In this case, ( )1, +mmD XXP  is the probability of the event that in buffer 1B , 

exactly )1( 1 ++mN arrivals and only phase 1 of a two-phase nd
mN )2( 1 ++  arrival are completed 

before the completion of phase 2 of the arrival in buffer 2B . Since arrivals to buffers 1B  and 2B  

are independent and composed of exponential phases, for ( )1, +mm XX  we can write: 

 
( )1, +mmD XXP = 

P(Exactly )1( 1 ++mN  arrivals to 1B  completes before phase 2 of arrival to 2B  completes) × 

P(Phase 1 of a two-phase nd
mN )2( 1 ++  arrival to buffer 1B  completes before phase 2 of the 

arrival to 2B  completes) × 

P(Phase 2 of the arrival to 2B  completes before phase 2 of nd
mN )2( 1 ++  arrival to buffer 1B ) 

     (22)  
                

Noting that each of the )1( 1 ++mN  arrivals in 1B  could be composed of one or two exponential 

phases, and thus there are )1( 12 ++mN  possible sequences in ),( 1+mm XXSS  equation 22 leads to the 

following expression for ( )1, +mmD XXP : 

 

( )1, +mmD XXP  =
( ) 1

2212

12

2211

111

2211

111

1

1
++
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�
�
�

�
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�
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��
�
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µ
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µ
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µµ
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      (23) 

 
Using arguments similar to the above it can be shown that for this sub-region: 
 

( )dsXXQ mm ,, 1
*

+  = 

( ) 1

2212

12

2211

111

2211

111

1

1
++

�
�

�
�
�

�
��
�

�
��
�

�
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�
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�

�
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�

�
��
�

�
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µ

µµ
µ

�
�

�
�
�

�

++ s

p

2211

111

µµ
µ

�
�

�
�
�

�

++ s2212

22

µµ
µ

      (24) 

 
From ( )dsXXQ mm ,, 1

*
+ , the elements of the semi-Markov kernel Q corresponding to this sub-

region can be obtained. 
 
Using an approach similar to that described above, we can derive the expressions for 

( )1, +mmD XXP  and ( )dsXXQ mm ,, 1
*

+  when )1,2,0(=mX  and 1+mX = )2,1,( 1+mN  for 

20 21 +−≥> + KNm  in Region 11. The expressions for ( )1, +mmD XXP  and ( )dsXXQ mm ,, 1
*

+  for 

each other pair ( )1, +mm XX  are derived in a similar manner. The full set of expressions for the 

elements of DP  is listed in the Appendix. 
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5.3 Marginal Distribution of Inter-departure Times 
 
Using PD derived in the previous section, we solve the system of equations 18 and 19 for the 
stationary probability vector Π . We use Π  to obtain the marginal distribution of the inter-
departure times. Note that since PD is independent of m, the inter-departure times are identically 
distributed. Let )(tGD  be the distribution function of the inter-departure times i.e., 

{ }tTPtG mD ≤=)(  for any m. )(tGD  can  be written in terms of Π  and the distribution function 

for inter-arrival times at input buffers 1 and 2,  namely, t
j

t
jj

jj eCeCtG 21

211)( µµ −− −−= , 2,1=j , 

as follows: 
 
 )(tGD  = 1Π )(2 tG + 2Π )(1 tG + )1,1,0(Π )(1 tG )(2 tG + 

   )1)(()2,1,0( 22
1

tetG µ−−Π + )1)(()1,2,0( 12
2

tetG µ−−Π  
 
where   ( )�Π=Π

DS
mX

1

1         

( )�Π=Π
DS

mX
2

2   

{ })1,2,0(),1,1,0(),2,1,0(21 ∪∪= DDD SSS       

{ } { })1,1,1(1,2;20:)1,,( 11111 −=−≤<= K j KnjnSD �

{ } { })1,1,1(1,2;02:),1,( 22222 +−=<≤+−= K j nKjnS D �        (25) 
 

1Π : The steady state probability that a departure results in a non-empty buffer B1. 

2Π : The steady state probability that a departure results in a non-empty buffer B2. 

From )(tGD , we obtain the mean inter-departure times, D �
�
�

�
�
�=
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          (26) 

 
Similarly, from )(tGD , we can derive expressions for the second moment 2ED  of inter-

departure times and hence 2
Dc , the squared coefficient of variation (SCV) of inter-departure 

times. 
 
Note that the expression for the marginal distribution )(tGD  is also given by )(tGD  = Π Q(t)U, 
where U is a column vector with all elements equal to 1. Furthermore, the joint distribution of k 
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successive inter-departure times from the fork/join station, { }kkmmm tTtTtTP ≤≤≤ ++ ,...,, 211  is 

equal to Π Q(t1) Q(t2)… Q(tk)U for any m (Disney and Kiessler, 1987). 
 
6 Numerical Results 
 
In this section we present some numerical examples to illustrate the usefulness of our analysis. 
First, we compare the results of our analysis of a fork/join station in a network having servers 
with two-phase Coxian service distributions against the results that assume servers with 
exponential service distributions. Second, we study the sensitivity of performance measures such 
as throughput, mean queue lengths, and variability of average inter-departure times to the 
parameters of the input processes and to the customer populations. In the latter case we 
investigate the impact of  (1) mean rates of the input processes ( )21,λλ , (2) different SCVs of the 

input processes ( )2
2

2
1 ,cc , and (3) network populations 1K  and 2K  on performance measures such 

as throughput rate, average queue lengths at the input buffers and SCV of inter-departure times.  
 
Figure 7 compares the values of 1K  and 2K  required to obtain a target throughput from a 
fork/join station with input processes having inter-arrival times with the same mean but with 
different SCVs. An application where such insights would be useful is closed loop fabrication 
assembly systems. In such systems, it would be necessary to decide the number of fixed pallets 
in the networks supplying the fork/join station so as to guarantee a required level of throughput. 
As seen in Figure 7, the throughput increases monotonically with 1K  and 2K . However, as the 

SCVs of the input processes increase, the values of 1K  and 2K  required to obtain a given 
throughput increase significantly. As discussed in Kamath et al. (1988), and Buzacott and 
Shanthikumar (1993), in practical manufacturing systems we could find SCVs ranging from 0 to 
4.0.  
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For example, for a throughput requirement of 0.88, as SCV increases from 0.5 to 4.0 the 
required values of 1K  and 2K  more than triple. For closed loop fabrication assembly systems, 
this would imply significant investment in pallets to buffer against variability of input processes. 
Conversely, ignoring the impact of variability in the input processes (for example, by using the 
number of pallets needed for the case of Poisson input processes) would result in significantly 
lower throughput than the target value if the SCV is actually equal to 4.0. This implies that 
analyzing fork/join stations for inputs more general than the Poisson process has important 
practical implications.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 8 shows the SCV of the inter-departure times for a fork/join station with input processes 
having rates equal to 1 but different SCVs. As the values of 1K  and 2K  increase, the SCV of the 
inter-departure times tends to the average of the SCVs of the input processes. Therefore, while 
additional pallets help improve the throughput performance from the fork/join station, they 
would not help in reducing the variability of the output process. 
 
In most applications one would expect that, through reasonable initial design of the system, the 
rates of the input processes at the fork/join synchronization station would be almost equal. 
However, in reality, imbalances in arrival rates could occur and it is useful to predict the 
performance impact of such imbalances. Figures 9, 10, and 11 indicate that, for certain parameter 
settings, throughput, mean queue length, and SCV of inter-departure times are very sensitive to 
imbalance in input rates. 
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In Figure 9 we see that, as would be expected, the throughput from the fork/join is primarily 
influenced by the arrival rate of the slower of the two input processes.  In Figure 10 we see that 
substantial queues are observed at the buffer of the input process with a higher rate of arrivals.  
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In Figure 11 we see that the SCV of the departure process from the fork/join station is influenced 
by the SCV of the slower of the two input processes.  However, the magnitude of the influence 
depends on the ratio of the two arrival rates. 
 
Finally, from all the figures it is clear that the SCVs of the input processes have a significant 
impact on the performance of the fork/join station primarily when the input processes have 
nearly equal rates. As discussed earlier, this would often be the case by design, hence predicting 
the impact of SCVs seems important. 
 
Next, we discuss a typical scenario where the analysis presented in this paper could be used to 
make useful design decisions. We consider a fork/join station with input processes having 
different SCVs and marginally imbalanced inter-arrival times. The input process to buffer 1B  has 

inter-arrival times with mean 1.1 )91.0( 1 =λ and SCV equal to 4.0 while input process to buffer 

2B  has inter-arrival times with mean 0.9 )11.1( 2 =λ  and SCV equal to 0.5. For a given target 

throughput, we consider the impact of choosing different values of 1K  and 2K  on the output 
process. For a closed loop fabrication assembly systems, this would translate into deciding 
whether to invest in additional pallets of one type or the other. For example, Figure 12 indicates 
that the same target throughput of 0.88 can be obtained by setting 1021 == KK  or by setting 

181 =K  and 22 =K . However, as seen from Figure 13, setting 1021 == KK  results in higher 
variability of the inter-departure times. This could be detrimental to the downstream work 
centers, or could require larger buffers downstream. Even setting 181 =K  and leaving 

102 =K would not reduce the variability of inter-departure times. To decrease the SCV of the 
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inter-departure times, one would have to not only to set a high value of 1K  but also a low 

value of 2K . This large imbalance in 1K  and 2K setting may not be intuitive to system designers, 
yet our model points out its benefits. 

 
 
 
 
 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0

1

2

3

4

0 5 10 15 20 25

D
ep

ar
tu

re
 S

C
V

K 2=2 K 2=6 K 2=8 K 2=10

1K

5.0,4 2
2

2
1 == cc

22 =K

,11.1,91.0 21 == λλ

62 =K 82 =K 102 =K

Figure 13. Impact of K1 and K2 on SCV of inter-departure times 

0

5

10

15

20

25

0.7 0.75 0.8 0.85 0.9 0.95
Throughput

K
1

K2=2 K2=6 K2=8 K2=10

Dχ

5.0,4 2
2

2
1 == cc

1K

22 =K

,11.1,91.0 21 == λλ

62 =K 82 =K 102 =K

Figure 12. K1 and K2 required for a given throughput requirement  



 23
Before we conclude, we comment on the computational complexity of our analysis. The 
transition probability matrix used for computing the queue length distribution has a size 
4(K1+K2). For the departure process we consider the Markov chain embedded at departure 
instants. By analyzing the corresponding transition matrix of size 2(K1+K2)-3, the throughput 
and marginal distribution of inter-departure times from the fork/join station are computed. The 
computation effort in constructing this transition matrix is further simplified by the fact that 
regardless of the parameters of the Coxian distributions and the values of K1 and K2, the non-zero 
portion of the matrix can be partitioned into 14 regions. The computational time required for 
estimating the throughput, distributions of queue lengths and inter-departure times was less than 
3 seconds on a Pentium III, 300MHz personal computer while using MATLAB.  
 
Next, we contrast the computational complexity of our analysis with similar works in the 
literature. Som et al. (1994) and Takahashi et al. (1996) analyze a fork/join station with Poisson 
inputs from infinite populations and finite buffers. In their analysis they assume that arrivals that 
find the buffers full are lost. The computations in these works involve transition matrices of size 
(K1+K2+1) and (K1+K2-1) for the queue length and departure processes respectively. 
Additionally, because of the memory-less property of the exponential distribution, the analysis 
presented in Som et al. (1994) and Takahashi et al. (1996) is also applicable for a fork/join 
stations where the inputs to each buffer is from a closed queuing network with an exponential 
server. Our analysis is a first step towards analyzing fork/join stations with arrivals from finite 
populations having inter-arrival times with distributions that are more general than the 
exponential. The choice of two-phase Coxian distribution allows us to model input processes 
with a wide range of mean (0,∞) and squared coefficient of variation, SCV [0.5,∞) and our 
computations involve transition matrices of size 4(K1+K2) and 2(K1+K2)-3 for the queue length 
and departure processes respectively. Takahashi et al. (2000), and Takahashi and Takahashi 
(2000) analyze fork/join stations with inter-arrival times having phase type distributions (with p 
phases) and arrivals from infinite populations. Their computations involve transition matrices of 
size p2(K1+K2+1) and p2(K1+K2-1) for the queue length and departure processes respectively. 
While a similar analysis for the case of finite populations would be very useful, a very common 
practical motivation for considering more general input processes is to study the impact of 
variability in the input processes in addition to those of the means and analyze their impact on 
decisions regarding systems design. Our analysis for the case of Coxian inputs permits such a 
study without significant increase in computational effort.  
 
7 Conclusion 
 
Models for analyzing fork/join stations can be useful in the analysis of practical manufacturing 
and computer systems, as well as for developing efficient decomposition methods for queuing 
network models of such systems. This paper analyzes a fork/join station in a closed queuing 
network with inputs from servers having two-phase Coxian service distributions. Using an exact 
analysis, we show that when the Coxian servers governing the input processes have almost equal 
rates, variabilities in the arrival processes can have significant impact on throughput, queue 
lengths and variability in the inter-departure times. Such insights are not available via models 
that assume exponential interarrival times, since variability cannot be modeled separately from 
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the mean arrival rates. Our choice of the two-phase Coxian distribution allows us to analyze 
more general input processes without much added computational complexity.  
 
We also study the sensitivity of throughput, queue lengths and variability in the inter-departure 
times for a wide range of input parameters and network populations. In some cases our results 
point out behavior that would not be intuitively obvious, and thus our model could provide 
valuable insights to system designers. The insights here could be used directly in the design of 
simple systems containing a fork/join station. In addition, when the fork/join station is part of a 
larger network, information about the inter-departure times could help to characterize the output 
process which might, in turn, be the input process for other stations in the network.  
 
Finally, we note that the analysis here is also useful in extending decomposition methods for 
performance analysis of queuing networks. Such methods require efficient "two-moment" 
approximations to characterize the performance of stations in the network. However, such 
approximations were previously not available for fork/join stations. The analysis and insights in 
this paper have been used in the development and validation of two-moment approximations for 
fork/join stations (Krishnamurthy et al., 2002). These approximations are enabling the extension 
of decomposition methods to complex queuing networks with fork/join stations (Krishnamurthy, 
2002). 
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Appendix 
 
We list the expressions for ( )1, +mmD XXP  for each pair ( )1, +mm XX  in Table A below. To 

simplify the notation in the table, we define the following quantities:  
 

( )
2111

111
1

1

µµ
µ

+
−

=
p

a    
( )

2211

111
1

1~
µµ
µ

+
−

=
p

a  

2111

111
1 µµ

µ
+

=
p

b    
2211

111
1

~

µµ
µ
+

=
p

b  

2112

12
1 µµ

µ
+

=c   
2212

12
1

~
µµ

µ
+

=c  

( )
2111

212
2

1

µµ
µ

+
−

=
p

a   
( )

2112

212
2

1~
µµ
µ

+
−

=
p

a  

2111

212
2 µµ

µ
+

=
p

b   
2112

212
2

~

µµ
µ
+

=
p

b  

2212

22
2 µµ

µ
+

=c   
2212

22
2

~
µµ

µ
+

=c  

           
Additionally we define:  
  

 jcbas jjjj 2,1, =+=  

  jcbas jjjj 2,1,~~~~ =+=   

11 +−= + mm NNv  

 and  

�
=

=

=
vi

i

i
jj rvrH

0

),( for  j
s

s
r

j

j
j 2,1,

~
==                 

 
 



 26
 
 

Table A. Expressions for ( )1, +mmD XXP  for each pair ( )1, +mm XX  

Region 
mX  1+mX  ( )1, +mm XXP  

)1,1,( mN  for 10 1 −≤< KNm  
 

)1,1,( 1+mN  for  21 11 −≤≤− + KNN mm  
 

vsa 12 + ( ) ( )1~~~~
1122111122 ,v-/ssHcbcb,v/ssHcb +  

)1,1,( mN  for  0=mN  )1,1,( 1+mN  for  20 11 −≤< + KNm  Same as above 

)1,1,( mN  for 10 2 +−≥> KNm  )1,1,( 1+mN  for  21 21 +−≥≥+ + KNN mm  vsa 21 + ( ) ( )1~~~~
2222112211 ,v-/ssHcbcb,v/ssHcb +  

1 

)1,1,( mN  for  0=mN  )1,1,( 1+mN  for  20 21 +−≥> + KNm  Same as above 

)1,2,( mN  for  20 1 −≤< KNm  )1,2,( 1+mN  for 31 11 −≤<− + KNN mm  1
1211

~ −vsacb +
1

12211
~~~~~ −v

scbcb  

( ) ( )( )2~~~1~~~
11211112211 ,v-/ssHbcb,v-/ssHbccb ++  

)1,2,( mN  for  0=mN  )1,2,( 1+mN  for  30 11 −≤< + KNm  Same as above 

)1,2,( mN  for  20 1 −≤< KNm  )1,2,( 1+mN  for  11 −=+ mm NN  2
~s  

)2,1,( mN  for  20 2 +−≥> KNm  )2,1,( 1+mN  for 31 21 +−≥>+ + KNN mm  1
2122

~ −vsabc +
1

22211
~~~~~ −v

scbcb

( ) ( )( )2~~~
1~~~

22221221221 ,v-/ssHcbb,v-/ssHbcbc ++  

)2,1,( mN  for  0=mN  )2,1,( 1+mN  for  30 21 +−≥> + KN m  Same as above 

2 

)2,1,( mN  for  20 2 +−≥> KNm  )2,1,( 1+mN  for  11 +=+ mm NN  1
~s  

)1,1,( mN  for  10 1 −≤< KNm   )1,2,( 1+mN  for  31 11 −≤≤− + KNN mm  vssb 121
~ + ( ) ( )( )1~~~~~~

1121111221 ,v-/ssHbcb,v/ssHbcb +  

)1,1,( mN  for  0=mN  )1,2,( 1+mN  for  30 11 −≤< + KNm  Same as above 

)1,1,( mN  for  10 2 +−≥> KNm  )2,1,( 1+mN  for  31 21 +−≥≥+ + KNN mm  vssb 212
~ + ( ) ( )( )1~~~~~~

2222122121 ,v-/ssHcbb,v/ssHbbc +  

3 

)1,1,( mN  for  0=mN  )2,1,( 1+mN  for  30 21 +−≥> + KNm  Same as above 

 



 27
Table A. Expressions for ( )1, +mmD XXP  for each pair ( )1, +mm XX contd. 

Region 
mX  1+mX  ( )1, +mm XXP  

)1,2,( mN  for  20 1 −≤< KNm   )1,1,( 1+mN  for  211 −≤≤ + KNN mm  1
1221

1
121

~~~ −− + vv scbcsac ( )1~
11221 ,v-/ssHbcc+  

( )2~~~
1121121 ,v-/ssHbbccc+  

)1,2,( mN  for  0=mN  )1,1,( 1+mN  for  20 11 −≤< + KNm  Same as above 

)2,1,( mN  for  20 2 +−≥> KNm   )1,1,( 1+mN  for  221 +−≥≥ + KNN mm  1
221

−vsca + +−1
2121

~~~ vsbcc

( ) ( )2~~~1~
222122122121 ,v-/ssHbbccc,v-/ssHbcc +  

4 

)2,1,( mN  for  0=mN  )1,1,( 1+mN  for  20 21 +−≥> + KNm  Same as above 

)1,1,( mN  for  10 1 −≤≤ KNm   )1,1,1( 1 −K  ( ) vs-b 121 + ( ) ( )1~~~~
11211112 ,v-/ssHbcb,v/ssHb +  5 

)1,1,( mN  for  10 2 +−≥≥ KNm   )1,1,1( 2 +−K  ( ) vs-b 211 + ( ) ( )1~~~~
22221221 ,v-/ssHcbb,v/ssHb +  

)1,2,( mN  for  20 1 −≤≤ KNm   )1,2,2( 1 −K  1
1211

~ −vssbc +
1

12211
~~~~~ −v

scbcb  

( ) ( )( )2~~~1~~~
11211112211 ,v-/ssHbcb,v-/ssHbccb ++  

6 
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−1
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~~~~~ v
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( ) ( )( )2~~~
1~~~
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)1,1,( mN  for  10 1 −≤≤ KNm   )1,2,2( 1 −K  vssb 121
~ + ( ) ( )( )1~~~~~~

1112111221 ,v-/ssHbbc,v/ssHbcb +  7 

)1,1,( mN  for  10 2 +−≥≥ KNm   )2,1,2( 2 +−K  vssb 212
~ + ( ) ( )( )1~~~~~~
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( ) ( )2~~~1~
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221
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( ) ( )2~~~
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Table A. Expressions for ( )1, +mmD XXP  for each pair ( )1, +mm XX contd. 

Region 
mX  1+mX  ( )1, +mm XXP  

)2,1,0(   )1,1,( 1+mN  for 20 11 −≤< + KNm  vsc 12
~  9 

)1,2,0(   )1,1,( 1+mN  for 20 21 +−≥> + KNm  vsc 21
~  

)2,1,0(   )1,1,1( 1 −K  vs1
~  10 

)1,2,0(   )1,1,1( 2 +−K  vs2
~  

)2,1,0(  )1,2,( 1+mN  for 20 11 −≤< + KNm  vscb 121
~~~

 11 

)1,2,0(  )2,1,( 1+mN  for 20 21 +−≥> + KNm  vscb 212
~~~

 
)1,2,0(  )1,2,0(  ( )121221211

~~~~~ cbcbcbscb ++  
)1,2,0(  )2,1,0(  
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12 

)1,2,0(  )1,1,0(  ( ) 212221
~~~ ccbssc ++  

)2,1,0(  )2,1,0(  ( ) 122212112
~~~~~
scbcbcbcb ++  
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~~~
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~~~~~~2 cbcbcbcbsbcscbss ++++  
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14 

)1,1,0(  )2,1,0(  ( ) 2121222121212
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