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Performance Analysis of Mesh Interconnection 
Networks with Deterministic Routing 
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Abstract-This p a p e r  develops detailed analytical per formance  
models fo r  k-ary  n-cube  networks with single-flit o r  infinite 
buffers, wormhole routing, a n d  the nonadapt ive  deadlock-free 
routing scheme proposed by Dally a n d  Seitz. I n  contrast  to  
previous per formance  studies of such  networks,  t he  system is 
modeled as a closed queueing ne twork  tha t  1) includes the effects 
of blocking a n d  pipelining of messages in the network, 2) allows 
for  a rb i t r a ry  source-destination probabili ty distributions, a n d  3) 
explicitly models the virtual channels used in the deadlock-free 
rout ing algorithm. 

T h e  models a r e  used to  examine several  per formance  issues for  
2-D ne tworks  with shared-memory  traffic. Some results obtained 
are: 1) when processors a r e  allowed to  have  multiple outs tanding 
requests, system per formance  is bandwidth-limited,  a n d  hence 
ne twork  per formance  does not  scale well with increasing system 
size; 2) communicat ion locality improves system efficiency, b u t  
a very high level of locality is needed in o rde r  fo r  system 
per formance  t o  scale well; 3) in contrast  to  previous hot-spot 
studies for  indirect ne tworks  tha t  assume nonblocking processors, 
this s tudy  finds tha t  significant tree-saturation does not occur,  
even in the presence of severe hot-spots in systems with u p  
to  four  outs tanding  requests pe r  processor;  a n d  4) a t  some 
plausible system operat ing points, there  is a perceptible difference 
in the efficiencies of processors a t  different locations in the 
mesh because of asymmetr ic  loads on the virtual channels by 
the deadlock avoidance algorithm. These results should prove 
useful for  engineering h igh-per formance  systems based on low- 
dimensional k -a ry  n-cube  networks. 

Index Terms-Approximate mean  value analysis, closed queue-  
ing networks,  finite buffers, hot-spots, multiprocessor intercon- 
nection networks,  k-ary n-cube networks,  mesh networks,  nea r -  
neighbor communication, per formance  analysis, wormhole rout-  
ing 

I. INTRODUCTION 
ULTIPROCESSOR mesh interconnection networks are M 2-D networks, with the processors arranged at the 

nodes of a grid, and point-to-point links connecting each 
node to its neighbors. Mesh interconnection networks are a 
special case of k-ary n-cube networks in which the number 
of dimensions, 71, is 2. Recent studies of k-ary ?/,-cubes with 
wormhole routing (a low-latency pipelined routing scheme [9]) 
have shown that under reasonable assumptions, the optimal 
value for n is 2 or 3 [ 2 ] ,  [SI, [IO].  Many existing and 
emerging multiprocessor systems use such low-dimensional 
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direct networks to interconnect the processors, including the 
Intel Paragon, Cray T3D, Stanford Dash [ 141, MIT Alewife 
[l] ,  MIT J-Machine [16], and CMU-Intel iWarp 151. 

In this paper, we develop performance models to study A:-ary 
n-cube networks with wormhole routing, with either single-flit 
or infinite network buffers. Our model for the single-flit buffer 
case includes the deadlock free routing algorithm of Dally and 
Seitz 191. In contrast to previous analyses of these networks 
[ 2 ] ,  [lo], [ l  I], the models we derive are closed queueing 
network models. Also in contrast to previous work, we 1 )  
include the effects of blocking and pipelining of messages in 
the network, 2) allow for arbitrary source-destination probabil- 
ity distributions, and 3) explicitly model the virtual channels 
used in the deadlock avoidance algorithm. In the single-flit 
buffer model, the representation of message pipelining and 
blocking, and the asymmetric virtual channel loadings of the 
deadlock avoidance algorithm, require an approximate Mean 
Value Analysis (MVA) solution that is rather complex. These 
features, however, have a significant impact,on system perfor- 
mance and are thus important to model. The model provides 
a further example that approximate Mean Value Analysis can 
be used for accurate performance prediction of highly complex 
systems with non-product-form queueing behavior. 

We use the models to examine several performance issues 
for 2-D networks. We study network performance and scal- 
ability with processors that must block after each request, 
as well as with processors that can make multiple requests 
before blocking for responses. We compare the performance 
of three mesh network topologies: the unidirectional and 
bidirectional tori (meshes with end-around links connecting 
corresponding nodes on opposite edges) and the bidirectional 
mesh without end-around links. We first study the above issues 
under a uniform traffic pattern. We then examine the impact 
of communication locality on network performance and scal- 
ability, and discuss how the other conclusions obtained under 
uniform communication change in the presence of varying 
degrees of locality. We also study network performance when 
a communication hot-spot occurs, including the effect of a hot- 
spot on other traffic in the network. Finally. we analyze and 
explain a potentially important performance implication of the 
deadlock avoidance algorithm. Specifically, this algorithm pro- 
duces asymmetric loads on the virtual channels sharing each 
physical network link. The pcrforinance analysis shows that 
this asymmetry can lead to a perceptible difference between 
the efficiencies of processors at different locations in the mesh. 

The remainder of this paper is organized as follows. Section 
I1 describes the mesh network and key performance issues 
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Fig. 1. Basic mesh topology. 

in more detail and states the assumptions about the system 
workload. Section 111 presents an overview of the models 
and gives the details for the new techniques developed. The 
models also use several previously developed Mean Value 
Analysis approximations; the complete set of equations is 
given in Appendix B. Section IV first presents the results of 
the model validations we performed by using simulation and 
then presents the performance analysis by using the analytical 
models. Section V contains the conclusions of our study. 

11. SYSTEM DESCRIFTION 

We describe the system and workload assumptions made in 
this study in Sections 11-A through 11-E. In Section 11-F, we 
discuss several performance issues related to mesh networks 
that will be studied using the model. 

A. Mesh Network Topologies 

The basic topology of multiprocessor mesh interconnection 
networks is illustrated in Fig. 1. There are a number of 
variations on this basic topology. The connection between each 
pair of adjacent nodes may be unidirectional or bidirectional, 
with the latter usually being implemented as two unidirectional 
links. With the unidirectional topology, end-around connec- 
tions that connect a node at one edge to the corresponding 
node at the opposite edge (as shown in Fig. 1) are necessary. A 
mesh with end-around connections is often called a torus. End- 
around connections may also be included in the bidirectional 
case to reduce the average number of hops that a message 
must travel in the network. A torus can be organized so that 
all links are of equal length, with each link being about twice 
as long as in the case without end-around connections [8]. 

B. Organization of a Node 

A node in the system typically consists of one or more 
processors, some associated local memory, and a hardware 
switch that controls the routing of messages through the node 
(Fig. 2). When the node needs to send a message to another 
node, it queues the message in a local buffer (not shown in 
the figure). The message waits until the node-to-switch link 
(connecting the processor and memory to the local switch) 
becomes free, and then until space becomes available in the 
outgoing virtual channel buffer. (The message must compete 
for the channel buffer with messages from neighboring nodes 
that request the same buffer; we assume that the switch 
chooses among competing requests in first-come-first-serve 

Physical 
Link 

Virlual 
Channel 
Buffer 

Fig. 2. A node In a unidirectional networks 

order.) Thereafter the message is forwarded down the link 
into the channel buffer in the pipelined manner of wormhole 
routing, which we describe next. We assume that the processor 
is not involved in transferring the message from the local 
buffer into the outgoing channel in the local switch. 

C. Wormhole Routing 

In wormhole routing, a switch begins forwarding a message 
as soon as the header is received and the required channel 
buffer in the next switch can accept one or more flits of this 
message. Thus, the flits of a message are transmitted from 
one switch to the next in a pipelined fashion and may occupy 
several channels along the path from source to destination. 
Only the header flit of a message contains routing information. 
If the header flit of a message is blocked because the required 
buffer in the next switch along its path is full, all of the flits 
in the message are blocked, and, therefore, so are the channels 
that they occupy. If more than one flit can be buffered at a 
node, flits behind the header can “catch up” until the available 
buffer space is filled. At this point, they block and can continue 
only after the header is unblocked. We assume this method of 
routing throughout the paper. 

D. Deadlock Avoidance for Finite Buffers 

In the ideal case, when buffer capacity is unlimited, dead- 
lock cannot occur in the network and the wormhole routing 
scheme is equivalent to an optimized form’ of the virtual 
cut-through routing algorithm defined for data communication 
networks [12]. In practice, buffer capacity in a node is limited 
and deadlock can occur in the networks with end-around 
connections because all of the buffers in a cycle could be filled, 
with no message able to make progress along that cycle. 

Dally and Seitz have proposed a detefministic routing 
scheme that uses the concept of virtual channels to break 
cycles and prevent deadlock in the networks with end-around 
connections [9]. In this scheme, each physical link is shared by 
two virtual channels that are fed by sepaiate buffers. As long 
as both virtual channels have messages to send, they alternate 
their flits on the physical link. If one of the buffers is empty 
or blocked, the other channel can transmit continuously, using 

’ The virtual cut-through algonthm specifies that if the header flit is blocked 
at a switch, the entire message has to be received before the message is 
forwarded. Instead, wormhole routing allows a partially received message to 
be forwarded as soon as its outgoing channel becomes available. 
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Fig. 3. Example for deadlock-free routing algorithm. Unidirectional 4 x 1 
torus. Channels on path from S = 1 2  to D = 20. 

the entire link bandwidth. When a message is blocked, all of 
the virtual channels occupied by the flits of that message are 
also blocked, and no other messages can use those channels, 

The algorithm is illustrated in Fig. 3, and operates as 
follows. Each node in the IC-ary n-cube is assigned an n- 
digit, base-lc number that specifies the position of the node in 
the cube. Dimensions are numbered and messages are always 
routed in decreasing order of dimension. (For example, in Fig. 
3, d = 1 for the columns, d = 0 for the rows, and routing is 
column first.) In each dimension d, d = n- 1, . . . , 0, a message 
is routed in that dimension until it reaches a node whose dth 
digit agrees with the dth digit of the destination node. The 
message is routed along the “high” virtual channel if the dth 
digit of the destination address is greater than the dth digit of 
the present node’s address. Otherwise, it is routed along the 
“low” virtual channel. For example, in a unidirectional mesh 
network (as in Fig. 3), a message to a node with a higher row 
number is routed on the high virtual channel along the column 
until it crosses the link out of node on row 0 (shown at the edge 
of the network in the figure), and thereafter uses the low virtual 
channel on the column until it reaches the destination row. 

The algorithm imposes a total order on the virtual chan- 
nels that are used in each direction along any dimension of 
the network. Furthermore, the requirement that messages are 
routed in decreasing order of dimension implies that no cycles 
exist across dimensions. The algorithm is thus deadlock-free 
because it imposes a partial order on all virtual channels in 
the network. 

The above deadlock-free routing scheme generates asym- 
metric loads on the virtual channels in the network even when 
all processors have a uniform message destination probability 
distribution (i.e., even when the loads on the physical links 
are balanced). Fig. 4 shows the fraction of total link traffic 
that uses each virtual channel for the links on a single column 
in a unidirectional 8 x 8 torus, assuming uniform message 
distribution. Note that all traffic on the link leaving the 
processor on row 0 uses the high virtual channel, and thus the 
buffer space of the low virtual channel is completely unused. 
In general, on a physical link near the “edge” row or column 
(after which traffic crosses over from the high to low channel, 
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Fig. 4. Traffic on the high and low virtual channels along a column. 
Unidirectional 8 x 8 torus. Uniform traffic distribution. 

or vice versa), the traffic tends to be concentrated on one of 
the two virtual channels. For links far away from the terminal 
row or column, the traffic is more evenly balanced on the two 
virtual channels. In parallel work, Bolding [4] has recently 
observed the same phenomenon and gives similar data as in 
Fig. 4, showing the buffer utilizations on the high and low 
channels for bidirectional and unidirectional topologies. 

E. Workload Assumptions 

We assume that all of the processors in the system execute 
subtasks of large multiple instruction, multiple data (MIMD) 
parallel programs2 Most previous studies of mesh networks, 
the hypercube, and other k-ary n-cubes, have assumed a 
message-passing workload [8], [lo], [ l l ] ;  but a number of 
recent shared-memory systems have also been based on mesh 
networks (Alewife [l], Dash [14], Cray T3D). Our model of 
the network is applicable to both types of workloads. 

We allow a processor to have a maximum of Nout requests 
outstanding before it is required to block for a reply. (Nout is 
a parameter of the model.) For the model and results described 
in this paper, we assume that the rate of generation of requests 
is independent of how many requests are outstanding, until the 
maximum of Nout is reached. This assumption can accurately 
capture the behavior of systems in which each processor can 
switch between multiple contexts [I], [21], and should also 
be a reasonable model for many message-passing workloads. 
The assumption may be somewhat more approximate for 
processors that permit nonblocking memory operations (e.g., 
as with buffered writes, nonblocking caches, or prefetching), 
where the intervals between successive requests may depend 
in complex ways on the number of outstanding requests. 
Finally, as explained in Section 111, a simple modification 
would allow the model to capture the behavior of hierarchical 
multiprocessors [ 141 containing multiple processors per node 
(by allowing the rate at which a node generates requests to be 
proportional to the number of additional requests it can make 
before blocking). 

Our model does not restrict the communication patterns in 
the system. Each processor sends a message to each other 
processor with a specified probability, and these arbitrary 
probability distributions are inputs to the model. This permits 

*We do not explicitly model synchronization events. Instead, we assume 
that these are reflected in the rate at which processors generate messages. 
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us to study the effect of nonuniform traffic patterns on system 
efficiency. 

The workload and system parameters used in the study are 
defined in Section III. 

F. Pe$ormance Issues for Mesh Networks 

In Section IV, we use the model to study the performance 
as well as the scalability of mesh networks in varying configu- 
rations (various system sizes, buffer sizes, network topologies) 
and under different workloads (varying communication rates, 
single or multiple outstanding requests per processor, and 
uniform or nonuniform communication patterns). We begin 
by examing the performance and scalability of a baseline 
system: a bidirectional torus with a uniform communication 
workload and processors that must block after each request 
(Nout = 1). We then study a number of variations on this 
system to evaluate several issues that arise in the design of 
mesh networks. The issues we examine are as follows. 

Channel Buffer Size: The buffer size per network link 
or channel is a design parameter that has significant cost 
and performance implications. In studying various network 
design issues, we compare network performance with single- 
flit buffers per virtual channel against the performance with 
infinite switch buffers. These are extreme cases that bound the 
performance of any particular finite buffer size, and show how 
much can be gained by increasing switch buffer sizes. 

Multiple Outstanding Requests: Allowing a node to have 
more than one request outstanding has the potential to at 
least partially hide the latency of remote communication, but 
there is also potential for higher congestion in the network. 
We investigate how much improvement in absolute system 
efficiency is possible with multiple outstanding requests (due 
to overlapping communication with computation) and whether 
at some point network congestion cancels this gain. We also 
investigate how system scalability is affected by allowing 
multiple outstanding requests per processor. 

Mesh Topology: There are performance and cost trade-offs 
between the three network topologies mentioned in Section 
I. In a k-ary n-cube network, the mean number of links that 
a message must traverse, assuming that all other nodes are 
equally likely to be the destination, is approximately i n k ,  
$n.k, and fn.k for the bidirectional torus, the bidirectional 
mesh without end-around connections, and the unidirectional 
torus, respectively. 

The extra links in the bidirectional networks imply a higher 
cost, however, and this must be accounted for to allow 
a fair comparison between the various topologies. When 
comparing these networks, we assume that the number of 
input and output wires per switch is fixed, which implies that 
the channels of the unidirectional network can be twice as 
wide as those in either of the bidirectional networks, offsetting 
the larger mean number of hops required. Furthermore, the 
bidirectional mesh without end-around connections, unlike 
the torus networks, does not require the deadlock-prevention 
algorithm of Dally and Seitz, because the fixed-dimension-first 
routing is sufficient to prevent cyclical dependencies between 
links in the network. To allow a fair comparison, we compare 
the torus networks with single-flit buffers per virtual channel 

to nontorus mesh networks with two-flit buffers per physical 
link. This ensures that the buffer capacity per switch is equal 
for all three topologies. 

Locality of Communication: A large class of scientific algo- 
rithms, called continuum models [19], involve a grid structure 
where a particular variable depends only on its nearest neigh- 
bors. Such problems can be mapped to the mesh network so 
that any processor requires mostly values calculated by its 
four neighboring nodes (or some set of nodes situated within 
at most a few hops). This would reduce network latency 
and contention compared with uniform communication. We 
investigate how near-neighbor communication locality affects 
system performance and scalability, and reevaluate the design 
issues discussed above under workloads exhibiting varying 
degrees of near-neighbor locality. 

Communication Hot-Spots: It has been shown that commu- 
nication hot-spots can seriously degrade the overall perfor- 
mance of indirect (e.g., multistage) interconnection networks 
with nonblocking processors. Furthermore, in such systems, 
hot-spots can cause buffers to fill up in large portions of 
the network, severely increasing the latency of unrelated 
(nonhot) network traffic as well, a phenomenon called tree- 
saturation [17]. We use our model to study the effect of 
communication hot-spots in mesh networks, with processors 
that block after a limited number of outstanding requests. We 
study the degradation in overall system performance due to a 
hot-spot, as well as the effect of a hot-spot on the latency of 
other traffic in the network. 

Per$ormance imbalance caused by the deadlock-avoidance 
algorithm: In Section 11-D, we pointed out that the deadlock- 
free routing algorithm of Dally and Seitz generates asymmetric 
loads on the virtual channels in the network. The asymmetry 
does not necessarily imply that the processors near the edge are 
more adversely affected than the processors near the center of 
the mesh. The actual effect is complicated and requires careful 
reasoning about the pipelining effects of wormhole routing. A 
more detailed explanation of the asymmetry, and a quantitative 
analysis of its potential impact on performance, are given in 
Section IV-G. 

111. THE MODEL 
In order to study the design trade-offs outlined at the end of 

the previous section, we have created closed queueing network 
models of the k-ary n-cube network for each of two buffer 
sizes: finite buffers of size one flit, and infinite buffers. The 
parameters of the models are defined in Table I. No,, denotes 
the number of outstanding requests that each processor can 
have before it blocks. For the model and analyses in this 
paper, we assume that when a processor has less than Nout 
requests outstanding, it generates request messages with a 
mean interval of T cycles between requests. A request message 
generated by processor i is directed to processor j, j # i 
with probability F&. We allow two sizes of messages to be 
generated: Lmsgl and Lmsg2, with respective probabilities PI 
and P2. These probabilities are the same for all processors. 
The sizes of the respective responses are Lrespl and Lresp2. 

For a shared-memory workload, the two request message 
types could represent memory read and write requests, and 
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TABLE I 
MODEL INPUT PARAMETERS 

Parameter Description 

N 

X O  U 1 

Number of processors in the system 

Maximum number of requests a processor can have 
outstanding before it must block for a reply 

are outstanding 

Fraction of messages by processor 7 that are directed to 
processor j ,  C F,, = 1.1 = 1, 

Probability that a message is type 1 (msg 1) or type 2 (msg 
2), repsectively 

Length of message of type 
I E msg 1. msg 2 ,  resp  1, T ~ S P  2 

Time to respectively read and write one word from a 

7 Mean time between messages when less than Nout requests 

FV 
, N 

JfL  

4 1 p2 

L ,  

D,,, I, 

D,,, memory module 

the reply types could represent data and acknowledgment 
responses, respectively. The network is assumed to operate 
synchronously. The values of 7, Dmem,r!, and Dmem,, are 
assumed to be in units of switch cycles. 

In our models, each processor forms a class of customers 
with its own destination probability distribution and with 
population equal to Nout. In other words, each possible 
message that a processor can have outstanding is modeled 
as a separate customer in the system. When there are n < 
Nout requests outstanding, the remaining Nout - n customers 
are served in first-come, first-served (FCFS) order at the 
proce~sor,~ as in [22]. Thus, each customer in the system 
repeatedly performs the following actions: 

execute-for an amount of time measured in switch 
cycles that is geometrically distributed, with mean 7, 

visit a remote node and return to the proces- 
sor-(representing a remote memory access, or sending 
a message and receiving an acknowledgment), 
queue at  the processor-to resume execution. 

We develop the equations assuming that a remote processor 
is not interrupted when it receives an incoming message, 
which would be true for a shared-memory system. In this 
case, an incoming message requires only a memory access 
at the remote node. (The equations can easily be modified to 
reflect message processing by the node processor or message- 
handling coprocessors.) 

We choose to develop approximate Mean Value Analysis 
models because of the previous success of this technique for 
analyzing other interconnection networks with features that 
violate separable model assumptions [20], [22]. Approximate 
Mean Value Analysis is based on estimating the mean 
round-trip time, or cycle time, for each class of customers 
in the queueing network, relative to some reference point. 
The processor serves as the reference point for the residence 

'FCFS service at the processor is appropriate for systems such as those 
that maintain multiple contexts at each processor, because only one context 
executes at any time. An injnite server would be more accurate for hierarchical 
systems. The equations for queueing at the processor can easily be modified 
for this case. 

time equations in our model. The mean round-trip time for 
a customer of class i is the sum of its mean residence times 
(queueing and service) in the local processor, in the network, 
and at the remote node, as shown below: 

R[i] = Tproc[i] + Tnetwork[i] + Tremote[i]: i = 1 ' '  ' N .  (1) 
Each processor in the system has a distinct mean round-trip 
time, because of nonuniform virtual channel loads as well 
as possibly nonuniform communication patterns. 

The mean round-trip time in the network is the weighted 
sum of the mean times for the message and the response, for 
each type of request, as shown below: 

Tnetwork[S] Fsd(PI(Tmsg1,sd f Tresp1,ds) 
d#s  

+ P 2 ( ~ m s g 2 , s d  + ~ r e s p 2 , d s ) )  1 s = 1 1 ' . ' r >  N 
(2) 

where T j , &  is the mean time for a message of type j from 
node s to node d. 

To calculate Tj , ,d ,  we need to model the routing, pipelining, 
and blocking of messages in the network. These features 
require an approximate model solution. Our model for systems 
with infinite channel buffers is similar to the model developed 
for Banyan networks in [22]. Their equations assume that 
processor cycles are required to transfer a message into the 
network; we do not make this assumption. The only other 
difference is that we use a somewhat more accurate technique 
to estimate residence times at the processor for Nout > 1. This 
technique is also employed in our finite buffer model, and is 
discussed in Section 111-C below. Otherwise, we do not give 
the model equations for the infinite buffer case. 

For our model of wormhole routing with single-flit channel 
buffers, we have developed new approximations to estimate 
1) the channel waiting and blocking times, 2) the customer 
queueing time at the processor, and 3) the mean queue length 
seen at the first outgoing link when multiple channels connect 
the processor to its switch. Below we present an overview 
of the model for networks with single-flit buffers, and then 
describe each of the three new approximations. Our notation 
is summarized in Appendix A, and the full set of model 
equations for the model with single-flit channel buffers is 
given in Appendix B. In Section IV, we discuss the results 
of validating the model and the results of analyses using the 
model. The validation studies show that the model is accurate 
over a wide range of input parameter values. 

A. Overview of the Model with Single-Flit Buffers 
Since messages in the mesh network can occupy several 

channels simultaneously, the mean message residence time, 
~ j , ~ d ,  is the sum of the following three terms: 

1) the mean waiting time for the link from the node to its 

2) the mean residence time for the header flit on each 

3) the mean delay until the remaining flits of the message 

switch, (wnode,sdJj), 

virtual channel c between s and d (~j , , , ,d[ l ] ) ,  and 

reach d(Tcatchup): 

T j , s d  = Wnode,sdlj f T j , c , s d [ l ]  + Tcatchupr 
C 

j E {msgl, msg2, respl, resp2}, (3) 
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where the summation is over virtual channels, c, on the path 
from s to d, including the channels out of the processor at 
s and into the processor at d.4 Note that the above equation 
is similar in form to the equation used in [2 ]  and [22] .  One 
difference between our equation and the corresponding one 
in [2]  is that we include the waiting time for the link that 
connects the processor to the switch, not just for the first switch 
buffer. A difference between our model and both [ 2 ] ,  [22] is 
that Tcatchup is not deterministic, because at each link, the 
flits may or may not have to alternate with flits on the link's 
other virtual channel. To compute Tcatchup, we assume that the 
probability that a flit must share a link is approximately equal 
to the utilization of the link by messages on the other virtual 
channel mapped to the link. Appendix B contains the details. 

Further development of the model equations requires new 
techniques for estimating r j , , , , d [ l ] ,  rproc, and the waiting time 
for the first network virtual channel when there are multiple 
channels from processor to switch. These approximations 
are motivated and outlined in Sections 111-B through 111-D, 
respectively. Section 111-E concludes with a discussion of the 
model complexity. 

The key question for the model is how to calculate w c l ~ ,  
the waiting time for virtual channel c experienced by a header 
flit of a message that enters c via input port I .  This waiting 
time is the sum of three terms? 

1) the mean residual residence time of a message in service 
at c that arrived via some other input port i # I ,  if any, 

2 )  the mean residual residence time for the last flit of a 
message in service at c from port I, if any, and 

3) the mean time to serve messages waiting to use c from 
other input ports (at most one per port): 

B. Mean Channel Residence Time (rj,,,,d[k]) 

Let r j , , , , d [ k ]  denote the average residence time of the kth 
flit of a message from to d on channel c. The mean 1) The total residence time of a message at c is random with 

an unknown distribution. Rather than assume knowledge residence time for a header flit (k = 1 )  on channel c is itself 
of this distribution to calculate the mean residual life the sum of three terms: 
of a message in service, we assume that the residence 1) the average waiting time for the next channel on the path 
time of each flit of a message is deterministic, i.e., from s to d (this channel is denoted by (c + l ) , d ) ,  
that its mean residual life is r j , c , i [ k ] / 2 .  We expect 2)  the average waiting time for a flit on the virtual channel 
that this assumption will be good for'low to moderate that is multiplexed onto the same physical link as c 
network traffic, and will introduce only small errors (we denote this channel by E, and approximate this term 
at higher loads, because a flit residence time is small by 'Illink,Z, the mean utilization of the link by messages 
compared with total message residence time. Thus, the on E (i.e., the fraction of time that the link is actually 
mean residual residence time of an entire message (seen transmitting flits from E)) ,  and 
by an arrival on input port I) can be calculated by 3) the one cycle for transferring the flit to the next queue: 
conditioning on the event that the arrival finds the kth 

r j , c , s d [ l ]  = w(c+l),dll + ulink,Z + 1 ,  (4) flit of a type j message that arrived from input port i 
where a message from s to d enters (c + l ) , d  via input port in service at channel c. The probability of this event 
I .  The possible input ports to a virtual channel are the virtual is approximated by the average utilization of c by such 
channels from neighboring switches or the channel from the a flit: u j , , , ; [ k ] .  The mean residual life of the message 
processor at the current node. The waiting time for (c + l),. in this case is ( i r j , c , i [ k ]  + xf&+l r j , c , ; [ Z ] ) .  Summing 
is a function of the input port, because the traffic on (c + l),d over all flits 1 5 k 5 L j  for all message types j ,  and 
coming from the various input ports is asymmetric, in general. all possible input ports i # I ,  gives the first term in the 

For flits numbered k, k > 1 ,  if d is k or more steps away above equation. 
from c, the mean residence time on c is estimated by the mean 2) Because of the pipelined routing scheme, if the tagged 
residence time of the header flit on channel (c + IC - l) ,d (the message arriving at c via input port I finds another 
channel k - 1 steps ahead on the path to d), plus waiting for message at c that also arrived via I ,  then it can find only 
a flit that might be on 1. Otherwise, the header flit has already the tail flit of that message occupying c, and cannotJind 
reached the destination, and the residence time of the kth flit any orherJEit of the message. Therefore, we approximate 

the second term by the ratio of time that channel c is is one plus the mean waiting time for a flit on E: 

occupied by a tail flit from I ( ~ j , ~ , r [ L j ] )  to the total time 
d is k or more steps that channel c is not occupied by any other flits from I 

L J t - 1  
away from channel c (k> 1). (1 - xj, ~ j t , ~ , ~ [ l ] ) .  The residual residence time 

in this case is just r j , c , ~ [ L j ] / 2 .  Summing over j gives 
the second term. 

The calculation of each of these terms is explained below: 

rj,c,sd[kl 

T(,+k-i),,  [l]-hLlink,c 

1 + ulink,Z otherwise 
(5 )  

4Henceforth, we use variables to denote the number of a virtual channel 
and ensure that the appropriate number or set of numbers in a summation is 
clear from the context. 

'TO denote a summation over all four types j, we write E, instead of 

EjE{msgl ,msg2,respl ,resp2) ' 
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3) The third term is the average waiting time for messages 
that are waiting on input ports other than i when a 
message arrives at input port I .  We assume that these 
will be transmitted by channel c before the arriving 
message. For each input port i # I ,  the probability that 
a type j message is waiting to use c is approximated by 
the utilization of channel (c - 1)% by header flits of type 
j messages that will next use c: ~ ~ , ( ~ - 1 ) ,  [l]. Multiplying 
by the total residence time of such a message and 
summing over i # I and all message types j gives the 
third term. 

The remaining unknowns in the above equations ( U ~ , ~ , ~ [ I C ] ,  
ullnk,c) are calculated by using previously developed MVA 
techniques [20], [22], as described in Appendix B. 

C. Processor Residence Times (rproc[z]) 

The processor is modeled as an FCFS queueing center, 
where the service time is geometrically distributed with a 
mean value of r cycles. In early model validation experiments, 
we found that the widely used Schweitzer [ 181 approximation 
for product-form networks is not sufficiently accurate for the 
processor queues, because the customer population for each 
processor, Nout, can be small. Furthermore, previously de- 
veloped approximations such as Linearizer [6], which achieve 
greater accuracy by solving the equations at a few neighboring 
populations, introduce too much additional complexity into the 
model. Below we develop a new approximation for rproc[i] 
that is empirically accurate, yet requires very little additional 
computation when Nout is not large. The key idea is that we 
solve for rproc [i] recursively (i.e., similarly to exact MVA) 
without recursively solving for the residence times at other 
queues in the system for each customer population. Empir- 
ically, we found the new approximation to be considerably 
more accurate than the Schweitzer approximation. Further- 
more, we note that the approximation is applicable to any 
multiclass queueing detwork where all of the demand at some 
queue comes from a small fraction of the customers in the 
network. As far as we are aware, this approach has not been 
previously reported in the literature. 

Consider some processor i .  Define rproc(z,n) to be the 
steady-state average residence time at processor i if there 
are n customers in its class. Thus, rproc[z] = rproc(i,Nout). 
Similarly, let qproc(i, n)  and uproc(i, n )  denote the mean queue 
length and the mean processor utilization at processor i with 
n customers in its class. rproc(i,n) is the sum of the mean 
service time (r), the mean waiting time for customers found 
waiting in the queue, and the mean residual service time 
(resproc) for the customer in service, if any. We estimate 
the mean queue length and processor utilization seen by an 
arriving customer by qpro,-(i ,n - 1) and uproc(z,n - l), 
respectively (just as in exact MVA), producing a recursion 
over n = 1,  . . . , Nout. The key to the approximation is 
that qproc(i,n - 1) and uproc(i,n - 1) are calculated by 
using the same values of rnetwork[z] and Tremote[Z], for all 
n = 1, . . . , Nout. (These values are available from the previous 
iteration in the numerical solution of the overall model.) Thus, 

we have the following equations: 

rproc( i ,  n)  = 7 + [qproc(i, - 1)  - uproc(i, 71 - I)] x 7 

+ uproc(i, n - 1 )  x resproc, n > 1,  (14) 

n x r  
uproc(i, n)  = , n L 1 ,  

and (16) 

qproc(z,1) = uproc(i, 1) = . (17) 

(The equations above are numbered to correspond to the 
complete set of equations in Appendix B.) The mean residual 
service time of a customer found in service, resproc. has to be 
calculated as seen by the tail flit, not the header flit, because 
the customer is queued up at the processor only when its 
tail flit arrives. Conditioned on finding a customer in service, 
the mean residual service time seen by the head is r ,  by the 
memoryless property of the geometric distribution. A returning 
message is of length Lrespl with probability PI and Lresp2 

with probability Pz. In one cycle, the probability that the 
customer in service at the processor does not complete service 
is y = 1 - ( l / ~ ) .  Therefore, the average residual service time 
seen by the tail flit is approximated by the following equation: 

(18) 

rproc(i ,  n)  + rnetwork[i] f rremote[i] 

r 
7 + rnetwork[i] + rremote[i] 

resproc = (7 - 1) x (~1-y~respl-l + ~ 2 y ~ r e s ~ l - ~  ). 
Equations (14)-( 18) are solved for each prqcessor i separately, 
in order to calculate all of the rproc[i]. 

D. Waiting Time for First Virtual Channel with 
Multiple Processor-to-Switch Channels 

In our mesh network analysis, we found the physical link 
that connects each processor to its associated switch to be 
a bottleneck under high loads, in the network with single-flit 
channel buffers. Therefore, we investigated the use of multiple 
physical links connecting the processor to the switch, one for 
each outgoing virtual channel from the switch to neighboring 
nodes. (In practice, only two to three physical processor- 
to-switch links should provide about the same performance, 
because almost all of the messages out of a processor are 
concentrated on a few outgoing virtual channels.) With this 
organization, when a message from the processor finds its link 
to the switch busy and later reaches the head of the queue 
for this link (where it must wait for the outgoing virtual 
channel buffer), it cannot find a message from any other 
input port occupying the channel; it can find only the tail flit 
from the preceding message. Furthermore, such an arriving 
message is more likely to find waiting messages at other input 
ports (which were blocked by the preceding message). These 
observations lead to a somewhat different expression for the 
waiting time for the outgoing channel (i.e., the first virtual 
channel along the path of the message) in the case of multiple 
processor-to-switch links. 

Consider a tagged customer of class q, and let c denote 
the first virtual channel along its path. Define w:,~ to be the 
average time that this message has to wait before entering 
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channel c. As in (6), wLlq is the sum of three terms: 
1) the mean waiting time for messages in service at c 

that arrived from input ports i # PROC, if the tagged 
message found the processor-to-switch link idle (PROC 
denotes the input port used by messages arriving to c 
from the processor), 

2) the mean waiting time for the tail flit of previous 
messages from PROC, if the tagged message found the 
processor-to-switch link busy, and 

3) the mean waiting time for messages blocked at input 
ports i # PROC that arc waiting to use channel e: 

WLlq = 

The form of the first term for wLlq is the same as the first 
term in (6), with uj , , , i [k]  replaced by bi , , , i lq[k] .  Here b;,c,iIq[k] 
is the probability that a message of class q finds channel c 
busy serving the kth flit of a type j message that arrived via 
input port i # PROC, j E {msgl, msg2, respl, resp2). This 
is estimated as follows: 

b;,c,zlq[kl = 
1 - Pr { processor-to-switch link is busy} 

fraction of time c not serving message coming from node 
x uj ,c , i [k]  

where bnode,3,clq[k] denotes the probability that a class q 
message finds the processor-to-switch link corresponding to 
outgoing channel c busy serving the kth flit of a type j 
message. 

The second term in wLIq is straightforward, because the 
probability that the processor-to-switch link for channel 
c is found busy with a message of type j is merely 
Ck bnode3,clq[k], and the tagged message must see all but 
one cycle of the residence time of the lust flit of the message 
ahead of it. 

For the third term, qi,c,z,q is defined as the average number 
of messages of type j from i # PROC found waiting to use 
c by the arriving class q message. The calculation of qi,c,z.,q 
requires another observation about the blocking phenomena m 
the mesh. A message following another message out of the 
node and into c is more likely than a random arrival at c to 
find a message on input port i already waiting for channel c. 
To account for this, we calculate the probability that a random 
message using c via I = PROC blocks a type j message 
on incoming virtual channel i .  (The latter message will then 
be waiting to use c when the following message from I = 

PROC reaches the head of its queue for c.) Similarly, we 
consider messages from each i' # PROC (and i' # i )  blocking 
messages from i to c. Therefore, qi,c, i lq is as follows: 

{ 1 q(l,c,tlq = F: nnode,i,clq[kl 
3 k = l  

x Pr{ message from I = PROC blocks 
a type j message from i } 

x Pr{message from i' blocks a 
type j message from i } .  (26) 

We illustrate the calculation of one of these terms here. A 
key observation we make is that Pr{a message from I = 
PROC blocks a type j message from i} is proportional to 
the relative number of messages to c that arrive from i and I ,  
respectively, (counting only type j messages from i). But this 
relative number is exactly the ratio of the visit ratio of type 
j messages from i to c to the visit ratio of all message types 
from I = PROC to c. This ratio of visit ratios, multiplied by 
the probability that a random message from i is blocked by 
a message from I = PROC then gives us the probability that 
a random message from I to c blocks a message on i .  Thus, 
define &J to be the sum of the visit ratios of customers of 
all classes as type j messages to channel c via input port i. 
Then, the following conditions exist: 

Pr{message from I = PROC blocks a type j message 
from i} 

where the summations in the parentheses sum to the probabil- 
ity that a random message arriving to c from i has to wait for 
a message from I = PROC (which may be in service at c, or 
blocked on the processor-switch link to e). 

The above discussion highlights the main points of this new 
heuristic used to calculate the waiting time for the first virtual 
channel. The complete equations are given with the rest of the 
model in Appendix B. 

E. Complexity of the Models 

The model for wormhole routing with single-flit buffers has 
O[Lm,,N3] time complexity and O[L,,,N2] space complex- 
ity, where L,,, is the length of the longest message type. As 
a result, the model with L,,, = 11 and N = 64 cannot 
practically be run on systems with fewer than 10 megabytes 
of main memory. Nevertheless, solving the model is still 
about 10 to 100 times faster than simulating the wormhole 
routing protocol under a statistical workload. Furthermore, the 
model allows us to explore various issues and design trade- 
offs under the realistic assumptions of arbitrary message sizes, 
and blocking due to finite buffers. For example, the effects 
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TABLE I1 
PARAMETER VALUES USED IN THE EXPERIMENTS 

Value 
Symbol Range of values Symbol 

Bidirectional Unidirectional 

N 16,64,144 - 1024 Lmsgl  3 2 

Xout 1 - 8  Lrespl 9 5 
7 20 - 200 Lmsga  11 6 

Fn n 0% - 100% L r e s p a  3 2 

Dmem.1 = Dmem.2 4 4 
Fhot 0% - 20% Pl , pz 0.8, 0.2 0.8, 0.2 

of asymmetric channel loads and hot-spot traffic are a direct 
result of limited buffer space for the channels. Finally, the 
model with infinite buffers is highly efficient and can be used 
to explore many of the mesh network design trade-offs for 
larger systems. 

IV. RESULTS 
In this section, we describe the results of extensive analyses 

of 2-D networks using the above models. We assume a shared- 
memory workload for these experiments, as discussed below. 
We first present the ranges of input parameter values used 
in our study (Section IV-A), and the results of validation 
experiments (Section IV-B). In Section IV-C, we evaluate 
the performance and scalability of a baseline system that 
we use as a reference point for studying further network 
design issues. In Section IV-D, we study the impact of 
allowing multiple outstanding requests. In Section IV-E, we 
compare the alternative mesh topologies. In Section IV-F, we 
study the performance impact of near-neighbor workloads, and 
reevaluate the design issues studied in Sections IV-C through 
IV-E under such workloads. In Section IV-G, we study the 
degradation in system performance due to communication hot- 
spots. Finally, in Section IV-H, we analyze the imbalance in 
processor efficiencies caused by the asymmetric loads on the 
virtual channels in the deadlock prevention algorithm (see 
Section 11-D). 

A. Model Input Parameter Values and Pegormanee Measures 

The measures of system performance that we use are 
individual and average processor efficiency, defined as the 
fraction of time that a processor spends doing useful work, 
as shown below: 

Other measures that are obtained from the model equations 
include steady-state mean channel queue lengths and steady- 
state link utilizations. We validated the accuracy of several of 
these detailed measures as well. 

The ranges of values used for the various model input 
parameters are given in Table 11. Most of the experiments 
with finite-buffer systems focus on a 64-processor (8 x 8) 
mesh, whereas we use the infinite-buffer model to examine 
the performance impact of increasing system size for systems 
as large as 1024 processors (a 32 x 32 mesh). All processing 
times and memory access times are specified in units of switch 
cycles. In many of the graphs, processor efficiency is plotted 

as a function of 117, where 1/r intuitively measures the 
average communication rate (e.g., cache misses per cycle per 
processor). T was varied from 20 to 200 cycles. Values of 
T higher than 200 showed very little further improvement in 
processor efficiency (for our parameter settings). Also, because 
average remote access latencies are typically greater than 20 
switch cycles in an 8 x 8 mesh, it is difficult to envisage 
programs that make requests faster than about 1 every 20 
cycles executing with any reasonable efficiency on this or 
larger systems. Thus, we believe that the above range of r 
should allow us to study the performance of a fairly wide 
range of programs. 

Messages are assumed to consist of a header flit, plus 
address flits (type msgl), data flits (type respl), address 
and data flits (type msg2), or acknowledgment flits (type 
resp2). These interpretations of the message contents and the 
associated message lengths in Table I1 are intended to represent 
a shared-memory workload. Message-passing programs could 
be expected to exchange larger messages between processes, 
though less frequently [8]. The models can be modified to 
study such workloads; however, that is beyond the scope of 
this paper. The message sizes also reflect the assumption that 
the channels in the unidirectional torus are twice as wide as in 
the bidirectional networks, with an equal number of wires per 
switch. Finally, we set PI = 0.8, P2 = 0.2, and D,,,,, = 
D,,,,, = 4 for all experiments. We do not expect moderate 
changes in these parameters to significantly alter our results. 

B. Validation of the Models Against Simulation 

We used event-driven simulators to validate the analytical 
models, for both the single-flit and infinite buffer cases. The 
simulators use a statistical workload identical to that of the 
analytical models, but implement the wormhole routing of 
the flits and the deadlock-free routing algorithm exactly. We 
present representative results of the validations of the single- 
flit buffer model in Tables I11 and IV. 

At low to moderate network loads, the average processor 
efficiency from the analytical model agrees closely with the 
value obtained by simulation (less than 3% error). Thus, our 
finite buffer model has accuracy similar to the very accurate, 
less complex models of the infinite buffer case; validations of 
the infinite buffer model gave results very similar to the model 
in the Willick Eager Multistage and are not shown here. 

In cases of high network contention (e.g., with Nout 2 4 
and r < 501, the analytical single-flit buffer model tends 
to be somewhat optimistic. In these cases, some links are 
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Parameters 
Nout 7 

1 5 
1 25 
1 100 
2 5 
2 25 
2 100 
4 5 
4 25 
4 100 
8 5 
8 25 
8 100 

IEEE TRANSACTIONS ON PARALLEL AND DISTRIBUTED SYSTEMS, VOL. 5, NO. 3, MARCH 1994 

Processor efficiency Network residence time 

12.37 12.01 -2 .9% 22.62 24.70 9.2% 
43.01 42.29 -1.7% 21,.07 22.44 6.5% 
76.54 76.02 -0.7% 19.59 20.15 2.8% 
19.56 19.58 0.1% 31.05 33.18 6.8% 
68.93 70.26 1.9% 24.90 26.55 6 .6% 
96.34 98.60 2.3% 20.21 20.69 2.4% 

Simulation Analytical % error Simulation Analytical % error 

24.11 26.12 8.3% 60.81 57.29 7 5 . 8 %  
91.48 98.30 7 .4% 33.64 33.63 -0..0% 
99.96 100.0 0.0% 20.44 20.75 1.5% 
25.07 30.08 20.0% 136.79 112.53 -17.7% 
99.56 100.0 0.4% 44.89 34.44 -23.3% 
100.0 100.0 0.0% 20.43 20.76 1.61% 

TABLE 111-A 
COMPARISON OF OVERALL PERFORMANCE ESTIMATES WrTH SIMULATION: 

BIDIRECTIONAL 4 X 4 TORUS, SINGLE CHANNEL FROM PROCESSOR TO SWITCH 

Parameters 

1 20 
1 33.3 
1 50 
1 100 
4 20 
4 33.3 
4 50 

Nout T 

4 100 

Processor efficiency Network residence time 
Simulation Analytical % error Simulation Analytical % error 

34.6 34.24 1.0% 32.98 33.54 1.7% 
48.9 48.37 -1.1% 30.03 30.72 2.3% 
60.4 59.92 0.8% 27.94 28.61 2.4% 
76.9 76.50 0.5% 25.36 25.88 2.0% 
44.8 49.54 10.5% 144.06 138.57 -3 .8% 

75.01 84.16 12.2% 105.88 90.55 -14.54% 
97.8 100.0 2.25% 49.20 38.55 -21.6% 

27.35 -0.9% 100.0 100.0 0.0% 27.61 

nearly saturated, and the absolute value of the processor 
efficiency tends to be very low. The maximum error in 
average processor efficiency across all of our validation 
experiments was 20%, which is shown for N = 16, r = 5, 
and Nout = 8 in Table 111-A. In all cases, the predicted 
efficiencies are qualitatively correct. 

We also examined more detailed performance measures, 
including estimates of the individual asymmetric processor 
efficiencies. The maximum, minimum, and ratio of maximum 
to minimum processor efficiency predicted by the analytical 
model and simulation for the 8 x 8 torus are shown in Table IV. 
Again, agreement is very good, particularly for the madmin 
efficiency ratio. Note also that the ratio of the two efficiencies 
is always underestimated by the analytical model. Thus, the 
imbalance estimates, discussed in Section IV-H, are generally 
conservative. 

Parameters 
U t T 

1 40 
1 25 

1 100 
4 25 
4 40 
4 100 

the bidirectional torus with uniform traffic, and processors 
that block after each request (i.e., No,, = 1). In Fig. 5, the 
solid lines show the average processor efficiency as a function 
of request rate ( 1 / ~ )  for the baseline system with single-flit 
channel buffers, and system sizes of 16 and 64 processors. The 
performance of this system is low at moderate or high request 
rates ( 1 / ~  > 0.03). The poor performance in this system is 
chiefly caused by the inherent latency of communication rather 
than by contention in the network. To show this, we also give 
the efficiency curves, assuming that there is no contention in 
the network (the dashed lines in Fig. 5). Comparing the two 
sets of curves, we see that the absolute loss in efficiency due to 
contention is about 5%-10%. Thus, the system performance is 
latency-limited rather than bandwidth-limited when processors 
block after each request. 

Furthermore. because communication latencv is the chief 

Maximum efficiency Minimum efficiency Maximum/Minimum efficiency 
Simulation Analysis v/u error Simulation Analysis % error Simulation Analysis % error 

50.39 52.55 4.3% 48.93 52.25 6.8% 1.030 l.Od5 -2.4% 
37.78 38.92 3.0% 35.56 38.53 8.4% 1.062 1.010 -4 .9% 

73.90 76.13 3.0% 72.25 76.03 5.2% 1.023 1:pOl -2.1% 
63.76 68.62 7.6% 42.79 41.53 11.1% 1.490 1.444 -3.1% 
88.36 96.00 8 .6% 76.77 88.62 15.4% 1.151 1.080 -6 .2% 
99.96 100.0 0.0% 99.90 100.0 0.1% 1.001 1.000 -0.1% 

C. Baseline System Performance 
We choose as our “baseline system” (which we will use as 

a reference point for studying further network design issues), 

cause of low efficiency, increasing buffer sizes per switch 
yields very little performance improvement for these system 
sizes. In fact, for these systems, the average processor ef- 
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Fig. 5. Efficiency of baseline system.. Bidirectional torus, single flit buffers, 
uniform traffic, NOut = 1. 
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Fig. 6. Scalability of baseline system. Bidirectional torus, infinite buffers, 
uniform traffic, N,,t = 1. 
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Fig. 7. Efficiency with multiple outstanding requests. Bidirectional torus, 
uniform traffic, N = 64. 

ficiency with infinite channel buffers (shown in Fig. 6 and 
discussed below) is almost identical to the performance with 
single-flit channel buffers. 

To examine how system performance scales with increasing 
system size, in Fig. 6, we plot the average processor efficiency 
as a function of mesh radix (fi) for different request 
rates (1/r) for the baseline system with infinite channel 
buffers. The figure shows that the performance of the baseline 
system scales well (i.e., average processor efficiency decreases 
slowly) with increasing system size, even though the absolute 
performance is low. These curves also show that the decrease 
in efficiency with increasing radix is primarily due to higher 
latency rather than to network contention. Specifically, the 
decrease in efficiency is close to linear, showing that it is 

primarily due to the increasing number of hops that a message 
must travel, rather than an increase in the delay (due to 
contention) at each hop. We conjecture that a baseline system 
with small channel buffers will also show good scalability, 
based on the low network contention seen in all of the 
cases studied above. (The space complexity of our single-flit 
buffer model, and the time requirements of simulation, have 
prohibited us from testing this directly.) 

D. Multiple Outstanding Requests 

Since baseline system performance is chiefly limited by 
communication latency rather than contention, a plausible 
technique for improving processor efficiency is to allow pro- 
cessors to make multiple requests before blocking. The impact 
of multiple outstanding requests on system performance and 
scalability are as follows. 

Fig. 7 shows how the performance of an 8 x 8 baseline sys- 
tem (i.e., a bidirectional torus, uniform traffic) with single-flit 
or infinite buffers improves as Nout increases from 1 to 8. The 
figure shows that for single-flit channel buffers (solid lines), 
hiding communication latency with small increases in Nout 
is clearly effective in improving average efficiency, but each 
additional increase in Nout brings diminishing returns because 
of increasing network contention. In fact, there is a threshold 
at Nout = 4 beyond which no appreciable improvement in 
performance is observed. 

For the infinite buffer case (dashed lines), we find that 
increasing Nout up to 8 is worthwhile for this system size. 
In larger systems with infinite buffers (not shown here), we 
again found that beyond some threshold, increasing Nout 
brings little improvement; this threshold is about 8 and 4 
for systems with 144 and 1024 processors, respectively.Zn 
general, a few contexts per processor or a few prefetches are 
effective in improving efficiency, but there is a clear threshold 
at a small value of Nout beyond which no further improvement 
is observed because of increased network contention. These 
results further support conclusions in previous papers that a 
few contexts per processor are sufficient in systems that are 
being prototyped today [ll,  [211. 

The figure also shows that larger channel buffers become 
increasingly important as Nout is increased, because of the 
increasing contention. The performance difference between 
single-flit and infinite channel buffers is significant even for 
Nout = 2, and becomes quite large for Nout 2 4. 

Because of the increased contention, it is important to 
reevaluate the scalability of the network with multiple out- 
standing requests. In Fig. 8, we plot processor efficiency 
against mesh radix, fi, for Nout = 4, infinite channel 
buffers, and various values of l / ~ .  In contrast with Fig. 6, 
efficiency drops sharply for moderate or high request rates 
(l/r 1 0.02), because of increasing network contention. 
Thus, the system with four outstanding requests does not scale 
well under uniform trafic, even with injinite channel buffers, 
because network bandwidth in larger systems does not increase 
in proportion to the increased communication load. In the next 
several sections, we focus on systems with Nout = 1 and 
Nout = 4 when studying further network design trade-offs. 
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E. Alternate Mesh Network Topologies 

We next compare the performance of the different network 
topologies under uniform communication. In this subsection, 
we use the term “mesh” specifically to refer to the network 
without end-around connections. Our first comparison is be- 
tween the two bidirectional networks: the torus and the mesh. 
The average number of hops a message must travel assuming 
uniform traffic is about 33% larger without the end-around 
connections. On the other hand, as explained in Section II- 
F, the mesh does not require multiple virtual channels per 
physical link, as required by the deadlock prevention algorithm 
for the torus. We therefore use a buffer size of two flits per 
physical link in the mesh network, to ensure a fair comparison 
with the torus with a single-flit buffer per virtual channel.6 

Fig. 9(a) plots processor efficiency versus request rate 
for one, two, and four outstanding requests for the two 
bidirectional topologies. The results are for an 8 x 8 system. 
For Nout = 1, there is only slight benefit to the end- 
around connections, because the higher number of hops in 
the mesh has only a small effect on latency, because of the 
pipelined routing of messages and the low contention per hop. 
For Nout = 4, however, the torus has up to 30% higher 
performance, because the higher network contention makes the 
higher number of hops in the mesh more significant. Thus, end- 
around connections significantly improve peflormance with 
multiple outstanding requests. This result should hold as well 
for larger systems (where the savings in hops for the torus 
increases) and larger buffer sizes (where network contention 
is still significant for Nout = 4, as shown in Section IV-D). 

We next compare the bidirectional torus with the unidi- 
rectional torus. For the former, we use message lengths of 
Lmsgl = 4, Lrespl = 10, Lmsg2 = 12, and Lresp~ = 4, rather 
than 3, 9, 11, and 3 used in all other experiments. This allows 
us to halve these message lengths for the unidirectional torus, 
according to our assumption that its links are twice as wide 
as those in the bidirectional torus. Fig. 9(b) plots processor 
efficiency as a function of 1 / ~  for Nout = 1,2, and 4, for each 
topology. The results are similar to the comparison against 
the bidirectional mesh. In particular, the bidirectional torus 
pe$orms signijcantly better than the unidirectional torus with 

Since our single-flit-buffer analytical model does not extend to networks 
with two-Kit buffers, we used simulation to estimate the performance in the 
mesh with two-flit buffers per link. 
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Fig. 9. Comparison of network topologies: 8 x 8 system, uniform traffic, 
single-flit buffers. (a) Bidirectional torus vs. mesh. (b) Bidirectional torus vs. 
unidirectional torus. 

multiple outstanding requests. Thus, the extra number of hops 
in the unidirectional torus is not sufficiently offset by the wider 
channels. These results should hold approximately as system 
size increases, because the distance, as well as the bandwidth, 
scales at the same rate in both top~logies.~ 

F. Nearest-Neighbor Workloads 

The previous experiments assumed uniformly distributed 
internode communication, i.e., each node is equally likely to 
communicate with each other node. In this section, we investi- 
gate how near-neighbor communication locality affects system 
performance and our previous conclusions about system design 
trade-offs. We consider near-neighbor traffic patterns in which 
some fraction, F,,, of the traffic generated by each processor 
is equally divided among its four nearest neighbors, whereas 
its remaining traffic is uniformly distributed to all nodes (in- 
cluding the four neighbors). The uniformly distributed traffic 
represents non-near-neighbor communication required by the 
near-neighbor application, as well as other activity on the 
system, such as operating system traffic. 

Fig. 10(a) shows processor efficiency as a function of mesh 
radix, a, for various values of F,,, for Nout = 1. Curves 
are shown for two values of request rate, 1 / ~  = 0.01 and 0.04. 
In both cases, increasing locality of communication improves 
processor efficiency only gradually. Fig. 10(b) gives the results 

Section IV-H, however, shows that performance imbalance between 
different parts of the system is higher with the unidirectional network, which 
may exacerbate the difference in performance at larger system sizes. 
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Fig. 11. The effect of hot-spots on overall mean response times. Bidirectional 

for Nout = 4 and 1 / ~  = 0.04. (At 1 / ~  = 0.01, the efficiency 
is close to 100% even with uniform traffic, as shown in Fig. 8.) 
In this case, efficiency improves substantially with increasing 
locality, because locality reduces contention as well as latency. 
For example, the 1024-processor system with Fnn = 60% 
shows more than twice the efficiency of the same system under 
uniform traffic. 

Locality of communication influences many of the design 
issues that were examined in previous sections, assuming 
uniform traffic distribution. These must now be reevaluated. 

The set of points for single-flit buffers in Fig. 10(b) shows 
mean processor efficiency for the 8 x 8 mesh with single-flit 
buffers and No,, = 4. We observe that as for uniform traffic, 
the infinite buffer case is significantly better than the single-flit 
buffer case even up to F,, = 70%-80%. 

The results for 1 / ~  = 0.04 in Fig. 10(a) and 10(b) show 
that the improvement when Nout goes from 1 to 4 is much 
stronger at higher levels of locality, for N > 64. Thus, locality 
increases the beneJit of multiple outstanding requests for large 
systems. This is true because network contention is reduced 
for high values of F,,, so that increasing Nout does not cause 
much higher contention; but it does improve performance by 
overlapping communication with computation. 

We can also reevaluate how system performance scales 
when communication locality is present. Under uniform traffic, 
we concluded that the mesh network scales well when Nout 
is 1, but scales poorly for Nout = 4. In Fig. 10, we see that 
increasing locality has a positive effect on the scalability of 
the network (as expected); but, nevertheless, for Nout = 4, 
system perj5ormance scales well only for F,, 2 80%. It may 
be unrealistic to expect such high levels of locality for real 
workloads. 

Finally, the relative performance of the various mesh topolo- 
gies may differ under near-neighbor workloads. In particular, 
we showed in Section IV-E that the bidirectional torus has 
a significant performance advantage over the unidirectional 
torus with multiple outstanding requests. The performance ad- 
vantage of the bidirectional torus will increase in the presence 
of locality, because in the unidirectional torus, a round-trip 
message to a near-neighbor requires fi hops as compared 
with two hops. 

To summarize the results of this section, locality of com- 
munication improves system performance, particularly in large 
systems with multiple outstanding requests, and increases the 
benefit of multiple outstanding requests; but it only marginally 
improves the ability of the mesh to support larger system 
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Fig. 12. Overall mean response times under hot-spot traffic withmultiple node-to-switch links. Bidirectional 8 x 8 torus, single-flit 
buffers. (a) iVOut = 1. (b) N o u t  = 4. 

sizes. In particular, the case of Nout = 4 does not scale well 
for Fnn < 80%. Other conclusions of the experiments with 
uniform workloads are also not altered for workloads with 
communication locality. 

G. Hot-Spot Effects 

Hot-spots are a form of nonuniform communication that 
can strongly impact system performance. Hot-spots can arise, 
for example, when a number of processors make a significant 
fraction of their requests to a single memory module or to a 
single node in a multiprocessor. The issue has been studied by 
using open queueing models (i.e., assuming nonblocking pro- 
cessors) in the context of multistage interconnection networks 
U31, [171, V I .  

We examine the effect of hot-spots in mesh networks by 
assigning some fraction, F h o t ,  of requests from each processor 
to a particular node in the system, while the remaining fraction 
1 - F h o t  is distributed uniformly across all processors. Fig. 11 
plots the mean response time (sum of average network plus 
remote-node residence times) versus request rate, 1 / ~ ,  for 
various values of Fhot in a bidirectional 8 x 8 torus with 
single-flit buffers. For Nout = 1 (Fig. ll(a)), there is very 
little increase in mean round-trip time for P h o t  5 10%. For 
Nout = 4, however, much smaller fractions (about 2.5%) of 
hot traffic cause significant increases in mean round-trip time. 
(Note the larger range on the y-axis in Fig. 1 l(b).) This result 
indicates that the effect of a hot-spot is very sensitive to Nout. In 
particular, this suggests that open traffic models (Nout = CO) 

may yield extremely pessimistic results. 
The above hot-spot experiments assumed a single node-to- 

switch link, as in all previous experiments. This link in the 
hot node is a bottleneck in the system, and substantial queues 
build up at the link, because we have assumed unlimited 
buffer space for it. Hence, traffic in the rest of the network 
sees almost no contention. Using multiple links from node 
to switch (e.g., one node-to-switch link per outgoing virtual 
channel) alleviates this bottleneck. The average response times 
for this case are shown in Fig. 12.’ The figure shows that the 

‘The curves for Nout = 4 and Fhot = 10% and 20% in Fig. 12(b) were 

average round-trip time has reduced considerably for the cases 
that showed non-negligible increases in response time due to 
hot-spots in Fig. 11. Although Fig. 12 assumes one link per 
outgoing channel, we would expect to see approximately the 
same performance if the eight processor-switch channels were 
multiplexed onto two or three physical links, because a very 
high fraction of the outgoing traffic at each node uses only 
two or three of the eight outgoing virtual channels. (Seven- 
eighths of the total traffic out of a node must go out first on 
the column, and is further restricted to only two or three of 
these four outgoing virtual channels by the deadlock-avoidance 
algorithm.) 

When the bottleneck on the node-to-switch link in the hot 
node is alleviated, the switch-to-node link becomes the new 
bottleneck in the system. Now channel buffers on paths leading 
to this bottleneck link can get filled up, affecting messages to 
non-hot nodes as well. Hot-spot studies in indirect networks 
have shown that traffic to memory modules other than the hot 
module is slowed down as much as traffic to the hot module 
itself [17]. This phenomenon has been called tree saturation. 
To analyze the corresponding effect in mesh networks, we 
plot in Fig. 13 the average response time for messages to 
the hot processor (dashed lines) and to all other processors 
(solid lines), assuming multiple node-to-switch links.9 For 
Nout = 1, we see that traffic to non-hot processors does not 
see significant increase in response time, even when Fhot  is 
as high as 20%. For Nout = 4, mean response time to the 
non-hot processors actually decreases slightly when Fhot  is 
increased from 0%-5%. In this case, contention at the hot 
node has significantly decreased overall network throughput, 
offsetting any tree-saturation effect. 

plotted by using data from simulations, because the analytical model did not 
converge in this case. (The results of the analytical models for lower values 
of F h o t  were in good agreement with simulations.) 

’Note that for Nout = 4, with uniform traffic (Phot = 0%) the round-trip 
time to the “hot” processor is actually lower than that to other processors. This 
is a direct result of the asymmetric loads on the virtual channels described in 
Section E D  and studied in Section IV-H. The hot processor chosen for these 
experiments (processor [2, 21) is located at a point in the mesh where loads 
on the outgoing virtual channels are balanced. 
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The above results suggest that the presence of hot-spots in 
mesh networks does not significantly increase response times 
for non-hot traffic, in systems of this size. This is different from 
the concludons of Pfister and Norton [17] for systems of the 
same size based on multistage interconnection networks. The 
principal reason for the difference in results is that Pfister and 
Norton assumed an open model, in which processors generate 
requesrs continuously without blocking for responses to return 
(i.e., Nout = CO). To illustrate the effect of this assumption, 
Fig. 14> shows the actual request rate in flits per processor 
to the hot module for Nout = CO (dashed lines), as well as 
Nout ='1 and Nout = 4 (solid lines) as a function of the 
input rate (in flits), ( 1 / ~ )  x Lmsg. The request rate tp the hot 
module is significantly higher for Nout = 03 than for finite 
values &f Nout, and this would also be true for the multistage 
interconnection network. 

The hot-spot experiments described in this section have 
focused on 64-processor systems. The degradation due to a 
hot-spot will become more severe with increasing system size. 
Finite-buffer models are necessary for realistic hot-spot stud- 
ies, however, and we have been unable to use our analytical 

finite-buffer model to study large systems quantitatively. (Sim- 
ulating these systems is even more difficult.) Nevertheless, we 
believe that the results of this section provide insights that 
would be valuable in studying large systems. Qualitatively, we 
expect multiple node-to-switch links to significantly alleviate 
the effect of a hot-spot for larger systems as well. We also 
expect that larger systems with blocking processors (finite 
Nout) will be able to support much higher levels of hot- 
spot traffic without introducing tree-saturation than would 
be predicted using open system models (i.e., assuming that 
" I t  = CO). 

H. Pe@ormance Imbalance Caused by the 
Deadlock-Free Routing Algorithm 

The analyses of torus performance using the single-flit 
buffer analytical model show significant differences among 
processor efficiencies at different locations in the system, 
and these observations are corroborated by simulation (see 
Section IV-A). To illustrate the imbalance, Table V-A gives the 
efficiencies of the individual processors in the unidirectional 
8 x 8 torus, (Nout = 4, 1 / ~  = 0.02) under uniform traffic, 
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i.e., with equal loads on all physical links. The table shows 
that the processors near the comers have high efficiencies, 
whereas the ones near the center of the mesh have much lower 
efficiencies. Table V-B shows the processor efficiencies for the 
bidirectional 8 x 8  torus (Nout = 4, 1 / ~  = 0.04) under uniform 
traffic. Again, imbalance is observed; however, this time the 
processors near the comers have low efficiency. Note that these 
two cases represent operating points with moderate to high 
average processor efficiency (79% and 58%, respectively), yet 
also with significant performance imbalance across the system. 

To quantify the performance imbalance at particular pa- 
rameter settings, we use the ratio of the maximum processor 
efficiency to the minimum processor efficiency. Fig. 15 plots 
this ratio as a function of the request rate for the unidirectional 
and bidirectional 8 x 8 ton, for Nout = 1, 2, and 4. The 
figure shows that the imbalance becomes significant when 
network contention is moderately high, but includes cases that 
represent reasonable operating points (i.e., average efficiencies 
greater than 50%). For example, the 64-processor system with 
Nout = 4 has average efficiency greater than 50% at most 
request rates, as shown in Fig. 9(b); however, the imbalance 
is as high as 1.5 for the bidirectional torus and 4.0 for 
the unidirectional torus. Finally, comparing Fig. 15(a) and 
15(b), we also see that the imbalance is much greater in the 
unidirectional torus than in the bidirectional torus. 
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The results described above suggest that the imbalance 

considered during the design of the system. The imbalance in 
processor performance may have significant implications, for 
example, for parallel programs that synchronize via barriers. 
Whether the imbalance is significant for any particular system 
depends on several factors, including buffer size, message 
lengths, and request rate. 

Fig. 15. Maximum performance imbalance. Single-flit buffers, uniform 
in system performance c m  be significant and needs to be traffic. (a) Unidirectional 8 x 8 torus. (b) Bidirectional 8 X 8 torus. 

Recent studies have shown that mesh networks without end- 
around connections also have significant, symmetric imbal- 
ances in processor performance, even under uniform commu- 
nication [ 3 ] ,  [7]. These imbalances occur because of unequal 
traffic requirements on the physical links, however, a situation 
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which arises from edge effects due to the lack of end- 
around connections. In torus networks, physical link loads 
are balanced under uniform traffic; thus, the source of the 
observed imbalance in processor performance must be sought 
elsewhere. 

A potential source of imbalance in torus networks is the 
asymmetric virtual channel loading by the deadlock-avoidance 
algorithm, described in Section 11-D. In attempting to deter- 
mine whether and how this asymmetry causes the imbalance, 
an obvious guess is that the round-trip communication by 
some nodes makes greater use of high-load virtual channels 
(i.e., channels that carry a high fraction of their links' traffic). 
However, this explanation cannot account for an observed 
peculiarity in the pattern of imbalance in the unidirectional 
case, namely, that processors with poor performance are not 
necessarily located where greatest asymmetry in channel load- 
ing occurs. In fact, channels near the edges have the greatest 
traffic asymmetry (Fig. 4), but processors near the edges 
have the best performance (Table V-A). To understand why 
the above explanation is invalid in general, note that for 
outgoing requests that use high-load channels, the responses 
will use low-load channels on the return trip (and vice versa) 
because of symmetries in the routing algorithm. (This is easiest 
to reason about for the unidirectional torus.) Some careful 
thought reveals that the differences between nodes that place 
somewhat greater load on balanced virtual channels versus 
nodes that place somewhat greater load on high- and low-load 
channels are not likely to account for the fairly large observed 
imbalance in processor efficiencies. 

More careful consideration of message pipelining and block- 
ing behavior reveals a different and potentially substantial 
impact of the asymmetric loads that can also explain the 
particular patterns of imbalance observed in Table V. Specif- 
ically, certain nodes' outgoing messages (both requests and 
responses to other nodes) experience relatively severe blocking 
because of high-load virtual channels after leaving the node. 
Such nodes will see significantly higher contention for their 
node-to-switch link because of the pipelining and blocking of 
messages. Because each processor is the heaviest user of its 
own node-to-switch link, increased contention on this link 
results in lower efficiency for the processor at such a node. 
Furthermore, in the unidirectional torus, it is the nodes near 
the center of the network whose outgoing messages experience 
most severe blocking because of high-load channels, whereas 
in the bidirectional torus it is the nodes near the edges. This 
leads to the different patterns of imbalance in the two cases. 

To demonstrate the phenomenon quantitatively, consider the 
nodes on some fixed column (as in Fig. 4) of a mesh network. 
For the node on row i, define the following: 

R(c, i) mean residence time on outgoing virtual 
channel c for a message out of the node 
(i.e., for a message that was transferred over 
the node-to-switch link into the buffer 
for channel e),  

outgoing channels c, 

link at the node. 

- 
R(i)= average of R(c, i), averaged over all 

W n o d e ( i )  = mean waiting time for the node-to-switch 
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Fig. 16. Residence time on first virtual channel. Nodes on column 3; 

Fig. 16(a) plots R(c, i ) ,  for c = NH and NL, n(i), and 
Wnode(i) as functions of 1 (row number) for column 3 of 
a unidirectional 8 x 8 torus (NH and NL denote the High 
and Low channels in the North direction). R(i )  is higher near 
the middle of the column than near the edges, showing that 
outgoing messages from the nodes near the middle experience 
much more severe blocking, as described above. Now high 
R(i)  also implies a high residence time on the node-to-switch 
link, and hence a high waiting time, Wnode(i), just as shown in 
the figure. This leads to poorer performance for these nodes. 
For the bidirectional case, Fig. 16(b) plots R(c, i )  for c E 
{NH, NL, SH, SL}, R(z), and W n o d e ( i ) .  In this case, R(z), 
and hence Wnode(z), are higher near the edges of the torus, 
and thus the efficiency is lower. 

Thus, the ultimate effect of high-load channels is the same in 
both networks: They cause more severe blocking for outgoing 
messages of some nodes, which produces much greater con- 
tention for the node-to-switch link at these nodes. However, 
the pattern of use of the high-load channels by outgoing 
messages is different in the two networks. In the bidirectional 
case, blocking of outgoing messages is more severe for nodes 
near the edges, because these nodes' outgoing messages make 
much greater use of high-load virtual channels compared to 
nodes near the center. For example, a node on row 7 in an 
8 x 8 bidirectional network sends all of its outgoing messages 
on channels that carry 100% of their links' traffic (NL and 
SL), whereas the outgoing messages for a node on row 3 
are mostly concentrated on channels with low to moderate 

- 
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load (NL and SH). In the unidirectional case, however, the 
nodes near the center, which have poor performance, make 
only slightly greater use of high-load virtual channels than 
do nodes near the edges. In these networks, it appears more 
significant that outgoing messages from nodes near the center 
travel from channels with a low to moderate load into channels 
with a high load, whereas for nodes near the edges the 
opposite is true. (Refer to Fig. 4.) The pipelined routing causes 
significantly greater blocking for the former than it does for 
the latter. 

As the preceding discussion indicates, the precise expla- 
nation of the relationship between the asymmetric channel 
loadings and the performance imbalance is fairly subtle and 
nonintuitive. Formulating and validating the explanation re- 
quired significant insight as well as analysis of detailed metrics 
obtained from the analytical model. Furthermore, the imbal- 
ance cannot be detected or analyzed by using models or 
simulations that ignore the virtual channel loadings or the 
finite switch buffers. Finally, note that the waiting times for the 
node-to-switch links, and hence the imbalance itself, might be 
reduced by the use of multiple physical node-to-switch links 
and/or multiple virtual node-to-switch channels. 

V. CONCLUSION 

We have developed accurate, approximate MVA models 
for k-ary n-cube interconnection networks with wormhole 
routing, with single-flit and infinite buffers at the switches. 
Interesting aspects of the model include the techniques used 
to estimate mean message blocking times, mean message 
queueing times at the processors, and the mean queue lengths 
seen at the first outgoing link when multiple channels connect 
each processor to its switch output channels. Many of the ex- 
perimental results would not have been possible with simpler 
analytical models that do not represent the message blocking 
and details of the routing. The equations for channel waiting 
time, which form the foundation of the single-flit-buffer model, 
use recurrence relations to model the dependencies among 
flit blocking times within a single message, yet use random 
arrival instant assumptions to model interference by other 
messages. The models were shown to be quite accurate by 
extensive validations with simulation. We are not aware of 
any previous work that has used similar models of blocking in 
these networks. We believe the validation results are important 
evidence that approximate MVA is a viable technique for 
modeling complex systems. 

We used the models to analyze various issues that arise in 
the design of 2-D (mesh) networks. These results (summarized 
below) should prove useful for engineering high-performance 
systems based on low-dimensional k-ary n-cube networks. 

Some of our results confirm and quantify existing intuition 
about mesh interconnection networks. With processors that 
block on every request, we have shown that contention in 
the network is low, and the three network topologies (bidirec- 
tional and unidirectional torus and bidirectional mesh) show 
little difference in performance. Multiple outstanding requests 
can help increase performance, but can also cause increased 
contention. Thus, in this case, substantial performance gain is 
achievable by increasing buffer size. 

We also gained new intuition from some of our results, 

Under uniform workloads, absolute performance is higher 
with multiple outstanding requests; but network perfor- 
mance does not scale well with increasing system size. 
Communication locality improves system performance, 
particularly for multiple outstanding requests, but at least 
70%-80% of each processor’s traffic must be directed to 
its nearest neighbors before the case of four outstanding 
requests scales well. 
With multiple outstanding requests, the bidirectional torus 
performs significantly better than do the other two topolo- 
gies. Furthermore, it exhibits much lower performance 
imbalance (see below) due to the deadlock-free routing 
algorithm than does the unidirectional torus. 
Open system models can yield extremely pessimistic 
results in hot-spot studies. When processors block after 
making a few requests, only high fractions of hot-spot 
traffic cause significant performance degradation in 64- 
processor systems with single-flit buffers. Furthermore, 
traffic to the non-hot processors is not much affected by 
hot-spot traffic in these systems; i.e., tree-saturation is 
not observed. 
At some plausible operating points (i.e., in cases where 
average processor efficiency is reasonably high), there is 
a perceptible difference in the efficiencies of processors 
at different locations in the mesh. This imbalance is 
due to asymmetric loads on the virtual channels by the 
deadlock-avoidance algorithm. 

A number of related issues for IC-ary n-cube networks 
remain to be studied. The models developed in this paper 
can be used to study network performance for message- 
passing and hierarchical systems. The conclusions from the 
experiments need to be examined for 3-D networks. The result 
that a communication hot-spot does not significantly slow 
down other traffic in the system needs to be reexamined for 
larger systems. A related question that needs to be answered 
is what buffer sizes are required to approximate infinite 
buffer performance under various workload assumptions. For 
interconnection networks with pipelined routing in particular, 
however, modeling the performance with larger finite buffers 
is a difficult problem. (Previous analytical models of inter- 
connection networks that allow finite buffer sizes are based 
on a decomposition approximation in which each queue is 
analyzed in isolation, thus ignoring the dependencies between 
network stages caused by the blocking and pipelining of 
messages. See, e.g., [I51 and the references therein.) Fi- 
nally, it would be worthwhile to develop a deadlock-free 
routing algorithm for the mesh network that does not lead 
to the imbalance in processor efficiencies that we have ob- 
served. 

including the following. 

APPENDIX A 
NOTATION USED IN THE MODEL 

We use the following convention for integer subscripts in 
the model equations: i ,  s, d, and q denote node numbers. 
(In this usage, i always appears within brackets, i.e., “[il” 
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Term 

RbI 

% e t w o r k [ i ] ,  T p r o c [ i ] ,  T r e m o t e [ i ]  
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Definition 

Terms common to the entire model 

Mean round-trip time for customer of class i .  
Mean residence time for a customer of class z in the network, at the processor, 
and at the remote node, respectively. 
Mean residence time in the network for a message of type j from s to d 

and “(i, n)”). j denotes message type. 5 denotes flit num- 
ber. c denotes a virtual channel. i, I denote input ports. 

The table below defines the variables used in the model 
equations. 

Cjinstead of CjEmsgl,msg2,respl,resp2. 
(In this case, i always appears as a subscript, e.g., rj ,c, i .)  R[il = r ~ r o c [ i l  f rnetwork[il -k rremote[i], = ‘ ’ ’ N .  (1) 

A. in the Network 

- 
C 

APPENDIX B 
THE MODEL 

The virtual channel that shares the same physical link as c 

Queueing for the channels 

The equations of the model are given in detail here. (2) 
Throughout the development of the model, we call a message T j , s d  = wnode,sdlj  + rj,c,sd[l] f Tcatchup,j,sd, 
from s to d or a response from d to s a message of class C 

b n o d e , j , s l q [ k I ,  q”ode,j,slq 

s. Also. in 

For a message of class q arriving to the link from processor to switch at node s: 
respectively, the probability that the link is busy serving the kth flit of a request 
of type j ,  and the mean number of waiting requests of type j .  

Ulznk ,?  

W n o d e , s / q  

W C , I  

n ) ,  u P r o c ( i i  n) ,  TPrOc( i ,  n,  

TeSproc 

Bmem,3,Sld. Qmem,J,s ldr  W m e m , J , s l d  

T e S m e m  ,3’ 13 

The virtual channel that is k steps after (or before) virtual channel c on the path 
from s to d 

Utilization of the physical link corresponding to channel c by messages on 
companion channel 
Mean waiting time for the link from processor to switch at node s, for the 
header flit of a message of class q 
Mean waiting time for channel c, for a message arriving to c via input port I 

Queueing for the processors 

Steady state mean queue length, residence time, and utilization of processor i 

Mean residual service time of a customer found in service by a message 
arriving to a processor, as seen by the tail flit of the message, conditioned on 
the header flit finding the processor busy 

Queueing at a remote node 

For an arriving request from s at remote node d:  respectively, the probability d 
is busy serving a request of type j ’ ,  the mean number of waiting requests of 
type J ,  and the mean waiting time. 
Mean residual service time of a request of type j at a remote node as seen by 
the tail flit of a type j ’  request, conditioned on the header flit finding the type j 
request in service 

Queueing for thejrst  network virtual channel on a path, with multiple processor 
+ switch channels 

when there are customers in class i 

Mean residence time for the kth flit of a request of type j ,  on the link from 
processor to switch at node s. 

Set (d l  messages from s to d, or responses from d to s if j is a reply message, 
visit c via input port i ) .  
Respectively, the mean residence time of the kth flit of messages of type j on 
channel c, which arrive to c via input port I ,  and the mean utilization of 
channel c by such flits 
Mean residence time on channel c of the kth flit of a message of type j from s 
to d 

For a customer of class q arriving to channel c via input port 2: respectively, the 
probability c is serving the kth flit of a request of type J ,  and the mean number 
of waiting requests of type J 

Total visit ration of all customer classes to channel c as type j messages 
arriving via input port i 
Mean waiting time for channel c by a customer of class q, where c is the first 
network virtual channel on its path W’ 

c14 
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where the sum is over all channels c on the path from s to d. 

W(c+l) ,d(I  + Ulink,? + 1 k = 1, 
T(c+k-l),d[l] f Ulink,Z IC > 1, d is IC 

or more steps away 
from c, 

1 + Ulink,F otherwise. 
(4) 

Tcatchup is the length of the message minus 1 (for the header) 
plus the delay due to sharing the physical links with traffic on 
other virtual channels, summed over the links that the tail flit 
must traverse after the headerflit reaches the destination node: 

I Tj,c,sd[k] = 

Tcatchup,j,sd = Lj - 1 f Ulink,?. 
c:cis<LJ hopsfromd 

The equation for the waiting time, wClI, is explained in 
Section 111-B. 

T \ 

/ '-1 

rj, , , i  [k], ~ j , ~ , ;  [k], and Ulink,c remain to be calculated. These 
can be expressed in terms of rj,,,,d[k] in a straightforward 
manner. First, define D c , i l j ( s )  {dl  messages from s to d 
visit c via input port i}. Then, 

B. Waiting Time for the Processor Link 

The remaining term in (3), U)node,sdlj, is calculated next. 
For request messages, Wnode,sd(j is the average waiting time 
for the P-link at node s seen by a class s message (Wnode,s(s), 

and for reply messages Wnode,sdlj is the average waiting time 
for the P-link at node s seen by a class d message (Wnodesld). 

In general, Wnode,. lq is calculated in a manner very similar to 
(6) for WCl,. See (10) at the bottom of the preceding page. 

The main differences from (6) for WclI are as follows: 
1) The second term in (6) is no longer required, and the 

first term does not have a summation over input ports. 
In both cases, the reason is that the buffer capacity for 
this link is unbounded. 

2) The third term in (6) used the probability that there is 
a waiting request for each input port i .  Now, however, 
we require an actual queue length, qnode, j ,s lq ,  denoting 
the average number of requests of type j waiting for 
the processor link in node s when a request of class q 
arrives. This can be calculated as follows: 

where 1fS=¶} is 1 if s = q. and 0 otherwise. We can 
calculate Tnode,j,s [k]  and bnode,j,slq[k] similarly: 

C. Queueing at the Processor 

As defined in Appendix A, ~ ~ ~ ~ ~ ( i ,  n)  is the average resi- 
dence time at the processor for a customer of class i when there 
are n customers in its class. Hence, ~ ~ ~ ~ ~ [ i ]  = Tproc(i, No",) 
by definition. rproc(i, n) is calculated by recursion on n: 

Tproc(i7 n)  = [qproc(i, - 1) - Uproc(i ,  72 - I)] x T 

+ uproc( i !  n - 1) x resproc, n > 1, (14) 

, (15) qproc(i ,  n) = 

Uproc(i ,  n)  = , (16) 

qproc(i ,  1) = ~ p r o c ( i ,  1) = 

x Tproc(i, n) 
Tproc(i, n)  + Tnetwork[i] f Tremote[i] 

n x r  
Tproc(2, n) + rnetwork[i] -k rremote[i] 

and 
7 

7 f Tnetwork [ i ]  + Tremote [i] ' 
(17) 

(18) 
resproc = (7 - 1) x ( ~ 1 y ~ r e ~ p 1 - l  + ~ ~ y ~ r e s p 2 - l  ), 

y = 1 - ( l / r ) .  



ADVE AND VERNON PERFORMANCE ANALYSIS OF MESH INTERCONNECTION NETWORKS 245 

‘ D. Residence Time at the Remote Node 

The equations for the residence time at the remote node 
are developed assuming that the request is serviced at the 
memory of the remote node without interrupting the remote 
processor (we denote TremOte as rmem here). For example, in a 
shared-memory system, remote memory accesses could be of 
this type, with msgl, msg2, respl, and resp2 corresponding to 
read, write, data and acknowledgment messages, respectively. 
The time to access one word is Dmem, l  for a read request 
and Dmem.2  for a write request. We assume that a request is 
queued for a memory module only when its last flit is received 
at the node. We also assume that the memory at each node 
is interleaved, and, to simplify the analysis, that all accesses 
read or write the first byte from the first module, the second 
byte from the second module, and so on. This implies that 
D m e m , l  (IJmem,a) cycles after a read (write) request begins 
service, the next memory request can begin service. Further, 
for a read request, the response (data message) is queued up 
to be transmitted as soon as the first word of data is read out 
from the first memory module, with subsequent words being 
transmitted one per cycle. An acknowledgment in response to 
a write request is queued when the last byte has been written, 
i.e., after Lmsg2 cycles. We do not limit the number of requests 
that can simultaneously be queued up for a given module. 

The method for calculating the mean residence time at 
memory is the same as that in [22]: 

(22) 

Finally, just as in the processor queueing equations, the 
residual life of a memory request in service has to be calculated 
as seen by the tail flit rather than as seen by the head. 
Defining resmem,j)lj to be the residual service time of a type 
j ’  E { 1,2}  request as seen by the tail flit of a message of type 
j E {msgl, msg2}, we have the following equation: 

. (23) 
( D m e m , j f  - Lj) 
(2 x IJmem,jf )  

resmem,jtlj  = ( D m e m j !  - Lj + 1) x 

E. Waiting Eme for the First Virtual Channel in the 
Network, with Multiple Processor-Switch Channels 

The equations of the model described so far have been the 
same for single or multiple processor + switch channels. The 

only exception is (10) for Wnode,slq, which now would be 
denoted by Wnode,clq, and must be calculated separately for 
each outgoing channel c from node s. Similarly, qnode,j,clq, 

bnode,j,clq [IC], and Tnode,j,c[k] have to be calculated separately 
for each c; however, in all cases, the equations remain essen- 
tially the same. 

The waiting time for the buffer in the first switch is the 
only part that needs to be calculated somewhat differently, as 
described in Section 111-E. The equations are as follows: 

The first term in (24) has been explained in Section 111-E, and 
the remaining two terms are similar to the second and third 
terms in (6). Then, as explained in Section 111-E, bi,c,ilq[IC] is 
calculated as follows: 

Finally, the equation for q(i,c,ilq is as follows: 

L,  

x y y %,c, iJ  [ I C ] .  (26) 
t‘#PROC j k = l  

* ‘ # r  

The first line of (26) corresponds to waiting for messages 
that were blocked on input port i # PROC by the preceding 
message on the processor-to-switch link, when the processor- 
to-switch link is found busy. When it is found idle, but channel 
c is busy serving a message that arrived from input port 
i’ # i , i ’  # PROC, the tagged message also has to wait for 
messages on input port i that were blocked by the message 
occupying c. This is the second line of (26). 

This completes the equations for the case with multiple 
processor switch channels, and the description of the model. 
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