
Heap.md 7/17/2019

1 / 1

The Heap
The Stack

Overview:
The amount of memory we have for the stack is SMALL
Accessing memory is very FAST
Each function takes up a chunk of it (a "frame")
Each function can only see variables stored in its own stack frame!

How does allocation work?
When the function is called, that chunk is "allocated" (i.e. set aside for it)
This is usually fine, because we can see how many variables exist/how big they are

Example
HOWEVER, at the time the function is called, we might not always know how big all the
arrays are!!!!

How could this happen?
SO, we cannot store arrays in the stack.
What do we do?!?!?!?!!??!?!

The Heap
Overview

TONS and TONS of space
Accessing memory is slower than the stack
Each thing in the heap has an "address"
Each thing is "allocated" some amount of memory that belongs to it (no one else can touch
it!)

Arrays in the heap
THIS is where we put arrays, since they're arbitrary lengths...
Buuuuut, the function that is using it needs to know where in the heap it was stored!
So we need to store the address of the array in the function's stack frame

THIS is what's stored in the "array" variable in the stack...
Also called a "reference" or "pointer"

"new" keyword: allocates memory in the heap
every time we make a new array, need this
every time we say "new", we know exactly how much memory to allocate
How we've been doing it is a LIE: int[] a = {10}; // shorthand for int[] a = new int[]{10};
a = {10}; // not valid code!!

"Dereferencing" arrays:
When we do array[0] or array.length, what happens?
Follow the pointer, and look at the object that's there!

Two categories of types: Primitives and reference types
Everything else we've seen is a primitive

int, double, boolean, char, long, float
String is a reference type, but is special...

Primitives are stored in the stack, reference types in the heap


