Heap.md 7/17/2019

The Heap

e The Stack
o Overview:
= The amount of memory we have for the stack is SMALL
= Accessing memory is very FAST
m Each function takes up a chunk of it (a "frame")
= Each function can only see variables stored in its own stack framel!
o How does allocation work?
= When the function is called, that chunk is "allocated" (i.e. set aside for it)
= This is usually fine, because we can see how many variables exist/how big they are
= Example
= HOWEVER, at the time the function is called, we might not always know how big all the
arrays arellll
= How could this happen?
m SO, we cannot store arrays in the stack.

e The Heap
o Overview
= TONS and TONS of space
m Accessing memory is slower than the stack
= Each thing in the heap has an "address"
= Each thing is "allocated" some amount of memory that belongs to it (no one else can touch
it!)
o Arrays in the heap
m THIS is where we put arrays, since they're arbitrary lengths...
» Buuuuut, the function that is using it needs to know where in the heap it was stored!
= So we need to store the address of the array in the function's stack frame
m THIS is what's stored in the "array" variable in the stack...
= Also called a "reference" or "pointer”
= "new" keyword: allocates memory in the heap
= every time we make a new array, need this
m every time we say "new", we know exactly how much memory to allocate
m How we've been doing it is a LIE: int[] a = {10}; // shorthand for int[] a = new int[]{10};
m a={10}; // not valid code!!
o "Dereferencing" arrays:
= When we do array[0] or array.length, what happens?
= Follow the pointer, and look at the object that's there!
e Two categories of types: Primitives and reference types
o Everything else we've seen is a primitive
= int, double, boolean, char, long, float
m String is a reference type, but is special...
o Primitives are stored in the stack, reference types in the heap

