
CS200: Programming I Instructor: Sam Vinitsky

P10: Definitely Not a Calculator

(40 points)

Due: Thursday, August 1 @ 11:59pm

Introduction

*Brrrring brriiiiiing* the phone rings – it’s J. Pierrepont Finch, local businessman and vice presi-
dent of advertising! Finch is a world-renowned businessman, but is harboring a terrible secret – he
is terrible at basic math. If his rivals ever found this out, it would be the end of him. He has a very
important math-related business meeting coming up next weekend, but is terrified that his lack of
math skills will be on full display! In order to prevent this, he has commissioned you to help him!

Finch needs you to make a (secret) calculator for him. This program should be simple enough that
someone who knows nothing about math should be able to use it. Finch has sent you a letter (given
below) describing the program he desires, and how he would like to be able to use it. However,
since Finch is not a programmer, he has not included how to make the program. This is up to you,
and will require some creativity and problem solving on your part.

When making this program, you will need to use several built-in Java classes: Scanner, String,
Double, Math, Random, etc... This will require you to import the classes properly! You can use
any classes that seem relevant to the task at hand.

Before attempting this homework, work through the practice problems from Wednesday and Thurs-
day of this week to get a handle on the built-in Java classes you will need to use for this assignment.

As usual, each program you turn in should include a comment at the top with (1) your full name, (2)
your student ID number, (3) your netID, and (4) the name of anyone you discussed the homework
with (excluding Sam and Alex).

As always: start early, ask questions, and have fun!

Finch’s Letter

To whom it may concern,

As you are aware, I have requisitioned your help in creating an interactive calculator for my per-

1

https://canvas.wisc.edu/courses/152193/pages/lecture-notes-and-practice-problems-second-half


sonal use. I have some very specific requests for how it works that you must adhere to, since I am
a very important and powerful man. Make sure to read my instructions carefully, since I get angry
very easily.

First and foremost, I wish to maintain my outwards appearance of being a very smart man. Please
put the calculator in a file called DefinitelyNotACalculator.java. When I run this file, the
program should greet me with a pleasant message. Then, it should prompt me to type in
an expression on a new line. I will then type in an expression, which follows the rules attached to
this letter (see addendum 1). Then, your program should print out the results of evaluating that
expression. The program will then prompt me again for an expression. This process will repeat
until I type in the word quit as the expression. When I do, the program should say goodbye kindly.

If at any point I enter an expression that is invalid for whatever reason, the program must not
crash. It should instead print an error message describing the issue, and prompt me for another
expression.

Notice that this program is interactive. It will need to prompt me for my input, and do something
with that input. This means that each time I run the program, something different might happen,
depending on which inputs I entered as the program was running.

I have also included an example session of what I desire my interaction with this program to look
like (see addendum B). Yours may differ slightly in terms of the exact ways you greet, prompt, and
say goodbye, but the general structure should be the same.

My secretary has included a list of hints for you in addendum 3.

Thank you very much for your hard work. If you do a sufficiently good job, I will make sure to put
in a good word for you with my superiors.

Good day,
J. Pierrepont Finch

Addendum 1: List of Expressions

Listed here is the first addendum to Finch’s letter: a table describing the various expressions his
calculator must be able to evaluate. Each expression is a “command” followed by a list of arguments
for that command, separated by spaces. For example, the expression + 4 5 should add 4 and 5,
resulting in 9 being returned.

Below is a list of the commands, along with their usage, and a what they evaluate to. Notice that
here x and y are used to stand for any arbitrary numbers – either with or without decimal points.
For example, the command “+” can be called as “+ 4 5”, but NOT “+ 5 y” or “+ x y”.

2



Note that these commands should work no matter how the word is capitalized. For example, max,
Max, MAX, and mAx should all evaluate to the max expression. Unless otherwise specified, every
command should work for both doubles AND integers.

Name Usage Evaluates To Notes

+ + x y x + y None

- - x y x− y None

* * x y x ∗ y None

/ / x y x/y This is double division

max max x y The bigger number of x and y None

pow pow x y xy None

abs abs x The absolute value of x None

log log x The log (base 10) of x None

sqrt sqrt x The square root of x None

rand rand x y A random integer between x and y x and y must be ints

rand rand x A random double between 0 and x x is a double or int

sum sum x1 x2 x3 x4 ... xn The sum of all the arguments No limit on number of args

sort sort x1 x2 x3 x4 ... xn The arguments in sorted order No limit on number of args

Addendum B: Example Session

Listed here is the second addendum to Finch’s letter: an example session showing how he expects
the program to behave. The red lines represent the input that Finch gave to the program as it was
running.

Good day, Mr. Finch! Welcome to your totally-not-a-calculator.

Please input an expression:

+ 4.0 4.0

8.0

Please input an expression:

- 4.0 5.0

-1.0

Please input an expression:

/ 4 5

0.8

Please input an expression:

rAnD 0 5

4

Please input an expression:

raND 10

5.55555

Please input an expression:

3



SQRT 16

4.0

Please input an expression:

sqrt 16.0 13.0 14.5

Error! Incorrect number of arguments.

Please input an expression:

sort 4 3 2 1 5000

1 2 3 4 5000

Please input an expression:

sdfjklsjdfkl 123 123

Error! Command not found.

Please input an expression:

quit

Have a nice day, Mr. Finch!

Addendum 3: Minor Hints

Finch’s secretary is a computer programmer, and has included a series of small hints. However,
you may choose to ignore any of these, if you find a better way of making your program work the
way Finch wants.

• You will need a loop of some kind to prompt the user repeatedly...

• You will need to use the Scanner class to get the user input. The only method you need is
.nextLine().

• You will need to use the String class to parse the input.

• There are String methods that convert entire strings into lowercase

• In order to break the user’s input into it’s parts, try String’s split() method, with a single
space as input...

• You will need to use the Double class to convert the inputted number into doubles rather
than Strings.

• At some point, you will need to figure out which command you are evaluating. Notice that
some commands do different things depending on the number of arguments...

• You will need to use the Math, Random, and Arrays classes to actually evaluate the expressions.

• Be careful with how you handle bad expressions. Make sure to print out meaningful error
messages.

4



• Make sure to print out the result.

• When comparing Strings, make sure to use “.equals()”, not “==”!

• When using built-in Java classes, consult the documentation (found via Google). Make sure
this is the Java 8 documentation!!!

• If you have any questions or issues, please ask on Piazza or during office hours.

Addendum 4: Pseudo-code

Finch’s secretary also secretly included some pseudocode for the program. You do not need to
follow this pseudocode, as long as your program functions the way Finch requested (but trust me,
it’ll be easier if you follow this.) The pseudocode is as follows:1

1. Greet Mr. Finch

2. Prompt the user for input

3. Until “quit” is the input

(a) Parse the input into (1) a command name and (2) the arguments

(b) If the command name is not a valid, print an error

(c) Determine which command is being used

(d) If the number of arguments is wrong, print an error

(e) Otherwise, parse each argument as a double or integer, as necessary2

(f) Based on the command, do something with the arguments to produce a result

(g) Print out the result

(h) Prompt the user for input again

4. Say goodbye to Mr. Finch

1This can be accomplished much more cleanly with a “do-while” loop, which we will not cover in this course.
You are welcome to use one if you desire! You can read about them here

2If the user inputs something other than a number, such as a letter, your program will crash when you try to cast
it to a double/int, and throw an exception. If you desire, you can try to catch this using a try/catch block, which
we will be covered in CS 300. See here for a detailed description. This is entirely optional.

5

https://www.tutorialspoint.com/java/java_do_while_loop
https://www.w3schools.com/java/java_try_catch.asp


Part ∞: Feedback Form [3 points]

Fill out this feedback form after you submit this assignment. Completion of this will count
towards your grade, but your responses themselves will not affect your grade in any way (so be
honest!).

What to turn in

On Canvas, turn in a zip folder called <my_net_id>_P10.zip with the following programs:

• DefinitelyNotACalculator.java

Also complete the feedback form. [3 points]

6

https://forms.gle/Bi2Yupujzn8iTu4v9
https://canvas.wisc.edu/courses/152193/assignments/581151
https://forms.gle/Bi2Yupujzn8iTu4v9

